Efficient and Scalable Computations with Sparse
Tensors

Muthu Baskaran, Benoit Meister, Nicolas Vasilache and Richard Lethin
Reservoir Labs Inc.
New York, NY 10012
Email: {baskaran,meister,vasilache,lethin} @reservoir.com

Abstract—For applications that deal with large amounts of
high dimensional multi-aspect data, it becomes natural to rep-
resent such data as tensors or multi-way arrays. Multi-linear
algebraic computations such as tensor decompositions are per-
formed for summarization and analysis of such data. Their use in
real-world applications can span across domains such as signal
processing, data mining, computer vision, and graph analysis.
The major challenges with applying tensor decompositions in
real-world applications are (1) dealing with large-scale high
dimensional data and (2) dealing with sparse data.

In this paper, we address these challenges in applying tensor
decompositions in real data analytic applications. We describe
new sparse tensor storage formats that provide storage benefits
and are flexible and efficient for performing tensor computations.
Further, we propose an optimization that improves data reuse
and reduces redundant or unnecessary computations in tensor
decomposition algorithms. Furthermore, we couple our data
reuse optimization and the benefits of our sparse tensor storage
formats to provide a memory-efficient scalable solution for
handling large-scale sparse tensor computations. We demonstrate
improved performance and address memory scalability using
our techniques on both synthetic small data sets and large-scale
sparse real data sets.

I. INTRODUCTION

Using linear algebraic techniques to find structures and
properties of data in data analytics applications is well es-
tablished, for example, application of linear algebraic for-
mulations for solving graph analysis problems [1]. These
techniques apply for two-dimensional data and require the
data to be represented in terms of matrices. However real-
world data are often multi-dimensional with multiple as-
pects. Tensors or multi-dimensional arrays are a natural fit
to represent data with multiple aspects and dimensionality.
Consequently, multi-linear algebra, a generalization of linear
algebra to higher dimensions, is increasingly used in real-
world applications for extracting and explaining the properties
of multi-attribute data. Multi-linear algebraic computations
such as tensor decompositions have applications in a range
of domains such as signal processing, data mining, computer
vision, numerical linear algebra, numerical analysis, graph
analysis [2]. Two of the prominent tensor decompositions are
CANDECOMP/PARAFAC (CP) and Tucker decompositions.
These decompositions are popular in scientific domains and
also in modern applications such as social network analysis,
network traffic analysis and web search mining.

A major challenge in real-world applications is handling
the sparsity of data, as real-world data are not only multi-

dimensional but also the linkages between the multiple at-
tributes of data have a sparse characteristic. Recently, algo-
rithms for tensor decompositions that account for the sparsity
of data have been proposed [3]. In this work, we propose
new sparse tensor storage formats that provide storage benefits
and are efficient for performing tensor computations. The
first format is called “mode-generic” sparse format that is a
generic representation of tensor to conveniently store sparse
and semi-sparse tensors. The second format is called “mode-
specific” sparse format that is a special form of the generic
representation that is suitable to perform computations along
a specific mode or dimension of the tensor and improve data
locality in such computations.

Real-world application data are usually large and the large
size of the data poses a significant challenge to the efficiency
of the tensor computations. Large-scale tensor data also poses
a threat of “blowing up” system memory during computa-
tion resulting in inability to finish the computation. Memory
blowup problem is a phenomenon commonly observed by
users in Tucker decomposition [4]. Handling memory con-
sumption in large-scale tensor computations is very important
not only for preventing potential memory overflows but also
for improving the overall execution time. We propose a novel
optimization that aims to improve data reuse and reduce
redundant or unnecessary computations in a sequence of tensor
operations in Tucker decomposition. We couple the data reuse
optimization and the advantage of our sparse tensor formats to
store semi-sparse tensors and come up with a memory-efficient
scalable approach to handle large-scale sparse tensor computa-
tions. We demonstrate our efficiency to improve performance
and address memory scalability using our techniques on both
synthetic small data sets and large-scale sparse real data sets.

The contributions of our work are as follows:

o We propose new sparse tensor storage formats that ef-
ficiently store sparse and semi-sparse tensors in such a
way that helps improve data locality in sparse tensor
computations and reduce unnecessary memory storage in
the process of large data computations.

o We present a novel data reuse optimization technique that
reuses previously computed data and avoids redundant
computation in a sequence of tensor operations.

« We propose memory efficient scalable optimizations that
address memory blowup issues in large tensor computa-
tions and also help improve computation speedup.

The rest of the paper is organized as follows. We give a brief
background on tensor operations and decomposition in Section
II. We discuss about our new sparse tensor storage formats in
Section III. We present our data reuse optimization in Tucker
decomposition in Section IV. In Section V, we discuss the
memory blowup problem in tensor decomposition and our
memory efficient scalable optimizations. We demonstrate the
efficiency of our techniques in Section VI. We conclude with
a summary and a foreword to our future work in Section VIIL.

II. TENSOR BACKGROUND

In this Section, we discuss the definitions of some of the
basic tensor operations and tensor decompositions. A tensor
is a multi-dimensional array and the order of a tensor is the
number of dimensions, also called as modes, of the tensor.
An important tensor operation that is widely used in practice
is the n-Mode matrix product. Two popular and prominent
tensor decompositions are CANDECOMP/PARAFAC (CP)
and Tucker decompositions.

a) n-Mode matrix product: The n-Mode matrix product
of a tensor X of size I; X --- x Iy with a matrix A of size
J x I, (denoted by X x, A) results in a tensor of size [X
oo X Iy X I X Ipqg X oo Xy

I,
(X X A)iy iy ingr i = E Tiy . in Ojiy,

ip=1

b) CP Decomposition: The CP tensor factorization de-
composes a tensor into a sum of component rank-one tensors
(A N-way tensor is called a rank-one tensor if it can be
expressed as an outer product of N vectors). The CP decom-
position that factorizes an input tensor X of size I; X --- X Iy
into R components (with factor matrices AL AM and
weight vector \) is of the form:

R
=3 Mal o oal™
r=1

where aﬁ") represents the rt* column of the factor matrix A (™

of size I,, X R.

¢) Tucker Decomposition: The Tucker decomposition
decomposes a tensor into a core tensor multiplied by a matrix
along each mode. The Tucker decomposition that factorizes
an input tensor X of size I; X --- x Iy into a core tensor G of
size Ry X --- X Ry and factor matrices AL AN (where
each factor matrix A(™ is of size I, x R,) is of the form:

ng XlA(l)T Xog +r- XNA(N)T

The widely used algorithm for computing Tucker decompo-
sition is the higher-order orthogonal iteration (HOOI) method
[5] (presented in Algorithm 1) which can be viewed as an
higher-order singular value decomposition (SVD) for tensors.
The HOOI method involves various basic computational ker-
nels that include SVD and n-Mode matrix product.

Algorithm 1 Tucker-HOOI Algorithm [5]
repeat
forn=1...N do
Y= xxlA(l)T .. 'anlA(n_l)TXn+1A(n+1)T o

XN
A(N)T
A,, = J, leading left singular vectors of Y,
end for

§=Yxy AT
until convergence

III. SPARSE TENSOR STORAGE FORMATS

In this Section, we discuss the need for special sparse tensor
storage formats to handle the sparsity in multi-dimensional
tensor data and propose two new formats that help improve
data locality in sparse tensor computations and reduce unnec-
essary memory consumption in large data computations.

Sparse linear algebra primitives are widely used for two-
dimensional data analysis. Techniques for optimizing and
parallelizing key sparse linear algebraic primitives such as
sparse matrix vector multiply, sparse matrix matrix multiply
(SpGEMM) and the like are extensively studied and are
available in literature [6], [7], [8]. However, for performance
and storage reasons, it is not efficient to use any existing sparse
matrix format to store sparse tensors and apply sparse matrix
primitives to solve sparse tensor problems.

The common form of sparse tensor storage is the coordinate
sparse tensor storage in which each non-zero is stored along
with its index. While there are compressed sparse tensor stor-
age formats like the Extended Karnaugh Map Representation
(EKMR) [9] available in literature, Kolda et al. have expressed
their opinion on the problems in compressed storage formats
and have opted coordinate format in their work. However they
have also acknowledged that the specialized storage formats
such as the EKMR can be quite useful in many cases of
(specific) tensor operations.

We first briefly discuss the motivation behind our new
sparse tensor formats. If the non-zero values of a sparse tensor
are stored in a random order of their indices, any tensor
operation that is performed along a particular mode (mode-
specific operation) would result in very poor locality with
respect to accumulating the results of the operation in the
output. This is because different non-zeros in the input tensor
may contribute to the same element of the output and a random
order of the indices may result in accessing the same element
in different time instances that are far apart in the execution
time-line (resulting in loss of locality). This motivated us
to order the indices in a way that is suited for most tensor
operations (most of which are mode-specific sequence of
tensor operations). Of course, the problem is to choose the
sort order of indices. There are N! possible orderings for a
N*" order tensor. Hence we limit our ordering to “outermost-
to-innermost” mode or vice-versa. Our observation is that for
any mode-specific operation, it would be beneficial if the
storage format supports enumerating the “fibers” (sections of

T3 - O

cty Dense sub-tensor D[0][M,]...[M]

nnz

P T3 - O s

ed] €

Dense sub-tensor D[0][M;,]...[M]

T3 - O 3

I3 -0

C ~ Dense sub-tensor D[nnz-1][M,]...[My]

b
S

matrix storing the coordinates of non-candidate sparse modes in each
distinct bucket

S Dense sub-tensor D[nnz-1][My;,]...[Mgy] t : vector storing the number of non-zero candidate mode indices in each
distinct bucket

S : matrix storing the coordinates of sparse modes in each distinct bucl

D[nnz][M,]...[Mg] : dense sub-tensors
Mode-generic sparse tensor storage

(a) Mode generic format
Fig. 1.

a tensor obtained by fixing all but one index) along the mode
efficiently.

In line with the above discussion, we come up with two
new sparse tensor storage formats, namely, - (1) mode-generic
sparse tensor storage format and (2) mode-specific sparse
tensor storage format. These formats store non-zeros in an
orderly fashion. The generic format is suited for any tensor
operation and the specific format is suited for mode-specific
tensor operations. The generic and specific formats take into
account that some of the modes of the tensor may be dense
(for e.g. tensors resulting from a sparse tensor dense matrix
product) and hence are capable to efficiently represent dense
sub-tensors within a sparse tensor. The generic format is the
same as the coordinate format when all modes are sparse and
is the same as the dense tensor storage when all modes are
dense.

A. Mode-generic sparse storage format

In this section, we explain the structure of our mode-generic
sparse tensor storage (shown in Fig. 1(a)). The highlights of
this format are:

o sparse and dense modes are separated (a set of modes
ni,...,ng is categorized as dense if the sub-tensor
formed with modes n1,...,ny is a dense tensor).

o sparse mode indices are ordered from “outermost-to-
innermost” or vice-versa.

o storage is as follows for a N*" order tensor of size M x
N MN:

1) k : scalar that stores the number of sparse modes

2) b : scalar that stores the number of distinct sparse
mode index tuples

3) d:1x1 vector storing the list of dense modes (where
l=N—-k)

4) S : b x k matrix storing the coordinates of the k
sparse modes in each of the b distinct buckets

5) D:bx Mg x---x Mg dense sub-tensors

C : vector storing the non-zero candidate sparse mode indices
D[nnz,][M,]...[My] : dense sub-tensors

Mode-specific sparse tensor storage

(b) Mode specific format

Sparse tensor storage formats

B. Mode-specific sparse storage format

In this section, we explain the structure of our mode-specific
sparse tensor storage (shown in Fig. 1(b)). The highlights of
this format are:

o sparse and dense modes are separated
o sparse mode indices are ordered from ‘“‘outermost-to-
innermost” or vice-versa.
« one of the sparse modes is a “candidate” mode
o storage is as follows for a N*" order tensor of size M x
ox M N
1) k : scalar that stores the number of sparse modes
excluding the candidate mode
2) b : scalar that stores the number of distinct sparse
mode index tuples
3) d:1x1 vector storing the list of dense modes (where
Il=N—-k-1)
4) S :bxk matrix storing the coordinates of the k non-
candidate sparse modes in each of the b buckets
5) t : b x 1 vector storing the number of non-zero
candidate mode indices in each bucket
6) C : nnzs x 1 vector storing the non-zero candidate
mode indices (where nnz, = Z?:l t[i])
7) D :nnzg X Mg, X ---x My, dense sub-tensors

IV. OPTIMIZATION FOR DATA REUSE IN TENSOR
COMPUTATIONS

We discuss a novel high-level optimization that is designed
to avoid unnecessary (and costly) computations and efficiently
reuse previously computed data in Tucker decomposition.
The theoretical benefits from this optimization will be clear
from the discussion of the optimization presented below.
The practical benefits are substantiated through experimental
evaluation presented in Section VL.

The Tucker-HOOI algorithm presented in Algorithm 1 has a
common tensor operation, namely, sequence of tensor matrix
products along all but one modes of a tensor.

y — xX1A(1)T . anlA(n_l)T XnJrlA(’n,—‘rl)T . XNA(N)T

Each X, in the computation indicates a n-Mode matrix
product (multiplying a tensor with a matrix along the nth mode
of the tensor). As it can be seen from Algorithm 1, there is a
sequence of N —1 n-Mode product computations (/V being the
order of the tensor) within each iteration of the for loop. Each
product in the sequence produces an intermediate tensor that
is used to compute the next product in the sequence. A major
challenge is to reduce the storage of such intermediate tensors
and increase the opportunity to reuse the intermediate data for
memory scalability and performance improvement. Some of
the intermediate tensors produced within one iteration of the
for loop can be reused in subsequent iterations of the for
loop. Exploiting such data reuse needs proper scheduling of
the operations in the computation.

Furthermore, a slight re-write of the above computation
offers opportunities for an improved data reuse (more reuse
than what could be exploited in the original form). We utilize
the fact that for distinct modes in a sequence of n-Mode
products, the order of multiplication is irrelevant [10].

Our approach does the following modification to the com-
putation. The for loop goes over the modes of the tensor
in a particular order and let us assume that the modes are
numbered from 1 to N in that order. We split the for
loop into two halves. In the first half, the sequence of n-
Mode matrix products are performed in the decreasing order
of modes and in the second half, the sequence of n-Mode
products are performed in the increasing (original) order.
By doing so, the number of reuses of the intermediate ten-
sors produced are increased. The modified computation looks
like:

repeat

forn=1...[] do
Y = X xy AT AT
A(nfl)T ceexXy A(I)T
A,, = J, leading left singular vectors of Y,,

end for

forn=[4]+1...N do

= X X1 A(l)T e Xp—1 A(nil)T Xn+1

ACHDT o AT
A,, = J, leading left singular vectors of Y,
end for
§="YxyAMT
until convergence
In the original form of com2putati0n, total number of reuses
of intermediate tensors are: NT — % + 1. We refer to the reuse
in the original form as the partial data reuse in our future
discussion. However, in the modified form of computation,
total number of reuses, of intermediate tensors turn out to be:
> NTQ — % + W + 1. We refer to the reuse in the
modified form as the optimal data reuse henceforth.

V. HANDLING MEMORY OVERFLOW PROBLEM IN TUCKER
DECOMPOSITION

Despite the popularity of Tucker decomposition, applying
it on a large-scale sparse tensor is still a research problem. In

spite of having enough memory to store the large input sparse
tensor and the core output dense tensor, memory overflow
occurs frequently in Tucker computation due to the need to
store larger intermediate results. Kolda et al. call this problem
as the intermediate blowup problem and propose Memory
Efficient Tucker (MET) decomposition as a solution to the
problem in their work [4].

A. Intermediate blowup problem

We first explain the intermediate blowup problem in Tucker
decomposition. The computation of Y in Algorithm 1 (all but
one n-Mode product sequence) has the possibility of memory
blowup. Let us assume that the input tensor size is 11 X - - X Iy
and the output tensor size is 21 X - - - X Ry. The state-of-the-
art sparse tensor dense matrix product implementations store
the result in a dense tensor. Hence in the all but one sequence
computation, the result of the first n-Mode product is stored
in a dense tensor of size Ry X Is X --- X In. Therefore there
arises a need for a large storage to store the intermediate result
and it may easily lead to memory overflow resulting in the
intermediate blowup problem. It is possible to do the entire
tensor matrix product sequence without storing any of the
intermediate tensors. However it induces a huge overhead in
terms of repeated computation of various intermediate values
that would have been otherwise computed only once, if they
are stored and used for computing the next product in the
sequence. Therefore the issue boils down to handling the trade-
off between doing redundant computations and using more
memory for storing intermediate results.

Kolda et al. propose a memory-efficient solution to handle
this problem. They divide the modes as element-wise and
standard. The idea is to do redundant computations along
element-wise modes and store intermediate results of reduced
size. Suppose they choose, say, e modes as element-wise,
then the intermediate tensors they store are (N — e) mode
tensors instead of N mode tensors and they do redundant
computations along the e modes. The categorization of modes
is done based on, what they call, reduction ratio which is
defined as é—’; for m e {1,...,N}\ {n}, where n is the
mode that is skipped in the all but one sequence. They select a
minimal number of modes (with the largest values of reduction
ratio) that guarantees memory availability as element-wise
modes.

B. Memory-efficient scalable optimizations

We discuss our approach to provide a memory-efficient
scalable solution to the intermediate blowup problem. First,
we propose the use of mode-generic and mode-specific sparse
formats to store intermediate tensors. Our sparse formats
(both mode-generic and mode-specific) are designed to store
completely sparse tensors and also tensors that have dense
sub-tensors. As discussed earlier, the result of a sparse tensor
dense matrix computation need not be stored in a dense tensor
but can be stored using our mode-generic sparse format. The
intermediate result is more dense than the input sparse tensor,
but it may not be completely dense. Hence our technique

of using mode-generic and mode-specific sparse formats for
intermediate tensors reduces the memory requirement and
thereby (1) reduces the possibility of memory blowup and
(2) provides opportunity to store more intermediate tensors
and achieve more data reuse using the data reuse optimization
discussed in Section IV.

Furthermore, to handle the memory blowup problem, we
also divide the modes as element-wise and standard, but in
a different way from that of Kolda’s approach. We order the
modes based on the degree of data reuse of the intermediate
tensor resulting after the n-Mode product along the mode. We
assume an “initial” order (say L) of the modes (the order in
which the for loop runs in Algorithm 1). In Section IV, we
discussed about splitting the for loop into two halves. To
choose element-wise modes for the first half computation, we
choose the reverse order of L and choose minimal number
of modes in that order that guarantees memory availability as
element-wise. For the second half computation, the same is
repeated with the original order of L. When a set of modes
is selected as element-wise, we perform the sequence of n-
Mode products along the element-wise modes at once (do-
ing redundant computations and without storing intermediate
tensors) and store one intermediate tensor at the end of the
“element-wise” computation. This intermediate tensor has the
same number of modes as the input tensor but reduced in size
along the element-wise modes. This approach ensures memory
availability to store intermediate tensors and also does not
perturb the application of data reuse optimization.

Therefore we frame the optimizations to not only address
memory scalability but also improve computation time by
reducing redundant computations through improved data reuse
and in this way we stand out from Kolda’s MET approach.

VI. EXPERIMENTS

We carried out experiments to evaluate the following: (1)
efficiency of the new sparse tensor formats, (2) how we
handle memory blowup problem in Tucker decomposition,
using synthetic and real data sets, and (3) benefits of data reuse
optimization in achieving performance improvement. The syn-
thetic sparse tensors used in the evaluation are generated using
the sparse tensor generation capability in the MATLAB Tensor
Toolkit [11]. We performed the experiments on a dual socket
quad core system with Intel Xeon E5504 2GHz processor and
12GB DRAM.

A. Testing sparse formats with synthetic data set

We performed experiments to demonstrate the effectiveness
of the new sparse formats and understand the overhead of
writing code for computations with the new formats. We
represented the sparse tensor in the following formats in our
experiments - (1) coordinate sparse tensor format, (2) mode-
generic sparse tensor format, (3) mode-specific sparse tensor
format and (4) compressed sparse row (CSR) format (tensor
being matricized).

We took a 4*" order sparse tensor of size 32 x 32 x 32 x
32 with 2048 non zeros as input for our experiments. Our

first experiment was to compare the sequential performance of
sparse tensor dense matrix multiplication of the input sparse
tensor with a 32 x 32 dense input matrix along mode 4. Our
next experiment was to measure the sequential performance of
a sequence of two tensor matrix multiplications along mode 4
followed by mode 3. The performance achieved is shown in
Table L.

Format One product | Two products
(GFLOPS) (GFLOPS)
Compressed Sparse Row 0.0012 0.0012
Coordinate 0.1416 0.1492
Mode-specific and
Mode-generic 0.3072 0.3273
TABLE I

PERFORMANCE OF TENSOR MATRIX MULTIPLICATION

From the results in Table I, we can see that converting to
sparse matrix and performing the sparse tensor dense matrix
multiplication as sparse matrix dense matrix multiplication
results in very poor performance. The performance when
sparse tensors are represented in our new formats is more
than 2x better than that when spare tensors are represented
in coordinate format. It is to be noted that the input sparse
tensor was stored in mode-generic format, then converted to
mode-specific format before the computation, and the result
was stored in mode-generic format. We included the time taken
for conversion from generic to specific format in the timing
of the kernel.

B. Testing memory blowup handling capability and data reuse
optimization

We evaluated the memory consumption and the computation
time taken for Tucker decomposition using various synthetic
and real input tensor data sets. We specifically measured the
all but one sequence of tensor matrix products (multiplying a
tensor by a sequence of matrices along all but one modes) oc-
curring in the Tucker decomposition as the different evaluation
versions of implementation differed only in that computation.

We implemented the following versions of tensor matrix
product sequence: (1) “standard” - standard way to compute
tensor matrix product sequence i.e. computing and storing
all intermediate results in standard (dense) form, (2) “ele-
mentwise” - storing no intermediate results and performing
redundant computations, (3) “other MET” - best performing
memory-efficient Tucker following Kolda’s approach of select-
ing few modes as element-wise and few modes as standard,
(4) “our MET” - our approach of selecting element-wise and
standard modes, storing intermediate results in mode-generic
sparse format and applying the data reuse optimization.

1) Evaluation using large real data set: We used a large
real data set extracted from the Enron email database [12],
similar to the one used by Kolda et al. in their work on MET,
to evaluate our approach to handle memory scalability and per-
formance issues in large-scale data. The data set has 4 modes
- sender, receiver, date and keyword. The dimensionality is
1000 x 1000 x 1100 x 200, representing emails of 1000 users
over 1100 days with 200 keywords. The tensor is very sparse

with only 5.5 million non zeros (0.0025%) out of 220 billion
possible elements. The dimensionality of output core tensor is
fixed as 10 x 10 x 10 x 10. As mentioned above, we evaluated
the all but one sequence of tensor matrix products occurring
in the Tucker decomposition. Being a 4" order tensor, there
are 4 all but one sequence of tensor matrix products.

The “standard” way of computing an all but one sequence
of tensor matrix products in the state-of-the-art approach
needs the intermediate tensors to be stored in dense form
and runs out of memory for the first intermediate tensor.
However our approach using the mode-generic sparse format
successfully handles the memory requirement and computes
even the largest possible intermediate tensor. The memory effi-
cient Tucker following Kolda’s approach successfully executes
without memory overflow only when 2 or more modes are
handled element-wise and fails to execute otherwise. The best
performing version of Kolda’s MET approach turns out to be
the one with 2 element-wise modes.

[Version [Time (s) |
elementwise 175.17
other MET 21.79
our MET (partial data reuse) 9.29
our MET (optimal data reuse) 7.12

TABLE I
PERFORMANCE OF SEQUENCE OF TENSOR MATRIX MULTIPLICATIONS ON
LARGE REAL DATA SET

Our approach not only handles the memory scalability better
than the other approaches but also achieves better computation
speed. Table II clearly substantiates the superior performance
of our approach. The optimal data reuse, as explained in
Section IV, yields good performance improvement as it can
be seen from the results in Table II. The version with optimal
data reuse performs 1.3x better than the version with partial
data reuse and 3x better than the version without data reuse.

We then parallelized the version of implementation using
our approach (using OpenMP directives) and measured the
performance. We observed scalable performance improvement
as the number of executing processor cores increased. The time
taken for execution on 1, 2, 4, and 8 processor cores was 7.12s,
6.25s, 3.80s, and 2.57s, respectively.

2) Evaluation using synthetic data sets: We further eval-
uated our techniques using few synthetic data sets that are
representatives of some real data sets in terms of size and
sparsity. We used the following input tensors - 1) 4-way tensor
of size 28 x 501 x 24 x 8, with 26400 non-zeros and 2) 4-way
tensor of size 1000 x 1000 x 200 x 12, with 686400 non-zeros.

Version Tensor 1 | Tensor 2
Time (s) | Time (s)
elementwise 0.751 23.47
other MET 0.065 2.04
our MET (optimal data reuse) 0.050 1.78

TABLE III
PERFORMANCE OF SEQUENCE OF TENSOR MATRIX MULTIPLICATIONS ON
SYNTHETIC DATA SETS

Table III presents the results of the experiment. Our ap-
proach performed better than the other versions and also

handled memory consumption better as our approach success-
fully stored all intermediate tensors necessary for reducing
redundant computations and increasing data reuse.

VII. CONCLUSION

We have described new sparse tensor formats and scalable
computation scheduling optimizations for algorithms that use
multi-linear tensor algebraic formulations of analysis of data
with multiple linkages, and demonstrated their efficiency on
synthetic and real data.

While these optimizations could be implemented “by hand”
to provide immediate benefit in graph optimization implemen-
tations of algorithms such as [2] and [3], we expect their major
impact will be obtained when they are implemented automat-
ically in the context of other automatic high-level optimiza-
tions, such as those that extract parallelism, improve locality,
and perform other format improvements. In particular we note
the availability of algorithms such as [13] implemented in
our R-Stream compiler for the high-dimensional, imperfect,
static control loop nests and high-dimensional arrays that
characterize multi-linear algebraic operations at the semantic
level. With such optimizations performed semantically, mode-
specific format conversions will be applied in code generation
along the lines of [14].

REFERENCES

[1] J. Kepner and J. Gilbert, Eds., Graph Algorithms in the Language of
Linear Algebra. SIAM, 2011.

[2] D. Dunlavy, T. Kolda, and W. P. Kegelmeyer, “Multilinear Algebra for
Analyzing Data with Multiple Linkages,” in Graph Algorithms in the
Language of Linear Algebra, J. Kepner and J. Gilbert, Eds. SIAM,
2011.

[3] E. C. Chi and T. G. Kolda, “On Tensors, Sparsity, and Nonnegative
Factorizations,” arXiv:1112.2414 [math.NA], December 2011. [Online].
Available: http://arxiv.org/abs/1112.2414

[4] T. G. Kolda and J. Sun, “Scalable Tensor Decompositions for Multi-
aspect Data Mining,” in ICDM 2008: Proceedings of the 8th IEEE
International Conference on Data Mining, December 2008, pp. 363—
372.

[5] L. D. Lathauwer, B. D. Moor, and J. Vandewalle, “On the Best Rank-
1 and Rank-(R1,R2,. . .,.RN) Approximation of Higher-Order Tensors,”
SIAM J. Matrix Anal. Appl., vol. 21, pp. 1324-1342, March 2000.

[6] F. G. Gustavson, “Two Fast Algorithms for Sparse Matrices: Multiplica-
tion and Permuted Transposition,” ACM Transactions on Mathematical
Software, vol. 4, no. 3, pp. 250-269, 1978.

[71 T. A. Davis, Ed., Direct Methods for Sparse Linear Systems.
2006.

[8] A.Bulug and J. R. Gilbert, “Parallel Sparse Matrix-Matrix Multiplication
and Indexing: Implementation and Experiments,” SIAM Journal of
Scientific Computing (SISC), 2012.

[9] C.-Y. Lin, J.-S. Liu, and Y.-C. Chung, “Efficient Representation Scheme
for Multidimensional Array Operations,” IEEE Transactions on Comput-
ers, vol. 51, pp. 327-345, 2002.

[10] T. G. Kolda and B. W. Bader, “Tensor Decompositions and Applica-
tions,” SIAM Review, vol. 51, no. 3, pp. 455-500, September 2009.

[11] T. Kolda and B. Bader, “Tensor toolbox.” [Online]. Available:
http://www.sandia.gov/ tgkolda/TensorToolbox

[12] A. Fiore and J. Heer, “UC Berkeley Enron email analysis.” [Online].
Available: http://bailando.sims.berkeley.edu/enron_email.html

[13] N. Vasilache, B. Meister, M. Baskaran, and R. Lethin, “Joint Schedul-
ing and Layout Optimization to Enable Multi-Level Vectorization,”
in IMPACT-2: 2nd International Workshop on Polyhedral Compilation
Techniques, Paris, France, Jan. 2012.

[14] W. Pugh and T. Shpeisman, “SIPR: A New Framework for Generating
Efficient Code for Sparse Matrix Computations,” in LCPC, 1998, pp.
213-229.

SIAM,

