
1

Optimized Parallel Distribution Load Flow Solver

on Commodity Multi-core CPU
Tao Cui, Franz Franchetti

Department of ECE., Carnegie Mellon Univeristy

Email: {tcui,franzf}@ece.cmu.edu

Abstract—Solving a large number of load flow problems
quickly is required for Monte Carlo analysis and various power
system problems, including long term steady state simulation,
system benchmarking, among others. Due to the computational
burden, such applications are considered to be time-consuming,
and infeasible for online or realtime application. In this work
we developed a high performance framework for high through-
put distribution load flow computation, taking advantage of
performance-enhancing features of multi-core CPUs and various
code optimization techniques. We optimized data structures to
better fit the memory hierarchy. We use the SPIRAL code
generator to exploit inherent patterns of the load flow model
through code specizlization. We use SIMD instructions and
multithreading to parallelize our solver. Finally, we designed a
Monte Carlo thread scheduling infrastructure to enable real time
operation. The optimized solver is able to achieve more than 50%
of peak performance on a Intel Core i7 CPU, which translates to
solving millions of load flow problems within a second for IEEE
37 test feeder.

I. INTRODUCTION

Load flow computation is an essential routine for power

system analysis. The main purpose of load flow is to compute

the system’s complete state based on load and generation

status. Load flow computation often lies in the critical path of

most power system analysis programs. Solving a large number

of load flow problems is required for various applications

including Monte Carlo style analysis, long term steady state

simulation, system benchmarking, among others. These appli-

cations are generally viewed to be computational intensive,

time consuming and infeasible for online applications.

With the recent development of smart grid technologies like

integration of renewable energy resources or plug-in electrical

vehicles connected to the distribution system, there is a higher

demand for computational performance for distribution system

analysis. Fast load flow analysis for distribution system smart

grid applications ensuring the system’s efficiency, reliability,

economics, and sustainability under various conditions are

being actively developed [1], [2], [3]. The computing per-

formance requirements (high throughput or realtime) make

embedded high performance computing technology one of the

most important enabling technologies for various smart grid

applications in distribution networks.

In contrast to the transmission system load flow and general

circuit simulation, the branch current based Forward / Back-

ward Sweep (FBS) method is the most efficient method for

radial distribution system analysis [1], [4]. In FBS method,

This work was supported by NSF through awards 0931978 and 1116802.

the system is modelled as a tree, and the core computation of

the FBS method is to iteratively traverse the tree in forward

and backward order to update the unknown system state on

each component (link or node) according to the circuit laws.

Inside each iteration, on each link, small 3×3 complex matrix-

vector multiplication is the main computation. The following

properties of the distribution load flow computation allow us

to specifically optimize the FBS for commodity multicore

platforms: 1) most normal load flow cases converge at same

iteration step, 2) for a fixed system, the system and data

structures also have a fixed pattern, 3) there is a tradeoff

between modeling convenience and computation efficiency,

and 4) real time Monte Carlo benefits from a relaxed schedul-

ing and threading model. In this work we are exploiting

above mentioned features and developed a high performance

computing framework to solve high throughput distribution

load flow problems. Our target hardware is a mainstream

commodity multi-core CPU with SIMD instructions. Such

a platform provides performance in the hundred Gflop/s to

Tflop/s range (flop/s is floating-point operation per second),

and is affordable enough to be potentially deployed down to

to distribution substation level.

Contribution. In [5] we presented an initial version of a

high performance solver for distribution system load flow on

multi-core CPUs. In this paper, we provide a highly optimized

extension of the solver. In particular, we applied aggressive

algorithm level optimization as well as code synthesis and

specialization using the SPIRAL code generator. The contri-

bution of this paper is two-fold: First, the optimized solver

reaches more than 50% of a CPU’s machine peak performance

using the 8-way single-precision AVX SIMD instructions and

the 4 cores of a SandyBridge CPU. This translates into

about 50x speedup compared to the best compiler-optimized

baseline code on the target platform. The performance is also

scalable with the hardware’s parallel capabilities (multiple

cores and SIMD vector width). Second, we detail the necessary

optimization techniques to provide such speed-up levels for

power grid solvers. We apply algorithmic and data structure

optimizations, code synthesis, explicit SIMD code generation,

and low-overhead multi-threading.

Synopsis. The paper is organized as follows: In Section

II we review the distribution network load flow algorithm

and the software framework for our solver. In Section III we

describe our performance optimization methods. In Section IV

we report and analyze performance results of our optimized

solver for IEEE test feeders. In Section V we discuss an

example application. Section VI concludes the paper.

2

II. ALGORITHM AND IMPLEMENTATION CONSIDERATIONS

Distribution system load flow algorithm. The distribution

system has some distinctive properties: 1) high resistance to

reactance ratio and the actual value of impedance can vary,

2) radial structure, 3) unbalanced and multi-phase (usually

three phases). Therefore most of the distribution load flow

cases cannot be solved well with transmission load flow and

general circuit simulation algorithm. The branch current-based

forward/backward sweep (FBS) method is one of the most

efficient methods for distribution system load flow computa-

tion. We use the FBS method and the generalized multi-phase

unbalanced feeder models outlined in [4] and [1].

N0

N1

N2 N3 N5

N4

Load

Substation

Node n

Node m

a b c

[Vabc]n

[Vabc]m

[Iabc]m

[Iabc]n
Node n

Node m

a b c

Link

Model

Cable or

Line, etc.

}

Fig. 1. Link model (left) and Single line diagram (right).

[Iabc]n = [c] [Vabc]m + [d] [Iabc]m (1)

[Vabc]m = [A] [Vabc]n − [B] [Iabc]m (2)

Fig. 1 shows the radial system and the link model for a

branch connecting two nodes, n is the node closer to the

substation, and the reference forward direction is from n to

m. The relations of the complex three phase voltages [Vabc]n
[Vabc]m and complex three phase currents [Iabc]n [Iabc]m are

given in (1) and (2), The 3×3 complex matrices A, B, c, d

are constant matrices derived from each equipment model [1].

In distribution network load flow model, the substation is the

constant voltage source at the root of the tree. The electric load

on each node (e.g. Node N1 to N5 in Fig. 1) usually have pre-

specified power consumption. The load flow algorithm solves

the three phase voltages on every node which are the states of

the system. All other system quantities can be derived from

the knowledge of the voltages.

The FBS method works as following: given an initial guess

for the voltages, in each iteration first a Backward Sweep

traverses from all the leaves to the root, using the Kirchhoff

Current Law on each node and (1) on each branch to update

currents. Next, a Forward Sweep traverses from root to all the

leaves, using (2) to update voltages. The iterations consisting

of backward and forward sweeps are repeated until each node’s

power mismatch is smaller than an error limit. Subsequent

iterations use the results of the previous iteration as starting

point for the backward sweep.

As we can see, the FBS method is highly related to

the physical models. It is possible to trade off modelling

accuracy and computational efficiency to achieve the necessary

performance withing the required error bounds.

Implementation considerations. In this paper we focus on

a high throughput scenario requiring a large number of load

flow problems solved in real time. These problems have the

following properties: 1) The system topology and component

model are mostly unchanged for all computation cases. 2)

The load on every node and other continuous value may be

different across problems. 3) All the solved problems are

mostly independent, however, they may have some shared

data or logic that need to be scheduled and synchronized.

Important power system applications share these properties,

including as Monte Carlo simulation to solve probabilistic load

flow, monthly, yearly steady state simulation and some system

benchmarking considering varying load and generation.

Load Flow Solver

Load Flow Solver

Load Flow Solver

� 2~64 parallel

threads ...

Load Flow Cases Generator:

1. Sample Random Variables

or

2. Sample Load Profile

or

3. Generate Benchmark Case

Solve Load Flows (SIMD, Mutlithreading)
Processing Load Flow Results

1. Estimate Probability

or

2. Compute Long Term Losses

or

3. Benchmark Summary

Scheduling According to Real Time Requirements

Fig. 2. General structure of our realtime high throughput load flow solver.

Our general software structure to take advantage of these

properties is shown in Fig. 2. Our approach is intrinsically

embarrassingly parallel. However, in order to achieve peak

performance and enable real time operation, aggressive code

optimization and providing a proper threading infrastructure

is still a big challenge.

III. OPTIMIZATION AND PARALLELIZATION

Baseline implementation. We implemented a baseline code

in object-oriented C++, similar to the implementation of

GridLabD [3]. In our baseline implementation, the distribution

system is modeled as a tree and implemented using the Stan-

dard Template Library (STL), which provides template data

structures for trees and traversals, among others. The forward

and backward sweeps iterate over the tree. While an STL-

based object oriented implementation provides convenience

and productivity from an software engineering perspective,

these benefits come with a (potentially) huge performance

penalty due to various overheads and uncontrolled memory

allocation/access patterns.

Fig. 3. Data structure optimization (same network as in Fig. 1).

Data structure optimization. The major data structure

optimization is to flatten the tree data into an 1D array (Fig. 3).

3

This is a one-time effort as the tree stays unchanged through-

out the Monte Carlo simulation or other high-throughput

applications, and thus negligible. The data needed for FBS on

each node or branch is placed together in a block (N5 data in

Fig. 3). Blocks are then placed in the 1D array according to the

traverse sequence of FBS iterations. In this way, the tree traver-

sals with object data access through member functions are

converted into streaming memory access to a raw data array.

We further introduce two pointer arrays (one for the forward

sweep and one for the backward sweep) to enable pointer-

based implementation of node and branch computations. The

sweeps just linearly traverse the pointer arrays which in turn

linearly (upwards) or almost linearly (downwards) traverses

the data array. Thus, the FBS computation preserves temporal

and spatial locality of the data streams introduced by the data

structure optimization. The data structure optimized code takes

advantages of the memory hierarchy and yield much better

performance than the baseline C++ code.

Specialization through code synthesis. The main per-node

or per-branch operations in the FBS iteration are small matrix-

vector multiplications described in (1) and (2). The matrices

are complex-valued and of size 3×3 due to the three phases of

the distribution system. All 3×3 complex matrices A,B, c,d

are constant and not all of them are full matrices as the

elements in these matrices are related to the self and mutual

relations among the phases in the three-phase system. Due to

the link model’s physical properties, most of these matrices

are symmetric, diagonal or even identity matrices, and there

is a limited number of sparsity pattern due to the modeling of

the nodes. These pattern are fixed once the system’s physical

elements are known.

To avoid unnecessary additions and multiplications with

zero as well as the storage of known zero values, we synthesize

special matrix-vector multiplication kernels that inline the

matrix structure into the kernel. We need one specialized

kernel per matrix pattern and a dispatch mechanism that

invokes the correct kernel. The savings can be considerable as

small 3×3 matrix-vector product kernels can be fully unrolled

and a switch statement-based jump table can be used. Our

approach is similar to [6], which introduces a pattern-based

sparse matrix multiplication kernel, and to [7] where a similar

code synthesis technique is used.

Fig. 4 shows example sparse matrices and a corresponding

code fragment. Fig. 4(a) shows that for each matrix pattern

only the necessary operations are present. The unnecessary

floating point operations are removed. Fig. 4(b) shows the

compact storage scheme for the sparse matrix. Since the

patterns are known, only an identifier per pattern is needed

in addition to the non-zero values. The kernel code for a

given pattern has the addressing for the constants inlined. This

reduces memory access operations and address calculations.

This further reduces the runtime of the FBS iteration.

We use the SPIRAL [8] program generation and autotuning

system as code synthesizer and source-to-source compiler to

generate the jump table and the small specialized matrix-

vector multiplication kernels. In particular, we are utilizing

the SPL compiler, SPIRAL’s domain-specific compiler which

includes a lower-level compiler infrastructure to translate high-

(a) Jump table dispatching pattern-specific matrix-vector kernels.

mat_type

a,0,0,0,b,0,0,0,c a,b,c

+

Full Matrix
Compressed

(b) Compressed storage for a matrix pattern.

Fig. 4. Pattern-based optimized sparse matrix-vector multiplication.

level matrix pattern descriptions into unrolled, highly-efficient

specialized matrix-vector multiplication code.

We show our approach in Fig. 5. We show the input script to

the SPIRAL code synthesis engine and the code it synthesizes.

The input script constructs a matrix-level representation of

a given sparse 3 × 3 complex matrix with known pattern

but unknown entry values. It sets the corresponding matrix

entries according to the input parameters to real variables,

complex variables or zero, and reuses variables to indicate

symmetry. Then, the SPL compiler is invoked to compile this

symbolic matrix into a straight-line kernel in internal code

representation implementing the corresponding matrix-vector

product, applying all the necessary basic block optimizations

(strength reduction, common subexpression elimination, copy

propagation, array scalarization) [9] that are enabled by the

particular pattern of symmetry and reuse indicated through

the variables. In a final step the generated code in internal

representation is unparsed (pretty-printed) as C switch state-

ment. SPIRAL supports synthesis of scalar as well as SIMD

vector code.

SIMD vectorization. SIMD vector instructions like In-

tel’s SSE and AVX instruction set extensions, as well as

AltiVec/VMX and ARM’s NEON ISA allow the parallel

operation on multiple floating-point data elements. The data is

held in vector registers, and special vector instructions operate

on the usually 2–8 slots. These instruction sets usually feature

mutually incompatible restrictions in their functionality and

are hard to use but offer substantial speed-up.

Our realtime high-throughput power flow solver can benefit

from these SIMD vector instructions, as shown in Fig. 6. For

power system problems targeted by our approach and for a

given distribution system, the instruction sequence in each load

flow iteration is fixed across multiple instances, only the input

4

switch(mat_type){

case zero_matrix:

{

 *(Y) = _mm256_set1_ps(0.0f);

 *((Y + 1)) = _mm256_set1_ps(0.0f);

 *((Y + 2)) = _mm256_set1_ps(0.0f);

 *((Y + 3)) = _mm256_set1_ps(0.0f);

 *((Y + 4)) = _mm256_set1_ps(0.0f);

 *((Y + 5)) = _mm256_set1_ps(0.0f);

}

case real_diagonal_equal_matrix:

{

__m256 a21, s43, s44, s45, s46, s47, s48;

 a21 = *(u1);

 s43 = _mm256_mul_ps(a21, *(X));

 *(Y) = s43;

 s44 = _mm256_mul_ps(a21, *((X + 1)));

 *((Y + 1)) = s44;

 s45 = _mm256_mul_ps(a21, *((X + 2)));

 *((Y + 2)) = s45;

 s46 = _mm256_mul_ps(a21, *((X + 3)));

 *((Y + 3)) = s46;

 s47 = _mm256_mul_ps(a21, *((X + 4)));

 *((Y + 4)) = s47;

 s48 = _mm256_mul_ps(a21, *((X + 5)));

 *((Y + 5)) = s48;

}

<...hundreds of lines of code>

Use Print_SWBody() to print code cases for all matrix patterns;

Print_SWBody:= function(case, MMr, MMi, opts, unparser)

 local MatAll, st, cs;

 MatAll:=NullMat(6,6);

 MatAll{ [1 .. 3] }{ [1 .. 3] }:= MMr;

 MatAll{ [4 .. 6] }{ [4 .. 6] }:= MMr;

 MatAll{ [4 .. 6] }{ [1 .. 3] }:= MMi;

 MatAll{ [1 .. 3] }{ [4 .. 6] }:= -MMi;

 st:=Blk(MatAll); # SPL description of patterned matrix

 cs:= CodeSums(st, opts); # Compiled to Intermediate Code

 unparser.opts:=opts; # Options: Targeted language, Intrinsics

 Print("case ", case, ":");

 Print("\n{\n");

 Unparse(cs, unparser, 0,1); # Unparse Intermediate Code to actual code

 Print("}\n");

end;

SPIRAL Script

SPIRAL Generated C Code

switch(pattern){

case zero_matrix:

{

 *(Y) = 0.0;

 *((Y + 1)) = 0.0;

 *((Y + 2)) = 0.0;

 *((Y + 3)) = 0.0;

 *((Y + 4)) = 0.0;

 *((Y + 5)) = 0.0;

}

case real_diagonal_equal_matrix:

{

 (Y) = ((u1)**(X));

 ((Y + 1)) = ((u1)**((X + 1)));

 ((Y + 2)) = ((u1)**((X + 2)));

 ((Y + 3)) = ((u1)**((X + 3)));

 ((Y + 4)) = ((u1)**((X + 4)));

 ((Y + 5)) = ((u1)**((X + 5)));}

}

<...hundreds of lines of code>

Scalar Code AVX Code

SPIRAL SPL Compiler

Fig. 5. Pattern matrix vector product: specification and synthesized code.

sample data are different. This enable us to simply run multiple

FBS iterations in parallel–one per vector slot. We simply

pack one input sample data element per FBS instance into

the vector variables, and convert the original instructions into

SIMD instructions. When the input samples of different load

flow instances are close to each other, the load flows instances

usually converge at the same iteration step. Therefore multiple

load flow cases can be solved simultaneously, resulting in an

almost linear speedup with respect to the processing width

of SIMD instructions. Further iteration on already converged

instances (to converge the remaining slots) is rare and does

not introduce any complications.

Fig. 6. Vectorization of load flow solver

Realtime threading infrastructure. Extracting full perfor-

mance on modern multicore CPUs requires special attention to

multithreading. Our target applications have some important

properties that allow highly efficient implementations. Real

time power system applications like Monte Carlo simulation

require the solution of a large number of independent power

flow problems. In particular for Monte Carlo simulation the

exact number of problems to be solved is not of utmost

importance as long as the accuracy is maintained. Thus we

can run multiple Monte Carlo simulations independently on

the different cores and collect Monte Carlo results after a pre-

specified (long enough) time without having to ensure that

all thread perform the exactly same number of simulations.

Further, much of the data is constant and shared; only the

Monte Carlo result and the seeding varies across threads. Us-

ing multiple results buffers and on-the-fly thread-local seeding

we can keep the Monte Carlo simulation running without gap,

extracting maximum useful work from the processor.

We implemented a light-weight worker thread infrastructure

that allows for fast buffer switching and seeding, shown in

Fig. 7. A master thread orchestrates the computation and

collects and post-processes the results. At the end of every

real-time interval, the master thread sends a sync signal to

all worker threads, so that all worker threads switch to new

buffers. Once they signal back that they switched the master

thread collects the results from the old buffers of all computing

threads to post process. The remaining cores are saturated with

worker threads running the SIMD vector FBS solver in parallel

on independent problems.

Each thread is exclusively pinned to a physical core. All

threads use the same shift-register random number generation

algorithm seeded such that they are far apart in the cycle and

thus practically independent. Double-buffering and signaling

allows non-blocking synchronization that extracts maximum

useful computation from the multicore CPU. The memory is

organized as in Fig. 8. Access to the data block is guided

by pointer array. The pointer may point to shared memory for

constant data, but may also point to thread local stored data for

thread private read write access. In this way, multiple threads

run simultaneously with limited contention on hardware re-

sources and fully utilize the hardware.

Generate & Solve Load Flow in Buffer AN

Generate & Solve Load Flow in Buffer A2

Generate & Solve Load Flow in Buffer A1

Real Time Interval

Scheduling Thread 0

Computing Thread 2

Computing Thread 1

Computing Thread N

Sync Signal

Processing Results in All B Buffers

Generate & Solve Load Flow in Buffer BN

Generate & Solve Load Flow in Buffer B2

Generate & Solve Load Flow in Buffer B1

Sync

Signal Out

Switch Buffer A, B

Processing Results in All A Buffers

...

Fig. 7. Multi-threaded real-time high-throughput load flow solver.

IV. EXPERIMENTAL RESULT

Performance evaluation. We evaluated the performance of

our solver across network sizes and multicore platforms. We

use the Intel C++ compiler 11.0 and -O3 optimization level.

To assess the performance across problem sizes, we connected

5

Pointer to Shared Data Pointer to Private Data Pointer to Shared Data

Private Data: Variable

For Different Cases

 Shared Data: Read Only for All Threads

Core Computing Data Access via Pointer Array

Thread Local Storage

Sync Signal

via Share Variable
Global Storage

Fig. 8. Storage of shared and private data.

multiple IEEE 4-bus test feeders [10] into larger trees, and

varied the resulting network size between 4 busses and 2,048

busses. Results are shown in Fig. 9 for a 2.2 GHz quad-core

Intel Core i7 CPU with the machine peak of 140 Gflop/s.

We show scalar vs. SIMD vector code (AVX), sequential vs.

multi-threaded code, and the impact of pattern-based code

synthesis. In the best case the fully optimized multi-core

solver is able to achieve around 60% of the CPU’s machine

peak. Vectorization, parallelization and code synthesis provide

speed-up as expected.

0

10

20

30

40

50

60

70

80

90

4 8 16 32 64 128 256 512 1024 2048

Bus Number

Optimized Scalar with Pattern Optimized AVX with Pattern

Optimized Multicore AVX with Pattern Multicore AVX

Performance on Core i7 2670QM 2.2GHz Quadcore
Performance

[Gflop/s]

Fig. 9. Performance result across different network sizes (on Core i7).

To assess performance across various multicore platforms

we evaluated our optimized solver with the IEEE 37-bus test

feeder [10]. We performed experiments on four Intel systems

consisting of one or two multicore CPUs (2.66 GHz Core2

Extreme, 3.33 GHz Xeon X5680, 2.2 GHz Core i7 and dual

2.27 GHz Xeon 7560) and support for SSE or AVX. As show

in Fig. 10, the performance increases with the increase of

SIMD width (SSE to AVX), and with the increase of number

of CPU cores. A single multicore CPU can provide up to 85

Gflop/s performance for our solver. Our solver scales almost

linearly with increasing hardware parallelism (cores and vector

width).

Impact of optimization methods. Next we assess the

impact of the various performance optimization techniques we

applied. Fig. 11 shows performance for various optimization

levels on the Core i7 CPU. The white bar shows the baseline

C++ STL code compiled by Intel C Compiler with full opti-

mization option (-O3). The Scalar, AVX, and MultiThread AVX

0

20

40

60

80

100

120

Core2Extreme

2.66GHz

(4-core, SSE)

Xeon X5680

3.33GHz

(6-core, SSE)

Core i7-2670QM

2.2GHz

(4-core, AVX)

2 Xeon7560

2.27GHz

(16-core, SSE)

Optimized Scalar

SIMD (SSE or AVX)

Multi-Core

Performance on Different Machines for IEEE37

Performance [Gflop/s]

Fig. 10. Performance results across multicore platforms.

code versions are using the flattened C array, and using scalar

x87 code, are vectorized or both vectorized and multi-threaded.

Bars called Scalar Pattern, AVX Pattern, and MultiThread

AVX Pattern in addition also utilize matrix pattern based code

synthesis. For the pattern based optimized code, we achieve a

nearly linear speedup through vectorization and multithread.

The fully optimized solver is about 50 times faster than the

C++ STL baseline implementation subjected to full compiler

optimization.

1

2

4

8

16

32

64

128

4 16 64 256

Performance

[Gflop/s]

C++Baseline Scalar

Scalar Pattern AVX

AVX Pattern MultiThread AVX

MultiThread AVX Pattern (Fully Optimized)

Bus Numbers

Performance Impact of Optimization & Parallelization on Core i7

Fig. 11. Impact of performance optimization techniques (on Core i7).

Realtime Monte Carlo. For power systems the central

control system (SCADA) has a cycle time of approximately 4

seconds. Thus, the number of simulations per SCADA interval

as function of network size limits the achievable Monte Carlo

accuracy. The approximate runtime of the solver for one

million load flows solving a IEEE 37-bus test feeder and a

IEEE 123-bus test feeder is showed in Table I. We observe

that on the Intel Sandy Bridge CPU (Core i7) with quad-

core and AVX, 1 million load flows can be solved within 4

seconds, which equals SCADA real time. The baseline runtime

results including fully-compiler-optimized C++ code (-O3)

and Matlab code are also showed for reference, falling far

short of realtime.

V. APPLICATION EXAMPLE: PROBABILISTIC LOAD FLOW

In this section, we show a possible application of the high

performance solver to solve the probabilistic load flow (PLF)

problem. The PLF problem is to model the uncertainties of

6

TABLE I
APPROXIMATE RUNTIME

1M Load Flow Optimized Code on Baseline on Core2

System Flops Core2Extreme Core i7 C++(-O3) Matlab

IEEE 37 ≈ 60G < 2s < 1s > 60s > 5hr
IEEE 123≈ 200G < 10s < 3.5s > 200s > 10hr

some system parameters as the random variables (RV) in

terms of probabilistic density functions (PDF), then based on

the system’s physical relations, PLF computes system states

in terms of the RVs with PDFs as well [11]. Monte Carlo

simulation (MCS) is one way to solve PLF which often

serves as accuracy reference. MCS firstly samples the random

variables. Then for each sample a load flow case is solved

to obtain all states. Based on the the load flow results of all

samples, the PDF of certain system states can be estimated.

Fig. 12. Configuration of test case on IEEE 37-bus test feeder

Fig. 12 shows a typical problem setup: on the IEEE 37-bus

test feeder, the active power load of phase A on node 738, 711

and 741 are assumed to be Gaussian RVs. The MCS method

samples these RVs and solves the load flow for all samples.

Fig. 13 shows the estimated PDFs of three phase voltages

on node 738, from left to right, with the increasing number

of Monte Carlo samples (100 to 10 million), the estimated

PDFs on different random seeds converge to a single PDF.

Assuming the random number generator can generate true

random samples, by the Law of Large Numbers, the converged

curve is the true PDF curve given the input RVs. In Fig. 13

we observe that even the very crude Monte Carlo (without any

variance reduction) can obtain high accuracy around 1 million

samples. The PDF curves at this accuracy level can be updated

within one second using the optimized solver running on Core

i7 CPU.

VI. CONCLUSION

In this paper we developed a multi-core high performance

distribution load flow solver for high throughput distribution

load flow problem solutions. We applied various aggressive

0.8 0.9 1

0

10

20

100
 run

P
h
a
s
e
 A

0.98 1 1.02
0

50

100

P
h
a
s
e
 B

0.93 0.94 0.95
0

50

100

150

P
h
a
s
e
 C

voltage, (p.u.)

0.8 0.9 1

0

10

20

1k
 run

0.98 1 1.02
0

50

100

0.93 0.94 0.95
0

50

100

150

voltage, (p.u.)

0.8 0.9 1

0

10

20

10k
 run

0.98 1 1.02
0

50

100

0.93 0.94 0.95
0

50

100

150

voltage, (p.u.)

0.8 0.9 1

0

10

20

100k
 run

0.98 1 1.02
0

50

100

0.93 0.94 0.95
0

50

100

150

voltage, (p.u.)

0.8 0.9 1

0

10

20

1M
 run

0.98 1 1.02
0

50

100

0.93 0.94 0.95
0

50

100

150

voltage, (p.u.)

0.8 0.9 1

0

10

20

10M
 run

0.98 1 1.02
0

50

100

0.93 0.94 0.95
0

50

100

150

voltage, (p.u.)

Fig. 13. Result of crude Monte Carlo simulation

performance optimizations including multi-level paralleliza-

tion (SIMD vectorization and threading), data structure opti-

mization, and pattern based code generation. The optimized

solver is able to achieve more than 50% of a commodity

multicore CPU’s theoretical peak performance, and the per-

formance is scalable with increased hardware parallelism. We

evaluated the solver using IEEE test feeders on various Intel

multicore CPUs (single CPU or dual CPU) featuring the SSE

or AVX SIMD instruction set. Our optimized solver is able

to solve millions of load flow problems within one second,

enabling real-time application of various Monte Carlo style

applications.

REFERENCES

[1] W. Kersting, Distribution system modeling and analysis. CRC, 2006.
[2] K. Schneider, D. Chassin, Y. Chen, and J. Fuller, “Distribution power

flow for smart grid technologies,” in Power Systems Conference and

Exposition, 2009. PSCE’09. IEEE/PES. IEEE, 2009, pp. 1–7.
[3] D. P. Chassin, K. Schneider, and C. Gerkensmeyer, “GridLAB-D: An

open-source power systems modeling and simulation environment,” in
Transmission and Distribution Conference and Exposition, 2008. T&D.

IEEE/PES, 2008, pp. 1–5.
[4] D. Shirmohammadi, H. Hong, A. Semlyen, and G. Luo, “A

compensation-based power flow method for weakly meshed distribution
and transmission networks,” IEEE Transactions on Power Systems,
vol. 3, no. 2, pp. 753 –762, May 1988.

[5] T. Cui and F. Franchetti, “A multi-core high performance computing
framework for distribution power flow,” in North American Power

Symposium (NAPS), 2011. IEEE, 2011, pp. 1–5.
[6] M. Belgin, G. Back, and C. J. Ribbens, “Pattern-based sparse matrix

representation for memory-efficient smvm kernels,” in Proceedings of

the 23rd international conference on Supercomputing, ser. ICS ’09.
New York, NY, USA: ACM, 2009, pp. 100–109. [Online]. Available:
http://doi.acm.org/10.1145/1542275.1542294

[7] T. Cui and F. Franchetti, “Autotuning a random walk boolean satisfia-
bility solver,” Procedia Computer Science, vol. 4, pp. 2176–2185, 2011.

[8] M. Püschel, J. M. F. Moura, J. Johnson, D. Padua, M. Veloso, B. Singer,
J. Xiong, F. Franchetti, A. Gacic, Y. Voronenko, K. Chen, R. W.
Johnson, and N. Rizzolo, “SPIRAL: Code generation for DSP trans-
forms,” Proceedings of the IEEE, special issue on “Program Generation,

Optimization, and Adaptation”, vol. 93, no. 2, pp. 232– 275, 2005.
[9] J. Xiong, J. Johnson, R. Johnson, and D. Padua, “SPL: A language and

compiler for DSP algorithms,” in Proc. Programming Language Design

and Implementation (PLDI), 2001, pp. 298–308.
[10] IEEE PES Distribution System Analysis Subcommittee, “Distribution

test feeders,” http://ewh.ieee.org/soc/pes/dsacom/testfeeders/index.html.
[11] P. Chen, Z. Chen, and B. Bak-Jensen, “Probabilistic load flow: A

review,” in Electric Utility Deregulation and Restructuring and Power

Technologies, 2008. DRPT 2008. Third International Conference on,
april 2008, pp. 1586 –1591.

