
High Performance Java
Jordan J. Ruloff, James A. Ross,∗ David A. Richie,† Song J. Park, Dale R. Shires, and Brian J. Henz‡

∗Dynamics Research Corp.
Andover, MA

{jruloff, jaross}@drc.com
†Brown Deer Technology

Forest Hill, MD
drichie@browndeertechnology.com

‡U.S. Army Research Laboratory (ARL)
Aberdeen Proving Ground, MD

{song.j.park.civ, dale.r.shires.civ, brian.j.henz.civ}@mail.mil

Abstract—At this point in time, it is apparent that future
programming paradigms will be based around many-core pro-
cessors and heterogeneous computing. Diversity in new processor
architectures has led to a large variety of processors, which were
designed to address different issues found in past architectures
while, unfortunately and unintentionally, burdening program-
mers to use these new architectures effectively. As more program-
ming libraries and languages are developed, programmers will
be able to design algorithms for these different architectures to
maximize their code efficiency, whether to maximize performance
or minimize power usage. Unfortunately, not all code can scale
efficiently in many-core architectures nor can all code efficiently
utilize heterogeneous architectures. Sometimes, a programmer
may even have to deal with a task that is inherently serial
in nature. Even if the task is trivially parallel, a programmer
may even find that, due to limiting constraints of a particular
architecture, like memory or interconnect speed, an algorithm
best suited for a particular problem may not be the most desirable
to maximize performance. In order to efficiently utilize the com-
puting hardware, programmers must have a basic understanding
of the fundamental differences between the various architectures
and how to best utilize them. This paper covers the methods
that were employed for addressing task and data parallelism
within the Java language to maximize performance of the World
Wind Java Ballistic Interface code, Java 7’s fork/join framework
and AMD’s Aparapi Java bindings as well as the importance of
parallel execution time and how to map it to the various execution
frameworks.

I. INTRODUCTION

The future of high performance computing will be based
around many-core processors and heterogeneous computing.
While Moore’s law has continued to demonstrate itself ever
since the invention of the integrated circuit in 1958, Dennard
scaling has failed to keep up with the scaling of transistor
size[1]. At the moment, the only attainable means for per-
formance growth in a serial application is advancements in
processor architecture, hence, it is best to transition from a
serial programming paradigm towards a parallel programming
paradigm. The task at hand is a difficult one for programmers,
especially if one wants to maximize efficiency, but program-
ming in parallel will continue to get easier as more program-
ming libraries and languages are developed. In addition to the
task of programming with parallelism, since processor archi-

tecture is now playing a larger role in determining performance
of a program, a developer must carefully consider the require-
ments of their program and how to maximize the efficiency
of their code on a particular architecture of choice. A quick
glance at the plethora of processing architectures available,
each designed with a different goal in mind promising high
performance, should make it apparent that this is no easy
task. Regardless, tools and application programming interfaces
for multi-core and heterogeneous computing are maturing and
making it easier to maximize performance of one’s program.

The Ballistic Trajectory Field Calculator (BTFC) Interface
is a user interface to put the power of a supercomputer in the
hands of the U.S. Army warfighters. The interface allows for
the creation, loading, and saving of scenarios, which involve
the placements of threats and watch points on a map. A
warfighter can create a scenario, as shown in Figure 1, and
submit it to a high performance computer connected to the
same network and get back safe positions where they could
observe the watch points without being detected by the threats,
as shown in Figure 2. It is critical that the interface maximize
performance in order to minimize energy use on a portable
device and to keep the interface responsive. The interface was
coded in Java on top of NASA World Wind and makes use of
the latest parallel programming additions in the Java language
as well as Aparapi, a Java library that maps Java code to
OpenCLTM code.

User Selected Entity

Threat

Fig. 1: Setting Up A Scenario



Watch Point

Best Position

Fig. 2: Scenario With Calculated Best Positions

II. JAVA PARALLELISM

One of the features that the BTFC Interface supports is the
loading of GeoTIFF files for viewing landscapes with higher
resolution than what is currently provided by the NASA World
Wind server for use in the scenario. The process of loading
GeoTIFFs can occur in parallel except for a small portion
which adds the generated data from the files to the interface.
It is important the execute the process in the least amount
of time possible so that the task does not inhibit the ability
of the warfighter to interface with the program. In order to
accelerate this process, the BTFC Interface was programmed
to efficiently utilize an abstract number of processors through
Java thread pooling.

In order to ease multi-threaded programming in Java, the
ThreadPoolExecutor class was added in Java 5[2]. It was
capable of executing tasks asynchronously and could return
values from the other task upon completion and, while it
was very efficient and useful, it still failed to handle all
the possible cases of parallelism that may arise in a Java
program with maximum efficiency. In Java 7, ForkJoinPool
was added to ease multi-threaded programming in Java un-
der conditions that ThreadPoolExecutor could not efficiently
handle: unbalanced workloads and recursively subdividing
tasks[3]. It is important to note that ForkJoinPool does not
replace ThreadPoolExecutor, but provides an alternative to
ThreadPoolExecutor. In order to evaluate the difference in
performance between ThreadPoolExecutor and ForkJoinPool,
a benchmark was created which loads a specified list of
GeoTIFF files multiple times and the benchmark is timed in
order to find which Java thread pool more efficiently utilizes
its processors. The benchmark was run on two Intel R© Xeon R©
X5675 processors.

In the first case, which is shown in Table I and Figure 3,
one GeoTIFF is loaded multiple times. Since the workload
for each task is equivalent, all the tasks execute in an equal
amount of time and no thread spends a long time idling while
another thread is executing work. The graph shows that the
two thread pools have similar performance and that there is
no advantage to using a ForkJoinPool.

GeoTIFFs ThreadPoolExecutor(s) ForkJoinPool(s)
1 0.62 0.62
2 0.63 0.64
4 0.67 0.66
8 0.72 0.72

16 0.97 0.98
32 1.43 1.43
64 3.07 3.06

TABLE I: Execution Time For Loading Same GeoTIFF Mul-
tiple Times

20 21 22 23 24 25 26

10−0.2

100

100.2

100.4

NumberOfGeoTIFFs

T
im

e(
s)

ThreadPoolExecutor
ForkJoinPool

Fig. 3: Execution Time For Loading Same GeoTIFF Multiple
Times

In the second case, which is shown in Table II and Figure 4,
four GeoTIFFs are loaded multiple times. The GeoTIFFs vary
in both type and file size, so the workload assigned across
all the threads is unbalanced. If there is an enough of an
imbalance, the idle threads in the ForkJoinPool can steal work
from the queue of the busier threads, which more effectively
utilizes the thread pool. In unbalanced workloads, it is more
effective to use ForkJoinPools due to work stealing.

GeoTIFFs ThreadPoolExecutor(s) ForkJoinPool(s)
4 1.15 1.17
8 1.24 1.23

16 1.31 1.31
32 1.67 1.69
64 2.64 2.63

128 5.30 4.22
256 9.99 7.12

TABLE II: Execution Time For Loading Multiple GeoTIFFs
Multiple Times



22 23 24 25 26 27 28
100

101

NumberOfGeoTIFFs

T
im

e(
s)

ThreadPoolExecutor
ForkJoinPool

Fig. 4: Execution Time For Loading Multiple GeoTIFFs
Multiple Times

Since the BTFC Interface needs to remain responsive and
execute its tasks as quick as possible, it was decided to use
ForkJoinPool since it offered the best time for the worst case
scenario. When designing a user interface, it is important to
always consider worst case as one worst case can ruin the user
experience.

III. APARAPI

While NASA World Wind may be capable of loading
GeoTIFFs, not every file a user may want to use for BTFC
Interface may be a GeoTIFF. In this case, one may have
to convert a file to a GeoTIFF in order to properly render
the object in NASA World Wind. This benchmark parses a
triangle data file, builds a Bounding Volume Hierarchy (BVH)
tree[4], and then does some intersection tests in order to
generate height values which could be put into a GeoTIFF.
Due to this benchmark’s data parallel nature, Aparapi was
chosen as the library of choice. Aparapi is a Java library
which can convert Java byte code to OpenCLTM code while
hiding the complexities of running the OpenCLTM code and
binding it to Java from the programmer[5]. While it is still
a rather new library and still has not fully matured, it has
demonstrated some interesting performance benefits over na-
tive Java threading when the algorithm is data parallel. At this
time, there are a few restrictions when using Aparapi, such
as ensuring that there are no new arrays or structures and no
passing local memory objects into a function. Fortunately, all
the kernels used in this benchmark could be modified to avoid
the restrictions imposed by Aparapi[6]. The benchmark was
run on two Intel R© Xeon R© X5675 processors and one AMD
RadeonTM HD 6970.

The construction of the BVH tree can be broken down into
two major steps; the first of which is the preparation step.
The preparation step for building the BVH tree consists of
constructing bounding boxes for each individual triangle as
well as sorting the bounding boxes by dimension. Construction

of the bounding boxes executes in constant parallel time
while the bitonic sort occurs in (logN)2 parallel time[7], [8].
The execution times for the preparation kernels are shown
in Table III and Figure 5. As one can see from the figure,
there is a significant amount of overhead associated with Java
threading; in Aparapi, each OpenCLTM thread is equivalent
to a spawned Java thread, which are synchronized by cyclic
barriers. By default, Aparapi may attempt to run as many as
256 threads, but it is usually best to specify a thread number no
greater than the number of cores in your machine if executing
the kernel in Java. Additionally, one can see from the figure
that there is a relatively small increase in execution time as
the number of triangles increases for the OpenCLTM execution
cases. Since the slope is so small for the first few test cases,
one can infer that a significant portion of the execution time
is spent compiling the kernel and moving memory for these
first few test cases; this is the reason why the native Java
implementation is faster than the OpenCLTM implementations
for a small number of triangles.

Triangles JTP(s) CPU(s) GPU(s)
65536 0.717 0.951 0.972

131072 1.028 0.989 0.977
262144 1.407 1.068 1.014
524288 2.693 1.315 1.107
1048576 4.960 2.126 1.325

TABLE III: Execution Time For Preparation Kernels

216 217 218 219 220
10−0.2

100

100.2

100.4

100.6

NumberOfTriangles

T
im

e(
s)

Java Threads
OpenCLTM CPU
OpenCLTM GPU

Fig. 5: Execution Time For Preparation Kernels

The second step in constructing the BVH tree is the actual
building of the BVH tree. The algorithm for construction of a
BVH tree, shown below in Algorithm 1, can be divided into
multiple pieces of parallel portions with varying degrees of
parallelism[9], [10], [11]. Initially, the portion of the algorithm
with a limited amount of parallelism is choosing the dimension
along which to split the structures, which may adversely affect
architectures designed for parallelism initially, but increasing
the size of the tree should show an increased overall perfor-



mance as more splits occur in parallel and the algorithm begins
to spend less relative time splitting the node and more relative
time reordering.

Algorithm 1 The BVH Tree Construction Algorithm

1: procedure BUILDBVHTREE
2: SetUpInitialNode
3: while NotFullySplit do
4: for all NodesWhichExist do
5: for all Dimension ∈ Dimensions do
6: ChooseBestSplit
7: end for
8: SplitNode
9: SetupNodeForDataParallelPortion

10: for all Dimension ∈ Dimensions do
11: if DimensionWasNotSplitDimension

then
12: for all Indexes ∈ SortedIndexes do
13: CalculateNewPosition
14: Reorder
15: end for
16: end if
17: end for
18: end for
19: end while
20: for all Node ∈ Nodes do
21: CalculateAxisAlignedBoundingBoxes
22: end for
23: for V alues ∈ Sorted do
24: SetToSortedIndexInFirstDimension
25: end for
26: end procedure

Table IV and Figure 6 shows the execution time for building
a BVH tree. It is interesting to note that, as the number of
structures to organize gets larger, the difference in execution
time between Java and OpenCLTM for the CPU decreases.
This is due to the majority of the execution time being
spent choosing the best split plane, which is the least parallel
portion of the algorithm and has the least amount of overhead
associated with the cyclic barriers.

Triangles JTP(s) CPU(s) GPU(s)
65536 2.017 0.944 1.146
131072 4.079 2.545 2.596
262144 10.380 8.717 7.475
524288 34.065 32.765 24.936

1048576 126.286 127.443 89.760

TABLE IV: Execution Time For Build Tree Kernel

216 217 218 219 220

100

101

102

NumberOfTriangles

T
im

e(
s)

Java Threads
OpenCLTM CPU
OpenCLTM GPU

Fig. 6: Execution Time For Build Tree Kernel

Lastly, this benchmark calculates which structure is the
closest structure to be intersected by a particular ray for a set
of rays. The algorithm for this portion is parallel across all the
rays as well as parallel across all the resulting bounding boxes
in the leaf nodes of the BVH tree. The algorithm is shown in
Algorithm 2 and executes in logN parallel time for N number
of structures. It is important to note that, while testing against
each leaf node is less efficient than traversing the tree, finding
an intersection in this manner parallelizes across more cores
and executes in less parallel time, which would mean a faster
execution time if the machine can process enough threads
simultaneously. Additionally, this algorithm has a better worst
case execution time than the worst case execution time for
traversing the tree.

Algorithm 2 The BVH Tree Intersection Algorithm

1: procedure INTERSECTBVHTREE
2: for all Ray ∈ Rays do in Parallel
3: for all Node ∈ LeafNodes do in Parallel
4: if RayHitsBoundingBox then
5: FindClosestStructureHit
6: end if
7: end for
8: FindClosestNodeHit
9: end for

10: end procedure

Due to the relatively limited amount of memory present
in the machine, the amount of parallelism expressed in the
intersection test kernel had to be restricted when the BVH tree
became exceptionally large. Despite this constraint, Table V
and Figure 7 clearly shows that the speed of execution is
dependent on the manner in which the threads were executed
as well as the amount processing power of a particular
architecture. Native Java threads execute the task an order of
magnitude slower than OpenCLTM threads, which is expected
since Java has been shown to be less efficient at utilizing



the hardware available than C[12], [13]. Additionally, a GPU
is a throughput orientated architecture which is designed to
maximized overall performance by hiding latency through
context switching at the expense of additional latency[14],
[15]. Through hiding latency and maximizing performance
of its many simpler cores, GPUs are shown to have more
processing power than CPUs[16].

Triangles JTP(s) CPU(s) GPU(s)
65536 96.618 2.441 0.310

131072 162.488 4.192 0.385
262144 229.051 7.843 0.554
524288 481.334 15.640 0.876
1048576 933.093 31.352 1.529

TABLE V: Execution Time For Intersection Kernel

216 217 218 219 220

100

101

102

103

NumberOfTriangles

T
im

e(
s)

Java Threads
OpenCLTM CPU
OpenCLTM GPU

Fig. 7: Execution Time For Intersection Kernel

Aparapi has demonstrated itself as a high performance
library which easily integrates with the BTFC Interface. The
additional performance from executing data parallel algorithms
efficiently across multiple processors as well as on processors
which native Java can not interact with enables the BTFC
Interface to execute compute intensive tasks rapidly without
hanging.

IV. CONCLUSION

When programming for manycore and heterogeneous ar-
chitectures, it is critical to consider how effectively the code
utilizes all the processing cores. In the case of the BTFC
Interface, it is critical to minimize execution time and keep
the interface responsive since the interface is the only way for

the program and the warfighter to interact. By utilizing the
ForkJoinPool introduced in Java 7, it is possible to maximize
CPU utilization and minimize execution time of task parallel
workloads. Additionally, it is possible to efficiently assign
work to a GPU or maximize the performance of a CPU for data
parallel workloads by utilizing Aparapi. Through proper usage
of these libraries, it is possible to not only minimize program
execution time, but also maximize the efficiency of the user’s
time, which is ultimately the goal of any software system.
In conclusion, incorporating these libraries into the BTFC
Interface assists in achieving the overall goal of minimizing
system time where the server, the interface, and the warfighter
are all part of the complete system.

ACKNOWLEDGMENTS

Support for this work is provided in part by the Army High
Performance Computing Research Center (AHPCRC).

REFERENCES

[1] M. Bohr, “A 30 year retrospective on dennard’s mosfet scaling paper,”
2007.

[2] H. Rajan, S. M. Kautz, and W. Rowcliffe, “Concurrency by modularity:
Design patterns, a case in point,” in OOPSLA, pp. 790–805, 2010.

[3] D. Lea, “A java fork/join framework,” in Proceedings of the ACM 2000
conference on Java Grande, JAVA ’00, (New York, NY, USA), pp. 36–
43, ACM, 2000.

[4] C. Lauterbach, M. Garland, S. Sengupta, D. P. Luebke, and D. Manocha,
“Fast bvh construction on gpus,” Comput. Graph. Forum, vol. 28, no. 2,
pp. 375–384, 2009.

[5] S. Joshi, “Leveraging aparapi to help improve financial java application
performance,” 2012.

[6] G. Frost, “Aparapi java kernel guidelines,” Sept. 2011.
[7] K. E. Batcher, “Sorting networks and their applications,” in AFIPS

Spring Joint Computing Conference, pp. 307–314, 1968.
[8] P. Kipfer and R. Westermann, “Improved GPU sorting,” in GPUGems 2:

Programming Techniques for High-Performance Graphics and General-
Purpose Computation (M. Pharr, ed.), pp. 733–746, Addison-Wesley,
2005.

[9] W. D. Hillis and G. L. Steele, Jr., “Data parallel algorithms,” Commun.
ACM, vol. 29, pp. 1170–1183, Dec. 1986.

[10] I. Wald and V. Havran, “On building fast kd-trees for ray tracing, and
on doing that in o(n log n),” in IN PROCEEDINGS OF THE 2006 IEEE
SYMPOSIUM ON INTERACTIVE RAY TRACING, pp. 61–70, 2006.

[11] K. Zhou, Q. Hou, R. Wang, and B. Guo, “Real-time kd-tree construction
on graphics hardware,” ACM Trans. Graph., vol. 27, pp. 126:1–126:11,
Dec. 2008.

[12] S. Taylor, D. D. Cook, and M. D. Levine, “A comparison of multithread-
ing implementations,” in In Yale Multithreaded Programming Workshop,
1998.

[13] R. Hundt, “Loop recognition in c++/java/go/scala,” in Proceedings of
Scala Days 2011, 2011.

[14] K. Fatahalian and M. Houston, “A closer look at gpus,” Commun. ACM,
vol. 51, pp. 50–57, Oct. 2008.

[15] M. Garland and D. B. Kirk, “Understanding throughput-oriented archi-
tectures,” Commun. ACM, vol. 53, pp. 58–66, Nov. 2010.

[16] K. A. Hawick, A. Leist, and D. P. Playne, “Mixing multi-core cpus
and gpus for scientific simulation software,” Tech. Rep. CSTN-091,
Institute of Information and Mathematical Sciences, Massey University,
Auckland, New Zealand, 2009.


	Introduction
	Java Parallelism
	Aparapi
	Conclusion
	References

