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Abstract— The concept of virtual machines dates back to the 
1960s. Both IBM and MIT developed operating system features 
that enabled user and peripheral time sharing, the underpinnings 
of which were early virtual machines. Modern virtual machines 
present a translation layer of system devices between a guest 
operating system and the host operating system executing on a 
computer system, while isolating each of the guest operating 
systems from each other. 1 

In the past several years, enterprise computing has embraced 
virtual machines to deploy a wide variety of capabilities from 
business management systems to email server farms. Those who 
have adopted virtual deployment environments have capitalized 
on a variety of advantages including server consolidation, service 
migration, and higher service reliability. But they have also 
ended up with some challenges including a sacrifice in 
performance and more complex system management.  

Some of these advantages and challenges also apply to HPC in 
virtualized environments. In this paper, we analyze the 
effectiveness of using virtual machines in a high performance 
computing (HPC) environment. We propose adding some virtual 
machine capability to already robust HPC environments for 
specific scenarios where the productivity gained outweighs the 
performance lost for using virtual machines. Finally, we discuss 
an implementation of augmenting virtual machines into the 
software stack of a HPC cluster, and we analyze the affect on job 
launch time of this implementation.  

Keywords – virtual machines, high performance computing.  

I.  INTRODUCTION 
Despite the hype and ubiquity in recent years, the concept 

and technology of virtual machines has been around for over 
four decades. The first virtual machines were developed to 
share expensive mainframe computer systems among many 
users by providing each user with a fully independent image of  
the operating system. On the research front, MIT, Bell Labs, 
and General Electric developed the Multics system, a hardware 
and operating system co-design that featured (among many 
other things) virtual memory for each user and isolated 
program execution space [1]. Commercially, the pioneer in this 
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technology was IBM with the release of System 360/67, which 
presented each user with a full System 360 environment [2]. 
Virtual machines went out of style in the 1980s as mainframes 
and minicomputers lost market share and personal computers 
became more widely accessible at work and at home.  

The x86 architecture, on which the PC revolution rode, was 
not designed to support virtual machines, but in 1997, VMware 
developed a technique based on binary code substitution 
(binary translation) that enabled the execution of privileged 
(OS) instructions from virtual machines on x86 systems. 
Another notable effort was the Xen project which in 2003 used 
a jump table for choosing bare metal execution or virtual 
machine execution of privileged (OS) instructions. Such 
projects prompted Intel and AMD to add the VT-x and AMD-
V virtualization extensions to the x86 and x86-64 instruction 
sets in 2006, which further pushed the performance and 
adoption of virtual machines.  

Virtual machines have seen use in a variety of applications, 
but with the move to highly capable multicore CPUs, gigabit 
Ethernet network cards, and VM-aware x86/x86-64 operating 
systems, the use of virtual machines has grown vigorously. 
This has been particularly true in enterprise (business) 
computing. Historically, enterprise services were deployed to 
minimize complexity and conflict on each hardware server. 
The goal was to cost-effectively isolate all of the services that 
are offered. Practically, this means that one or a few enterprise 
service components were deployed on each hardware server. 
So every time a new service was to be deployed or an existing 
service was to increase in scale, more hardware servers were 
added to the server closet, server farm, or data center. After 
years of expansion, this trend cannot be sustained by most 
organizations. Since most enterprise services are not 
particularly resource intensive (i.e., they do not consistently 
require more than a few percentages of CPU time, disk 
accesses, network calls, etc.), these enterprise services are very 
good candidates for deploying within virtual machines.  

Countless books and articles tout the many advantages of 
virtualization for enterprise computing. These advantages 
include:  



• Workload consolidation with service isolation: hosting 
many enterprise services on each server by executing 
one or a few enterprise services in each of several 
virtual machines;  

• Rapid provisioning of prototype services: demonstrate 
services without having to purchase additional 
hardware;  

• Flexible use of available servers: load balancing of 
enterprise services between servers by migrating 
virtual machines among them;  

• Multiple operating system types: flexibility of hosting 
multiple OS types on the same hardware server; and  

• Possibly more effective security: quickly snapshot 
servers to known good states, centrally enforce 
patching, etc.  

Along with these advantages come some challenges 
including management of virtual machine images and load 
balancing. However, the primary challenge is disk, network, 
and other I/O performance.  

Are these opportunities and challenges also applicable to 
supercomputing? In what circumstances are virtual machines a 
good fit for high performance computing (HPC) applications 
and activities? 

Section II explains how virtual machines work. Section III 
explains why virtual machines are generally not a good fit for 
high performance computing (HPC) and outlines some 
scenarios in which virtual machines may be advantageous for 
HPC. Section IV presents the results on launching customized 
VMs on LLGrid, while Section V relates this work to other 
research. Finally, Section VI discusses future research work 
and concludes this paper.  

II. INSIDE VIRTUAL MACHINES 
The concept of operating systems came about to provide 

users with an abstraction to the system hardware, providing 
common services to the user, and managing and controlling 
shared resources that the hardware provide [3]. To host one or 
more operating systems within virtual machines on a host 
server, the virtual machine environment must provide the same 
capabilities.  

Modern virtual machines are software abstractions of 
hardware architectures. Virtualization is accomplished by 
installing a hypervisor, which is also known as a virtual 
machine monitor (VMM). Much like the operating system 
provides abstracted services from the underlying hardware to 
the user, the hypervisor abstracts services from the underlying 
hardware as depicted in Figure 1. The hypervisor abstracts the 
underlying infrastructure, provides common services to one or 
more guest operating systems and their applications, and 
manage and control the shared resources that the underlying 
infrastructure provide. Hypervisors are deployed in one of two 
modes:  type-1 and type-2.  

Type-1 hypervisors are installed directly on the hardware; 
in this deployment, the hypervisor is essentially a minimal OS 
for executing virtual machines. Figure 2a depicts the stack of a 
type-1 hypervisor. Type-1 hypervisors are usually used for 
server farms to host multiple virtual machines and their 
enterprise services on servers.  

Type-2 hypervisors are installed within a host operating 
system, and they are executed as a process in the host OS as 
depicted in Figure 2b. Each guest virtual machine is then a 
child process to the hypervisor process, and processes within 
each virtual machine are co-managed by each virtual machine 
OS and the hypervisor. Type-2 hypervisors are usually used on 
desktop and laptop computer to enable the use of multiple OSs 
for users. Because a full host operating system underlies the 
virtual environment, there is more performance overhead 
involved in running type-2 hypervisors; however, such a multi-
OS environment for desktop and laptop users is a very 
productive and convenient environment.  

To manage and control the shared resources and provide 
common services to the guest operating systems, the hypervisor 
has its own kernel-like functionality as well as virtual device 
drivers that abstract the actual device drivers resident in the 
hardware. The kernel-like functionality manages and executes 
processes from the VMs. Much work in the research and 
commercial worlds has been done in this area, and CPU 
intensive applications that are executed within VMs now pay a 
very small performance penalty for being executed within the 
VM. However, a greater performance penalty is paid by 
applications that perform much I/O through the hypervisor 
virtual device drivers such as network accesses, disk accesses, 

 
Figure 1: Software Stack including Virtual Machine Figure 2a: Type 1 hypervisor, 2b Type 2 hypervisor 



etc. And the more I/O is required the higher the performance 
penalty. [4] 

The other source of performance penalties for virtual 
machines has to do with executing privileged instructions like 
managing memory and I/O operations. Most hardware 
platforms (including x86 and x86-64) and most operating 
systems have multiple levels of privilege, often called privilege 
rings. The x86 and x86-64 architecture has four privilege rings 
numbered 0 through 3, as depicted in Figure 3. Most x86 and 
x86-64 operating system including Windows and Linux only 
use rings 0 and 3 for supervisory and user privileges, 
respectfully. In order for a ring 3 user application to execute 
privileged operations like requesting I/O or memory 
management services, the application must make a system call 
into the operating system kernel, where carefully vetted ring 0 
supervisor level kernel code executes the privileged request on 
behalf of the application.  

With virtual machine environments, the hypervisor, virtual 
machine(s), and guest operating systems execute with ring 3 
user privileges. A virtual machine OS does not have access to 
ring 0 supervisory privileges in the underlying hardware or host 
OS. In the x86 and x86-64 environment, this challenge was 
bridged by binary translation in VMware, jump tables in Xen 
(as were mentioned in Section I), among others. It is this 
overhead of privileged operations that is the other performance 
penalty.  

The introduction of virtualization-enabling instruction in 
Intel VT-x and AMD’s AMD-V in 2006 added ring -1 to the 
privilege ring, which is the supervisory ring for VMs. This 
allowed hypervisors to use much less “glue” code to enable 
supervisory operations from virtual machines. Most 
hypervisors for x86 and x86-64 architectures now take 
advantage of these instructions, and this has lessened the 
performance penalty for executing supervisory activities.  

III. VMS AND HPC 

A. Performance/Productivity Trade-Offs 
As mentioned before, enterprise services usually do not 

require a great amount of I/O performance. However, 
performance is central to HPC. While HPC applications are 
usually associated with processor-intensive performance, most 
HPC applications also require high performance I/O. The ratio 
of computation to I/O performance for any HPC application is 
just a matter of degrees. In other words, because execution in 
VMs present a performance penalty (particularly with I/O), 

HPC application performance will be impacted when executed 
from within virtual machines, and it is just a matter of how 
much the performance is impacted.  

Often overlooked in this pursuit of HPC performance is the 
productivity of the scientists and engineers: some trade-offs can 
be made in performance that could make the scientists and 
engineers much more productive. The LLGrid system has been 
a testbed for exploring these performance/productivity trade-
offs [5]. In this research we explored in what HPC applications 
such a performance/productivity trade-off would be reasonable 
for using virtual machines.  

Not all of the advantages for virtualized enterprise 
computing hold for HPC, though three of the five do: rapid 
provisioning of prototype services, flexible use of available 
servers (inherent in HPC scheduling), and multiple operating 
system types. Several more advantages for HPC are detailed in 
[6] and [7], including reliability, reduced software complexity, 
and easier management.  

For LLGrid, the two most appealing advantages are rapid 
prototyping and multiple operating system types. Often a part 
of starting a new research project involves purchasing one or 
more servers before really understanding the computational 
requirements of the application codes. We intend to enable VM 
instances on LLGrid so that these research projects can explore 
the computational requirements of their application codes 
without having to wait for a server order to arrive. With regard 
to supporting multiple operating system types, we routinely 
work with research teams that have a scientific code suite that 
has been validated and verified with a certain OS type, version, 
etc. that is different than the one installed on LLGrid. Usually 
this means that the research team must revalidate and re-verify 
their scientific code suite on the LLGrid software stack. 
Another scenario is that the scientific code suite is no longer 
supported on the hardware and OS that comprises LLGrid. If 
they could execute their code suite within virtual machines 
with the identical environment in which they were verified, the 
research teams would sacrifice some performance, while 
gaining productivity by not having to revalidate and reverify.  

B. VMs on LLGrid 
There are three approaches for using virtual machines on 

HPC clusters for scientific computing:  

1. HPC on an infrastructure-as-a-service (IaaS) cloud,  

2. HPC on a virtualized cluster, and  

3. Type-2 VMs on traditional HPC cluster.  

The majority of virtualized HPC applications and systems 
research has been done on the first two approaches. With HPC 
on an IaaS cloud, a user provisions a set of HPC-oriented 
(higher core count, more memory per core, etc.) virtual 
machines on a public IaaS cloud provider like Amazon’s 
Elastic Compute Cloud (EC2) or Rackspace Cloud. Once 
provisioned, the user executes their HPC application on the 
public cloud instances. This solution usually utilizes type-1 
bare-metal hypervisors, which implies better CPU 
performance. This solution is good for occasional HPC 
activities and rapid prototyping, but virtual machine costs, 
virtual storage costs, and transfer bandwidth costs can make 
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this a very expensive option if it is used 
a lot. Also, some organizations cannot 
use public cloud resources to due to 
privacy and security concerns.  

With HPC on a virtualized cluster, 
all of the compute nodes are virtual 
machines that are managed and 
deployed using a VM management 
system like VMware ESX. Generally the 
VMs are statically allocated onto the 
available hardware, though it is possible 
to migrate VMs from server to server 
when necessary. This approach can be 
realized with both type-1 and type-2 
hypervisors. Usually a HPC scheduler 
like Grid Engine, LSF, Torque, etc. is 
used to match and execute jobs on 
virtual compute nodes. This solution 
provides flexibility in what and how 
many OS types are allocated across the 
cluster, and users just use the resource 
like they would any other HPC cluster. 
However, all HPC jobs must be executed within VMs with all 
of the performance penalties that may be incurred.  

The third approach is to provision the cluster in the 
traditional way with a certain current OS version installed on 
the bare metal. This OS version is chosen to accommodate as 
many different HPC jobs as possible, and every effort should 
be made to execute HPC jobs in the bare-metal, native OS. If 
another OS type or version is needed, then VMs are used to 
encapsulate the job(s). The VM-encapsulated jobs are launched 
through an HPC scheduler just like any other job, and the job 
sets up the VM, launches the job, monitors the job, and 
eventually tears down and discards the VM when the job is 
finished.  

Because there is an underlying OS, this solution requires a 
type-2 hypervisor. To rapidly prototype this capability, we 
wanted a simple interface to launching and managing VM 
instantiation and configuration. While all of the major 
hypervisor solutions have a software application programming 
interface with which control code can be written, only one of 
the major type-2 hypervisors has a fully supported command 
line interface for launching and managing VM instantiation and 
configuration: Oracle VirtualBox.  

The key intent of this rapid prototype was to show fast 
launch times of the VM and its computational job. Therefore, 
we stripped down the VM operating system image to have no 
services and only the libraries that were required for scientific 
computing. If other libraries are needed they will be symlinked 
into the users virtual machine environment from a centrally 
shared library repository. Each VM job submitted to the 
scheduler clones a VM image, registers the image to the 
compute node that the scheduler has chosen, and begins the 
boot sequence of the VM. The job execution in the VM is 
written into the initialization scripts of the VM-encapsulated 
OS so that when the VM has fully booted, it immediately 
begins execution of the job. After execution of the job, the VM 
enters the shutdown script, and upon shutdown the VM image 

is discarded. If the VM job is aborted before execution is 
completed, the VM catches the kill signal sent by the scheduler, 
and the VM is cleanly powered down and discarded.  

While the default is to launch one VM job per job slot, we 
have added the ability to overload the jobslot with multiple VM 
instances. That is, we can launch two or more VMs and their 
related jobs per scheduler jobslot. The number of VMs that can 
be launched per jobslot is limited by the resources that are 
available on a compute node. This feature can be useful when 
testing the scalability of network-centric distributed computing 
environments where each VM job uses relatively little memory 
or CPU power.  

IV. RESULTS 
We demonstrated our VM on HPC capability on the 

LLGrid TX-2500 cluster at MIT Lincoln Laboratory. In our 
Grid Engine (version 6.2u5) scheduler, we temporarily 
dedicated eight nodes for launching VM jobs and measuring 
their launch and shutdown times. We delivered the VM images 
from a user account on the central file system, a DDN 10K 
storage array, connected to the compute nodes via 10GigE core 
network, and 1GigE connection to each node from the rack 
switches. Each compute node was a Dell PowerEdge 1955 
blades with dual socket, dual core 3.2 GHz CPUs, 8 GB of 
RAM per blade, and two 36 GB 2.5” SAS hard drives. For this 
demonstration we used one of these compute nodes to launch 
VM jobs onto eight other compute nodes. The VM images 
were Debian Linux 6.0.4 i386 installations.  

Timing was accomplished with a socket-based timing 
logger running on the job-launch server so that there was no 
network-induced clock skew. The overhead of sending very 
short socket messages to the timing logger is much smaller 
than the precision of network time protocol (NTP) 
synchronized servers.  

Figure 4 depicts the launch timing test results. Each of the 
eight lines in the graph shows the launch times of the VM jobs. 

Figure 4: Results of launch timing 



The individual lines are for optimized or unoptimized Debian 
VM images and the number of VMs that were launched per 
jobslot. For example, Unopt-4 is the curve for an unoptimized 
Debian image with 4 VMs per jobslot. The x-axis of the graph 
shows the number of scheduler jobs that were launched as a job 
array. Multiplying the number of scheduler jobs times the 
number of VMs per jobslot is the total number of VMs that 
were launched. For instance for the Unopt-4 series of launches, 
a total of 4, 8, 16, 32, 64 VMs were launched to generate the 
Unopt-4 line. Each of the 40 scenarios depicted in the graph 
were launched 10 times, and the value in the graph is the 
average of the 10 launch times. The timing is from when the 
Grid Engine job was submitted from the launch node command 
line to when the VM job began executing a simple 
computational application (adding two numbers).  

The results show that the stripped down VM operating 
system images dramatically reduced the launch time for both 
single VM job launches and high density VM job launches. 
The optimization effort brings the launch times down to launch 
latencies that are fairly reasonable. We are in the process of 
running more trials various number of total VMs and VMs per 
compute node to get better granularity of our results.  

Furthermore, we see that the launch times of the VM jobs 
stays relatively flat when launching 1 to 8 jobs. This is because 
the Grid Engine scheduler is spreading the jobs across each of 
the eight nodes in the cluster. When launching 8 jobs, there are 
some bottlenecks in the network when delivering the VM 
images to the nodes for execution. These bottlenecks in the 
network are more pronounced when launching 16 jobs because 
two or more scheduler job slots are loading the VM images 
from the central storage.  

V. RELATED WORK 
In the past decade, many papers have been written on 

various aspects of virtual machines and related subjects such as 
cloud computing. These papers span topics from the underlying 
technology; to computational, network, and I/O performance; 
to best practices for managing virtual machines in an 
organization. Some of the papers explore the overhead of using 
virtual machines for HPC users, and it is this topic that is most 
related to the work in this paper.  

A team at Taiwan’s National Center for High-Performance 
Computing, Tainan, developed a hybrid bare-metal/virtualized 
computing cluster called Formosa3 [8]. They modified the 
Torque scheduler to interface and manage OpenNebula, which 
subsequently managed the VMs on the compute nodes (an 
approach 1 and 2 hybrid with type-2 hypervisor). OpenNebula 
was responsible for provisioning and deprovisioning VMs on 
the compute nodes; once a compute node was provisioned, it 
signaled Torque that the VM was ready to accept a VM job. In 
their cluster, compute nodes could either run VM jobs or HPC 
jobs, but they did not allow the two types of jobs to comingle 
on the same compute node. They included benchmarking of 
VM job launches and found similar results to our unoptimized 
results.  

The Clemson University School of Computing team used 
the KVM hypervisor on a cluster for grid computing research 
[9]. They statically allocated VMs onto compute nodes with the 

hypervisor running on the compute node operating system 
(approach 2 with Type 2 hypervisor), and they used the Condor 
scheduler to launch jobs onto the static VMs. They 
demonstrated how a virtualized cluster could be a part of a 
multi-organization grid computing infrastructure and ran a 
variety of benchmarks. Just like the Formosa3 team, they used 
stock OS images, and their launch results were similar to our 
unoptimized results.  

The research presented in this paper show that there is merit 
in optimizing the VM images improves launch times 
dramatically. Unlike the Formosa3 and Clemson efforts, our 
hypervisors and VM jobs, are launched directly and on-demand 
by scheduler scripts, which enables agility in supporting 
multiple OSs and a wide variety of user needs.  

VI. FUTURE WORK AND CONCLUSION 
This rapidly prototyped effort with LLGrid was just the 

beginning of how we are considering integrating virtual 
machines into the software stack of LLGrid and how we could 
use the capability for specific scenarios where the productivity 
gained outweighs the I/O performance losses for using virtual 
machines. We have demonstrated the launch of single VMs as 
well as multiple independent VMs (also known as job arrays). 
In the next phase of this work, we will demonstrate the 
launching of parallel jobs, such as MPI applications, that 
require interaction between the processes. Also we plan to 
demonstrate our VM capability for use in prototyping and 
testing persistent distributed services on LLGrid. This will 
include integration with a database-backed dynamic domain 
name service (D-DNS) for dynamic host-IP address lookups. 
Soon we also intend to exploit this capability to enable the 
work of other research teams at Lincoln.  

While using virtual machine technology in HPC does not 
have all of the advantages that it does in the enterprise 
computing arena, there are scenarios in the 
productivity/performance trade-offs are beneficial. We have 
demonstrated a very flexible approach to integrating virtual 
machine jobs amongst traditional batch and interactive HPC 
jobs, while providing reasonable VM job launch latencies.  
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