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Objectives

® To be able to do packet analysis at very high-speed rates.

® o be able to intelligently move packets from node to node at

\ 4

very high-speed rates.

Two fundamental problems: packet analysis and packet forwarding

\ 4

Feature Needed (at very high speed rates):  Application:

Packet analysis >  Cyber security
Packet forwarding =  Cloud computing / load balancing
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Cyber Security Cloud: Definition

Add more recognizable Add more selection
cyber data capacity

Network Traffic

4

N

- PAAS model — the consumer has control over the deployed cyber-security
applications and their configuration and it provides support for any of the four
deployment models (private cloud, community cloud, public cloud, hybrid cloud)
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Packet Forwarding and Packet Analysis: Two Faces

of the Same Coin (Ex Ante and Ex Post Configurations)

® Optimizing for {Speed + Analysis} != Optimizing for Speed + Optimizing for Analysis
® QOptimality is achieved with the joint problem

¥

® a(CSC cells -- a network configuration to address the jointly optimized solution:

(@) (b) (c)

I" e [‘ @ I‘
: 3: process _ 4: process 3: analyze
._ cyber data 2: analyze cyber data 3
1: receive 4a: forward 1: receive 2a: forward
—» traffic v Y
..-p cyberdata = ?4b: drop = 2b: drop
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Mcore: Mapping Architecture onto a Manycore
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High-Performance Features

Feature: Utility:
mPIPE: Programmable packet
classification and switching engine with - High-speed packet switching
up to 80G bps and 120M packets-per- - No kernel involvement

second of throughput

TED Queuing (Tail Early Dropping): - Intelligent packet dropping
Intelligent congestion-avoidance packet - Designed to make the system
dropping policy. operate out of cache

LF - Data Structure: Lock-free data
structure with low probability of false - Zero locks everywhere
negative to convey feedback from A to F - Minimize memory contention
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TED Queuing
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TED Queuing

® Suppose that the system is so stressed that we need to drop a packet. In the
context of CSC, which packet should we drop?

® Approach: leverage the flows' heavy tails

I(b,)
A

cyber data

b,: n-th bit received from a flow
I(b,): degree of cyber security information carried by bit n-th
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TED Queuing

® TED Queuing designed to (1) exploit heavy tails and (2) to find
an optimal trade-off in hierarchical memory architectures

-------------------------------

P : Main Memory
1o,
E _______________________________ E Operation Latency
(. . ) L1 cache access 2 cycles
ettt ; L2 local cache access 8 cycles
i . g i L2 remote access 30-60 cycles Ten fold
i i Memory access 80 cycles
oo e e i \_ J
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TED Queuing

® TED queuing principle:

I(b,) A e
: N\ te

cyber data

“Illl ......... >

«—]
cyber data detected cyber data dropped

Lemma 1: Let c;, be the amount of cyber data per unit of time received by the node and let
n. be the amount of cyber data per unit of ime that it canactually process:
h
. h
- If m, < ¢, , there exists a value Aiq such that forany Aeq > A,

node will be accessing packets from memory (cache miss).

the analyzers in the

1
- For any value of ., there exists a value Alted such that for anyAiq <A,y

in the node will be accessing packets from cache (cache hit).

the analyzers
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TED Queuing

® TED queuing algorithm:

Constants: Atedl Ltedr fbed
1. StartwithA,,4 =

Step
Step

Step

(@)

TED

/lted, forana rbltrary/lted
2. If the cellis operating in me mory regime, then

keep reduding A;,4 by a value A;,; > 0 until
the cell starts to operate in cache regime.
3. Wait a period of time t;,4 and then increase

Ateq DY Areq- Afterthat, return to step 2.

Memory regime

cache
)\TED

'l " 1 » -
'4 : " . "f

] + 1e

[ 'd' L4
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i f slope: Atep/ trep
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LF - Data Structure

Reservoir Labs
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LF - Data Structure

® Data structure designed to satisfy the following specifications:
- It must be able to keep at least one flag for each element stored.
— It can be concurrently written and read by multiple writers and multiple
readers but it does not require locks to preserve the correctness of its
elements

— It can tolerate a low probability of false negatives but not false positives

® Algorithm: Initial state:T[e] = NULL foralle suchthat0 < e < N;

Writer (analyzer) algorithm:
Upon detecting thatc needs to be dropped, do:

T|h(id (c)) modulo N| = h(id(c));
Reader (forwarder) algorithm:
Upon receivinga padket from connection ¢, do:
if T|h(id (c)) modulo N| == h(id(c))
Drop the packet;
Otherwise
Forward the packet;

Reservoir Labs
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LF - Data Structure

Lemma 1: LF™ state correctness. An element in a data structure constructed using the LF~
algorithm is in a positive state with probability p,, in a false negative state with probability
P, andin a false positive state with probability pg,, where pg, < pg, < prandp, = 1.

Proof. [Working out the math—see HPEC12 paper]

1

Pe = 1 —
(1 n pt,t)
pfn,t

Pt fn
(1= Prn,n)
Pe,fp
(1= Prp.sp)

pfn ~

Prp =

LF hash table: connection connection
) c, leaves c, leaves
Pep pfn.P
connection ‘ . i
c, arrives connection c, arrives

h

C, leaves

%/ False positive state
Y connection

c, leaves

True state

© False negative state
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Tilera Gx (TILExtreme)

CPU Module
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Manycore platform:
- 36 tiles per processor x 4
- 4 x 10Gbe per processor
- Roadmap for 100 tiles per processor
- mPIPE: I/O acceleration
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Tilera Inter-Processor Communication

Yo,
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Tilera Inter-Processor Communication
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Mcore mapping
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Mcore extensions for Bro

mcore-def.bro

type mcore_node_type: enum { NULL, FORWARDER, ANALYZER, FORWARDER_ANALYZER };
type mcore_node_id: count;

const mcore_interfaces_input: set[string] = {
} &redef;

const mcore_interfaces_output: set[string] = {
} &redef;

const mcore_do_shunting = F &redef;

const mcore_ted_flow_threshold = 2000 &redef; # in number of bytes within a flow
const mcore_ted_queue_threshold = 50 &redef; # in % of queue utilization from 0 to 99
const mcore_force = F &redef;

const mcore_enabled = F &redef;
const mcore_is_manager = F &redef;

const mcore_node_map: table[mcore_node_id] of mcore_node_type = {
} &redef;
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Mcore extensions for Bro

mcore-x-y-z.bro arch/tilera/mcore.h
redef mcore_node_map = { void mcore_get_ring_writer(void);
[0] = FORWARDER, void mcore_get_ring_reader(void);
[1] = FORWARDER, int mcore_conf_rings(int num_analyzers, int num_forwarders);
(..) int mcore_init_rings(int NumAnalyzers);
[x-1] = FORWARDER, int mcore_link_init(int *cpu_ranks,
[x] = ANALYZER, int num_forwarders,
[x+1] = ANALYZER, int num_rings,
(..) char* if _input,
[x+y-1] = ANALYZER, unsigned char mac_output[][ADDR_LEN],
[x+Y] = FORWARDER_ANALYZER, char if_output[][MAX_STRLEN],
[x+y+1] = FORWARDER_ANALYZER, int num_output_if,
(..) int num_input_if);
[x+y+z-1] = FORWARDER_ANALYZER,} void * mcore_alloc_shmem(unsigned int size);

: void mcore_free_shmem(void * mem, unsigned int size);
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Performance (Tilepro)
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Performance (Tilepro)
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Performance (Tilepro)
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Performance (Tile-GX)

Analytics: Bro's default set + http_track.bro
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Going Forward

® Live demo at the SCinet Research Sandbox this coming
November => target: 4 x Tile Gx-36 from 10 to 80 Gbps.

® Tilera Gx roadmap toward 100 core processors. Leverage this
roadmap and other development in the manycore space
toward scaling to terabit computing.

® |ooking for testbeds that may be interested in testing Mcore
technology.

Reservoir Labs
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Testbed in NYC Labs
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