
HPC-VMs: Virtual Machines in High Performance
Computing Systems

Albert Reuther, Peter Michaleas, Andrew Prout, and Jeremy Kepner
Computing and Analytics Group

MIT Lincoln Laboratory
Lexington, MA, USA

{reuther, pmichaleas, aprout, kepner}@ll.mit.edu

Abstract— The concept of virtual machines dates back to the
1960s. Both IBM and MIT developed operating system features
that enabled user and peripheral time sharing, the underpinnings
of which were early virtual machines. Modern virtual machines
present a translation layer of system devices between a guest
operating system and the host operating system executing on a
computer system, while isolating each of the guest operating
systems from each other. 1

In the past several years, enterprise computing has embraced
virtual machines to deploy a wide variety of capabilities from
business management systems to email server farms. Those who
have adopted virtual deployment environments have capitalized
on a variety of advantages including server consolidation, service
migration, and higher service reliability. But they have also
ended up with some challenges including a sacrifice in
performance and more complex system management.

Some of these advantages and challenges also apply to HPC in
virtualized environments. In this paper, we analyze the
effectiveness of using virtual machines in a high performance
computing (HPC) environment. We propose adding some virtual
machine capability to already robust HPC environments for
specific scenarios where the productivity gained outweighs the
performance lost for using virtual machines. Finally, we discuss
an implementation of augmenting virtual machines into the
software stack of a HPC cluster, and we analyze the affect on job
launch time of this implementation.

Keywords – virtual machines, high performance computing.

I. INTRODUCTION
Despite the hype and ubiquity in recent years, the concept

and technology of virtual machines has been around for over
four decades. The first virtual machines were developed to
share expensive mainframe computer systems among many
users by providing each user with a fully independent image of
the operating system. On the research front, MIT, Bell Labs,
and General Electric developed the Multics system, a hardware
and operating system co-design that featured (among many
other things) virtual memory for each user and isolated
program execution space [1]. Commercially, the pioneer in this

1This work is sponsored by the Department of the Air Force under
Air Force contract FA8721-05-C-0002. Opinions, interpretations,
conclusions and recommendations are those of the author and are not
necessarily endorsed by the United States Government.

technology was IBM with the release of System 360/67, which
presented each user with a full System 360 environment [2].
Virtual machines went out of style in the 1980s as mainframes
and minicomputers lost market share and personal computers
became more widely accessible at work and at home.

The x86 architecture, on which the PC revolution rode, was
not designed to support virtual machines, but in 1997, VMware
developed a technique based on binary code substitution
(binary translation) that enabled the execution of privileged
(OS) instructions from virtual machines on x86 systems.
Another notable effort was the Xen project which in 2003 used
a jump table for choosing bare metal execution or virtual
machine execution of privileged (OS) instructions. Such
projects prompted Intel and AMD to add the VT-x and AMD-
V virtualization extensions to the x86 and x86-64 instruction
sets in 2006, which further pushed the performance and
adoption of virtual machines.

Virtual machines have seen use in a variety of applications,
but with the move to highly capable multicore CPUs, gigabit
Ethernet network cards, and VM-aware x86/x86-64 operating
systems, the use of virtual machines has grown vigorously.
This has been particularly true in enterprise (business)
computing. Historically, enterprise services were deployed to
minimize complexity and conflict on each hardware server.
The goal was to cost-effectively isolate all of the services that
are offered. Practically, this means that one or a few enterprise
service components were deployed on each hardware server.
So every time a new service was to be deployed or an existing
service was to increase in scale, more hardware servers were
added to the server closet, server farm, or data center. After
years of expansion, this trend cannot be sustained by most
organizations. Since most enterprise services are not
particularly resource intensive (i.e., they do not consistently
require more than a few percentages of CPU time, disk
accesses, network calls, etc.), these enterprise services are very
good candidates for deploying within virtual machines.

Countless books and articles tout the many advantages of
virtualization for enterprise computing. These advantages
include:

• Workload consolidation with service isolation: hosting
many enterprise services on each server by executing
one or a few enterprise services in each of several
virtual machines;

• Rapid provisioning of prototype services: demonstrate
services without having to purchase additional
hardware;

• Flexible use of available servers: load balancing of
enterprise services between servers by migrating
virtual machines among them;

• Multiple operating system types: flexibility of hosting
multiple OS types on the same hardware server; and

• Possibly more effective security: quickly snapshot
servers to known good states, centrally enforce
patching, etc.

Along with these advantages come some challenges
including management of virtual machine images and load
balancing. However, the primary challenge is disk, network,
and other I/O performance.

Are these opportunities and challenges also applicable to
supercomputing? In what circumstances are virtual machines a
good fit for high performance computing (HPC) applications
and activities?

Section II explains how virtual machines work. Section III
explains why virtual machines are generally not a good fit for
high performance computing (HPC) and outlines some
scenarios in which virtual machines may be advantageous for
HPC. Section IV presents the results on launching customized
VMs on LLGrid, while Section V relates this work to other
research. Finally, Section VI discusses future research work
and concludes this paper.

II. INSIDE VIRTUAL MACHINES
The concept of operating systems came about to provide

users with an abstraction to the system hardware, providing
common services to the user, and managing and controlling
shared resources that the hardware provide [3]. To host one or
more operating systems within virtual machines on a host
server, the virtual machine environment must provide the same
capabilities.

Modern virtual machines are software abstractions of
hardware architectures. Virtualization is accomplished by
installing a hypervisor, which is also known as a virtual
machine monitor (VMM). Much like the operating system
provides abstracted services from the underlying hardware to
the user, the hypervisor abstracts services from the underlying
hardware as depicted in Figure 1. The hypervisor abstracts the
underlying infrastructure, provides common services to one or
more guest operating systems and their applications, and
manage and control the shared resources that the underlying
infrastructure provide. Hypervisors are deployed in one of two
modes: type-1 and type-2.

Type-1 hypervisors are installed directly on the hardware;
in this deployment, the hypervisor is essentially a minimal OS
for executing virtual machines. Figure 2a depicts the stack of a
type-1 hypervisor. Type-1 hypervisors are usually used for
server farms to host multiple virtual machines and their
enterprise services on servers.

Type-2 hypervisors are installed within a host operating
system, and they are executed as a process in the host OS as
depicted in Figure 2b. Each guest virtual machine is then a
child process to the hypervisor process, and processes within
each virtual machine are co-managed by each virtual machine
OS and the hypervisor. Type-2 hypervisors are usually used on
desktop and laptop computer to enable the use of multiple OSs
for users. Because a full host operating system underlies the
virtual environment, there is more performance overhead
involved in running type-2 hypervisors; however, such a multi-
OS environment for desktop and laptop users is a very
productive and convenient environment.

To manage and control the shared resources and provide
common services to the guest operating systems, the hypervisor
has its own kernel-like functionality as well as virtual device
drivers that abstract the actual device drivers resident in the
hardware. The kernel-like functionality manages and executes
processes from the VMs. Much work in the research and
commercial worlds has been done in this area, and CPU
intensive applications that are executed within VMs now pay a
very small performance penalty for being executed within the
VM. However, a greater performance penalty is paid by
applications that perform much I/O through the hypervisor
virtual device drivers such as network accesses, disk accesses,

Figure 1: Software Stack including Virtual Machine Figure 2a: Type 1 hypervisor, 2b Type 2 hypervisor

etc. And the more I/O is required the higher the performance
penalty. [4]

The other source of performance penalties for virtual
machines has to do with executing privileged instructions like
managing memory and I/O operations. Most hardware
platforms (including x86 and x86-64) and most operating
systems have multiple levels of privilege, often called privilege
rings. The x86 and x86-64 architecture has four privilege rings
numbered 0 through 3, as depicted in Figure 3. Most x86 and
x86-64 operating system including Windows and Linux only
use rings 0 and 3 for supervisory and user privileges,
respectfully. In order for a ring 3 user application to execute
privileged operations like requesting I/O or memory
management services, the application must make a system call
into the operating system kernel, where carefully vetted ring 0
supervisor level kernel code executes the privileged request on
behalf of the application.

With virtual machine environments, the hypervisor, virtual
machine(s), and guest operating systems execute with ring 3
user privileges. A virtual machine OS does not have access to
ring 0 supervisory privileges in the underlying hardware or host
OS. In the x86 and x86-64 environment, this challenge was
bridged by binary translation in VMware, jump tables in Xen
(as were mentioned in Section I), among others. It is this
overhead of privileged operations that is the other performance
penalty.

The introduction of virtualization-enabling instruction in
Intel VT-x and AMD’s AMD-V in 2006 added ring -1 to the
privilege ring, which is the supervisory ring for VMs. This
allowed hypervisors to use much less “glue” code to enable
supervisory operations from virtual machines. Most
hypervisors for x86 and x86-64 architectures now take
advantage of these instructions, and this has lessened the
performance penalty for executing supervisory activities.

III. VMS AND HPC

A. Performance/Productivity Trade-Offs
As mentioned before, enterprise services usually do not

require a great amount of I/O performance. However,
performance is central to HPC. While HPC applications are
usually associated with processor-intensive performance, most
HPC applications also require high performance I/O. The ratio
of computation to I/O performance for any HPC application is
just a matter of degrees. In other words, because execution in
VMs present a performance penalty (particularly with I/O),

HPC application performance will be impacted when executed
from within virtual machines, and it is just a matter of how
much the performance is impacted.

Often overlooked in this pursuit of HPC performance is the
productivity of the scientists and engineers: some trade-offs can
be made in performance that could make the scientists and
engineers much more productive. The LLGrid system has been
a testbed for exploring these performance/productivity trade-
offs [5]. In this research we explored in what HPC applications
such a performance/productivity trade-off would be reasonable
for using virtual machines.

Not all of the advantages for virtualized enterprise
computing hold for HPC, though three of the five do: rapid
provisioning of prototype services, flexible use of available
servers (inherent in HPC scheduling), and multiple operating
system types. Several more advantages for HPC are detailed in
[6] and [7], including reliability, reduced software complexity,
and easier management.

For LLGrid, the two most appealing advantages are rapid
prototyping and multiple operating system types. Often a part
of starting a new research project involves purchasing one or
more servers before really understanding the computational
requirements of the application codes. We intend to enable VM
instances on LLGrid so that these research projects can explore
the computational requirements of their application codes
without having to wait for a server order to arrive. With regard
to supporting multiple operating system types, we routinely
work with research teams that have a scientific code suite that
has been validated and verified with a certain OS type, version,
etc. that is different than the one installed on LLGrid. Usually
this means that the research team must revalidate and re-verify
their scientific code suite on the LLGrid software stack.
Another scenario is that the scientific code suite is no longer
supported on the hardware and OS that comprises LLGrid. If
they could execute their code suite within virtual machines
with the identical environment in which they were verified, the
research teams would sacrifice some performance, while
gaining productivity by not having to revalidate and reverify.

B. VMs on LLGrid
There are three approaches for using virtual machines on

HPC clusters for scientific computing:

1. HPC on an infrastructure-as-a-service (IaaS) cloud,

2. HPC on a virtualized cluster, and

3. Type-2 VMs on traditional HPC cluster.

The majority of virtualized HPC applications and systems
research has been done on the first two approaches. With HPC
on an IaaS cloud, a user provisions a set of HPC-oriented
(higher core count, more memory per core, etc.) virtual
machines on a public IaaS cloud provider like Amazon’s
Elastic Compute Cloud (EC2) or Rackspace Cloud. Once
provisioned, the user executes their HPC application on the
public cloud instances. This solution usually utilizes type-1
bare-metal hypervisors, which implies better CPU
performance. This solution is good for occasional HPC
activities and rapid prototyping, but virtual machine costs,
virtual storage costs, and transfer bandwidth costs can make

Figure 3: Operating system privilege rings

this a very expensive option if it is used
a lot. Also, some organizations cannot
use public cloud resources to due to
privacy and security concerns.

With HPC on a virtualized cluster,
all of the compute nodes are virtual
machines that are managed and
deployed using a VM management
system like VMware ESX. Generally the
VMs are statically allocated onto the
available hardware, though it is possible
to migrate VMs from server to server
when necessary. This approach can be
realized with both type-1 and type-2
hypervisors. Usually a HPC scheduler
like Grid Engine, LSF, Torque, etc. is
used to match and execute jobs on
virtual compute nodes. This solution
provides flexibility in what and how
many OS types are allocated across the
cluster, and users just use the resource
like they would any other HPC cluster.
However, all HPC jobs must be executed within VMs with all
of the performance penalties that may be incurred.

The third approach is to provision the cluster in the
traditional way with a certain current OS version installed on
the bare metal. This OS version is chosen to accommodate as
many different HPC jobs as possible, and every effort should
be made to execute HPC jobs in the bare-metal, native OS. If
another OS type or version is needed, then VMs are used to
encapsulate the job(s). The VM-encapsulated jobs are launched
through an HPC scheduler just like any other job, and the job
sets up the VM, launches the job, monitors the job, and
eventually tears down and discards the VM when the job is
finished.

Because there is an underlying OS, this solution requires a
type-2 hypervisor. To rapidly prototype this capability, we
wanted a simple interface to launching and managing VM
instantiation and configuration. While all of the major
hypervisor solutions have a software application programming
interface with which control code can be written, only one of
the major type-2 hypervisors has a fully supported command
line interface for launching and managing VM instantiation and
configuration: Oracle VirtualBox.

The key intent of this rapid prototype was to show fast
launch times of the VM and its computational job. Therefore,
we stripped down the VM operating system image to have no
services and only the libraries that were required for scientific
computing. If other libraries are needed they will be symlinked
into the users virtual machine environment from a centrally
shared library repository. Each VM job submitted to the
scheduler clones a VM image, registers the image to the
compute node that the scheduler has chosen, and begins the
boot sequence of the VM. The job execution in the VM is
written into the initialization scripts of the VM-encapsulated
OS so that when the VM has fully booted, it immediately
begins execution of the job. After execution of the job, the VM
enters the shutdown script, and upon shutdown the VM image

is discarded. If the VM job is aborted before execution is
completed, the VM catches the kill signal sent by the scheduler,
and the VM is cleanly powered down and discarded.

While the default is to launch one VM job per job slot, we
have added the ability to overload the jobslot with multiple VM
instances. That is, we can launch two or more VMs and their
related jobs per scheduler jobslot. The number of VMs that can
be launched per jobslot is limited by the resources that are
available on a compute node. This feature can be useful when
testing the scalability of network-centric distributed computing
environments where each VM job uses relatively little memory
or CPU power.

IV. RESULTS
We demonstrated our VM on HPC capability on the

LLGrid TX-2500 cluster at MIT Lincoln Laboratory. In our
Grid Engine (version 6.2u5) scheduler, we temporarily
dedicated eight nodes for launching VM jobs and measuring
their launch and shutdown times. We delivered the VM images
from a user account on the central file system, a DDN 10K
storage array, connected to the compute nodes via 10GigE core
network, and 1GigE connection to each node from the rack
switches. Each compute node was a Dell PowerEdge 1955
blades with dual socket, dual core 3.2 GHz CPUs, 8 GB of
RAM per blade, and two 36 GB 2.5” SAS hard drives. For this
demonstration we used one of these compute nodes to launch
VM jobs onto eight other compute nodes. The VM images
were Debian Linux 6.0.4 i386 installations.

Timing was accomplished with a socket-based timing
logger running on the job-launch server so that there was no
network-induced clock skew. The overhead of sending very
short socket messages to the timing logger is much smaller
than the precision of network time protocol (NTP)
synchronized servers.

Figure 4 depicts the launch timing test results. Each of the
eight lines in the graph shows the launch times of the VM jobs.

Figure 4: Results of launch timing

The individual lines are for optimized or unoptimized Debian
VM images and the number of VMs that were launched per
jobslot. For example, Unopt-4 is the curve for an unoptimized
Debian image with 4 VMs per jobslot. The x-axis of the graph
shows the number of scheduler jobs that were launched as a job
array. Multiplying the number of scheduler jobs times the
number of VMs per jobslot is the total number of VMs that
were launched. For instance for the Unopt-4 series of launches,
a total of 4, 8, 16, 32, 64 VMs were launched to generate the
Unopt-4 line. Each of the 40 scenarios depicted in the graph
were launched 10 times, and the value in the graph is the
average of the 10 launch times. The timing is from when the
Grid Engine job was submitted from the launch node command
line to when the VM job began executing a simple
computational application (adding two numbers).

The results show that the stripped down VM operating
system images dramatically reduced the launch time for both
single VM job launches and high density VM job launches.
The optimization effort brings the launch times down to launch
latencies that are fairly reasonable. We are in the process of
running more trials various number of total VMs and VMs per
compute node to get better granularity of our results.

Furthermore, we see that the launch times of the VM jobs
stays relatively flat when launching 1 to 8 jobs. This is because
the Grid Engine scheduler is spreading the jobs across each of
the eight nodes in the cluster. When launching 8 jobs, there are
some bottlenecks in the network when delivering the VM
images to the nodes for execution. These bottlenecks in the
network are more pronounced when launching 16 jobs because
two or more scheduler job slots are loading the VM images
from the central storage.

V. RELATED WORK
In the past decade, many papers have been written on

various aspects of virtual machines and related subjects such as
cloud computing. These papers span topics from the underlying
technology; to computational, network, and I/O performance;
to best practices for managing virtual machines in an
organization. Some of the papers explore the overhead of using
virtual machines for HPC users, and it is this topic that is most
related to the work in this paper.

A team at Taiwan’s National Center for High-Performance
Computing, Tainan, developed a hybrid bare-metal/virtualized
computing cluster called Formosa3 [8]. They modified the
Torque scheduler to interface and manage OpenNebula, which
subsequently managed the VMs on the compute nodes (an
approach 1 and 2 hybrid with type-2 hypervisor). OpenNebula
was responsible for provisioning and deprovisioning VMs on
the compute nodes; once a compute node was provisioned, it
signaled Torque that the VM was ready to accept a VM job. In
their cluster, compute nodes could either run VM jobs or HPC
jobs, but they did not allow the two types of jobs to comingle
on the same compute node. They included benchmarking of
VM job launches and found similar results to our unoptimized
results.

The Clemson University School of Computing team used
the KVM hypervisor on a cluster for grid computing research
[9]. They statically allocated VMs onto compute nodes with the

hypervisor running on the compute node operating system
(approach 2 with Type 2 hypervisor), and they used the Condor
scheduler to launch jobs onto the static VMs. They
demonstrated how a virtualized cluster could be a part of a
multi-organization grid computing infrastructure and ran a
variety of benchmarks. Just like the Formosa3 team, they used
stock OS images, and their launch results were similar to our
unoptimized results.

The research presented in this paper show that there is merit
in optimizing the VM images improves launch times
dramatically. Unlike the Formosa3 and Clemson efforts, our
hypervisors and VM jobs, are launched directly and on-demand
by scheduler scripts, which enables agility in supporting
multiple OSs and a wide variety of user needs.

VI. FUTURE WORK AND CONCLUSION
This rapidly prototyped effort with LLGrid was just the

beginning of how we are considering integrating virtual
machines into the software stack of LLGrid and how we could
use the capability for specific scenarios where the productivity
gained outweighs the I/O performance losses for using virtual
machines. We have demonstrated the launch of single VMs as
well as multiple independent VMs (also known as job arrays).
In the next phase of this work, we will demonstrate the
launching of parallel jobs, such as MPI applications, that
require interaction between the processes. Also we plan to
demonstrate our VM capability for use in prototyping and
testing persistent distributed services on LLGrid. This will
include integration with a database-backed dynamic domain
name service (D-DNS) for dynamic host-IP address lookups.
Soon we also intend to exploit this capability to enable the
work of other research teams at Lincoln.

While using virtual machine technology in HPC does not
have all of the advantages that it does in the enterprise
computing arena, there are scenarios in the
productivity/performance trade-offs are beneficial. We have
demonstrated a very flexible approach to integrating virtual
machine jobs amongst traditional batch and interactive HPC
jobs, while providing reasonable VM job launch latencies.

REFERENCES
[1] F.J. Corbató and V.A. Vyssotsky, “Introduction and overview of the

Multics system,” AFIPS, 1965.
[2] R. Dittner and D. Rule Jr., Best Damn Server Virtualization Book

Period, Syngress, 2007.
[3] A. Silbershatz, P.B. Galvin and G. Gagne, Operating System Concepts,

Addison Wesley, 2011.
[4] P. Luszczek, E. Meek, S. Moore, D. Terpstra, V. Weaver, J. Dongarra,

"Evaluation of the HPC Challenge benchmarks in virtualized
environments," 6th Workshop on Virtualization in High-Performance
Cloud Computing, Bordeaux, France, August 30, 2011.

[5] N. Travinin Bliss, R. Bond, J. Kepner, H. Kim, and A. Reuther,
“Interactive grid computing at Lincoln Laboratory,” Lincoln Laboratory
Journal, Vol. 16, Number 1, 2006.

[6] Mark F. Mergen, Volkmar Uhlig, Orran Krieger, and Jimi Xenidis.
“Virtualization for high-performance computing.” SIGOPS Oper. Syst.
Rev. 40, 2 (April 2006), 8-11.

[7] Wei Huang, Jiuxing Liu, Bulent Abali, and Dhabaleswar K. Panda. “A
case for high performance computing with virtual machines. In
Proceedings of the 20th annual international conference on
Supercomputing (ICS '06). ACM, New York, NY, USA, 125-134.

[8] C.H. Li, T.M. Chen, Y.C. Chen, and S.T. Wang, “Formosa3: A cloud-
enabled HPC cluster in NCHC,” World Academy of Science,
Engineering, and Technology Journal, Vol. 73, No. 38, 2011.

[9] M. Fenn, M.A. Murphy, S. Goasguen, “A study of a KVM-based Cluster
for Grid Computing,” In Proceedings of the 47th Annual Southeast
Regional Conference (ACM-SE 47). ACM, New York, NY, USA,
Article 34 , 6 pages.

