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Abstract

Traditional debugging tools do not fully support state inspection while examining failures in multi-language
applications written in a combination of Python, C++, C, and Fortran. When an application experiences a runtime
fault, such as numerical or memory error, it is difficult to relate the location of the fault to the original source code
and examine the performance of the application. We present a tool that can help identify the nature and location of
runtime errors in a multi-language program at the point of failure. This debugging tool, integrated in the TAU
Performance System®, isolates the fault by capturing the signal associated with it and reports the program callstack.
It captures the performance data at the point of failure, stores detailed information for each frame in the callstack,
and generates a file that may be shipped back to the developers for further analysis. The tool works on parallel
programs, providing feedback about every process regardless of whether it experienced the fault. This paper
describes the tool and demonstrates its application to the multi-language CREATE-AV applications Kestrel and
Helios. The tool is useful to both software developers and to users experiencing runtime software issues as the file
output may be exchanged between the user and the development team without disclosing potentially sensitive
application data.

1. Introduction

When application software experiences a runtime failure or performance problem, it is important for concise
information about the error to be communicated to the development team. Although the next generation of HPC
engineering simulation tools for the DoD use a multi-language implementation [1,2], with numeric kernels written in
C, C++, or Fortran driven by scripting or interpreted languages like Python or Java, current debugging tools do not
operate well in this multi-language environment. A multi-language paradigm facilitates modular software and a
more straightforward exchange of software between different development groups. However, it introduces a
number of complexities in terms of debugging and memory management.

Determining execution context in relation to program parts and the language features used to create them is
non-trivial. At present, if software code experiences a runtime issue (e.g., a numerical or memory error), the
program generates a core file which, while useful for debugging, contains limited information about the status of the
execution, the memory profile, the process call stack, and the system resources in use. In order to resolve the
problem, software developers need to understand the nature of the exception, where it occurred, how long the
program executed, and the routines invoked prior to the error. A full view of the multi-language execution state,
with the attribution of low-level faults to higher-level software context, is required to gain better insight into the
layered workings of the application. The same reasoning extends to the importance of retaining other runtime
program information that might be useful in understanding what led up to the error. In the case of parallel programs,
for example, the ability to save parallel performance measurements after a long-running execution encounters an
exception could be extremely valuable, instead of losing all performance information because the tools are unable to
retain it. Just being able to properly manage an orderly shutdown of a faulty parallel application when only a few



(or even one) process experiences the fault is a challenge. Also, exchanging large core files (generated by each
core) with the developers is cumbersome, especially when working with parallel applications that use dynamic
shared objects (DSOs). It is also of limited value when the fault occurs in a DSO where addresses are relative to an
offset at which the shared library is loaded at runtime.

Another complexity in HPC software used by the DoD is the mechanism for reporting the software issue.
Security requirements in the DoD often preclude the use of forums to discuss software issues if geometry or input
conditions are proprietary, sensitive, or classified. Software issues are generally independent of geometry or inputs
but the development team must be able to reproduce the issue in order to effectively fix it, and this is difficult for
cases with limited distribution rights.

This paper presents a diagnostic tool for runtime faults that aims to replace the standard core file output with
more effective and concise information gathered during execution and at the time of the errant behavior, including
data about the computational performance, memory usage, call stack, and I/O operation. The diagnostic file is self-
contained and interchangeable between machines in the TAU standard profile format, so a user that experienced an
execution problem can send the diagnostic file to the development team for further analysis to determine the source
of the problem. The format for this file is human readable and open.

The next section presents the design approach and technical issues. Section 3 describes the development of the
tool for multi-language applications based on a Python-driver model. We have successfully applied this tool to the
Helios [1] and Kestrel [2] codes and we report our findings. Related work is presented in Section 4. We conclude
the paper with a discussion of the next development and evaluation steps.

2. Design approach

When an application experiences a runtime error such as a segmentation violation (e.g., caused by an access
through a null pointer), execution of an illegal instruction, or floating-point exception (e.g., division by zero), it is
critical to diagnose the problem with respect to the execution context. Merely reporting the text output of the
execution is rarely sufficient to fix the problem, particularly in multi-language applications. The developers
typically need to understand the nature of the exception, where it occurred, how long the program executed, and the
routines invoked prior to the error. This requires a full view of the execution state to gain a better insight into the
program’s layered workings of the multi-language program. Additionally, system information such as the operating
system kernel version, the extent of heap memory utilization, number of cores, and other application specific
parameters are important in fully understanding the error.

The key to solving the problem of observing execution state is in capturing (unwinding) the call stack at the
location of the error across the many layers of languages and libraries. The diagnostic tool we created integrates a
call stack capture module in TAU to accomplish this [20]. TAU unwinds the calling stack of each thread of
execution and records it in the profile file format with context specific information such as the calling routine name,
file name, and source line number for each frame in the program’s calling stack, when available. The tool operates
at runtime, automatically interposing with the application to generate diagnostics. This involves registering signal
handlers, examining the program callstack using GLIBC library backtrace API [15] at the point of failure,
maintaining and updating address maps for DSOs as they are loaded and unloaded, and translating the address from
each frame in the callstack using the GNU Binutils [13] to useful program information before the information is lost
and the program terminates. However, a tool to recover state information from an errant parallel program must
consider the cases where only a subset (perhaps just one) of the threads experiences a failure. Here, it is necessary
to inform the other processes to gracefully terminate, capturing relevant diagnostic information as they do so. The
design choices for this tool are described in [20].

3. Implementation

We have developed a callstack capture module in TAU that works with Python and can help us understand the
I/0 and memory usage in a mixed language application at the point of failure. The user activates this module by
setting the TAU TRACK SIGNALS environment variable prior to executing the program using fau_exec. The
tau_exec tool preloads a TAU DSO in the address space of the executing application and registers the handlers for
capturing a signal at the point of failure. Additionally, a TAU Python wrapper helps to instrument all Python
functions. Figure 1 shows how the application is invoked with the I/O and memory inspection command line
options. No changes are required in the application source code or binaries. If and when a runtime fault occurs,
TAU isolates it by capturing the callstacks for each rank of the MPI program. There are two distinct callstack
entities — the system callstack and the callstack maintained by TAU. The TAU callstack represents the sequence of



events that are recorded by entry and exit instrumentation in interval timers. Because TAU supports a wide variety
of programming languages, this callstack is independent of the language and we can see a combination of events
from C, C++, Fortran and Python in this view. The Python events represent routine names in the Python scripts that
TAU gets from the interpreter. These events are typically not visible to traditional debuggers such as gdb [14]. By
combining the two callstacks consistently within one tool, TAU permits debugging of system backtraces along with
performance data generated by higher language level interval and atomic events providing a consistent view that
will allow developers to get an accurate view of the program execution with or without fault diagnostic information.

TAU is integrated in the runtime layer of the PToolsRTE package [21] that is used by the CREATE-AV codes.
This allows a user to source a single configuration file or load an environment module to set all paths needed for
launching the codes using TAU, as shown in Figure 1.

Terminal
Eile Edit View Terminal Tabs Help
[sameer@m0297 example]$ source $PET_HOME/pkgs/ptoolsrte/etc/ptoolsrte.cshrc
[sameer@m0297 example]$ which pyMPI
/mnt/cfs/pkgs/PTOOLS/pkgs/ptoolsrte-0.55/1linux-redhat5.6-gnu-x86_64/pyMPI-2.5b0/bin/pyMPI
[sameer@m0297 example]$ which tau_exec
/mnt/cfs/pkgs/PTOOLS/pkgs/ptoolsrte-0.55/1linux-redhat5.6-gnu-x86_64/tau-2.21.2/x86_64/bin/tau_exec
[sameer@m0297 example]$ setenv TAU_TRACK_SIGNALS 1
[sameer@m0297 example]$ setenv TAU_CALLPATH_DEPTH 100
[sameer@m0297 example]$ cat wrapper.py
import tau

def OurMain():
import samarcrun

tau.run('OurMain() ')
[sameer@m0297 example]$ mpirun -np 2 tau_exec -T icpc,python,mpi,pdt pyMPI ./wrapper.py

initializing SAMARC
SAMINT::initialize()

building SAMARC initial AMR mesh
SAMINT: :buildGrids()

printing output

SAMINT: : getGlobalNumberPatches()
SAMINT: : getLocalNumberPatches()
SAMINT: :writePlotData()

step: 1 time: 0.0
SAMINT: : timestep()
initializing SAMARC
SAMINT: :initialize()
building SAMARC initial AMR mesh
SAMINT: :buildGrids()
printing output
SAMINT: : getGlobalNumberPatches()
SAMINT: : getLocalNumberPatches()
SAMINT: :writePlotData()

step: 1 time: 0.0
SAMINT: : timestep()
TAU: Caught signal 8 (Floating point exception), dumping profile with stack trace: [rank=1, pid=25501, tid=0]...
TAU: Caught signal 8 (Floating point exception), dumping profile with stack trace: [rank=0, pid=25502, tid=0]...

mpirun has exited due to process rank 1 with PID 25428 on
node m0297.mana exiting without calling "finalize". This may
have caused other processes in the application to be
terminated by signals sent by mpirun (as reported here).

[sameer@m0297 example]$ paraprof --pack create_io_mem.ppk
Loading data...

Packing data...

[sameer@m0297 example]$ D

Figure 1. Executing an application with the tau_exec tool captures the program state when a runtime fault occurs.

Launching TAU’s ParaProf profile browser allows the user to examine the callstacks. Figure 2 shows the
system callstack at the point of failure in Kestrel initialization code. This data is captured in the BACKTRACE
metadata fields. Figure 3 shows a small segment of the callstack, zoomed in for better readability. By clicking on
an entry, TAU’s source browser can show the source code at the location of the segmentation fault for any frame.
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TAU: ParaProf Manager

@ Applications TrialField Value
v fi Standard Applicati Name kestrel_error_8p.ppk n
v (3 Default App Application ||% g
¥ @l Default Exg| Trial ID 0
v [ kestrel_| |BACKTRACE 1 [initialize] [/mnt/cfs/pkgs/create/av/kestrel/maintainer, 2.1 ?lForcesMomen(sCalc[For(esMomen(sCalc C:73] [mn([cis[scrnch[sadamec[keslrelZ 1.2_debug/KIE/ ForcesMomentsCalc_wrap.so]
@ TIME| |[BACKTRACE 2 [_wrap_lnitialize] [, /2.1.2_buildDir alc_wrap.c:19639] damec/kestrel2.1.2_debug/KIE/_ForcesMomentsCalc_wrap.so]
» (i Default dbe:mys( |BACKTRACE 3 [call_function] [/u/US_HOME2jlinford /ptoolsrte/0.55 /build /Python-2.7.2 /Python/ceval.c: 40131[ PTOOLS -o 55/li dhat5.6-gnu-x86_64/Python-2.7.2/lib/libpython2.7.50.1.0]
» (] derby_database ( BACKTRACE 4 [fast_function] [/u/US_HOMEZ2 /jlinford/ptoolsrte/0.55 /build /Python-2.7.2 /Python/ceval.c: 4099] [/mm/('s/pkgs/PTOOL .55 /li dhats. 86_64 /Python-2.7.2/lib/libpython2.7.50.1.0]
- N BACKTRACE 5 [fast_function] [/u/US_HOMEZ2 /jlinford/ptoolsrte/0.55 /build /Python-2.7.2 .55 /li dhat5.6-gi 86_64/Python-2.7.2/lib/libpython2.7.50.1.0]
s @evs"onmvm‘ (dbY [5ACKTRACE 6 [fast_function] [/u/US_HOME? /jlinford /ptoolsrte/0.55 /build /Python-2.7. Z/Pymon/(evzl(4099] [/mnl/(ls/pkgs/PTOOL K I .55 /I dhat5.6-gnu-x86_64 /Python-2.7.2 /lib /libpython2.7.50.1.0)
» (L perfexplorer_work| |BACKTRACE 7  [fast_function] [/u/US_HOME2 fjlinford /ptoolsrte/0.55 /build /Python-2.7.2 :4099) [/ JPTOOLS, .55 /li dhats. 86_64/Python-2.7.2 7.50.1.0]
BACKTRACE 8 [PyEval_EvalCodeEx] [/u/US_HOMEZ2 /jlinford/ptools: .55 /build /Python-2.7.2 /Python/ceval.c:3253] [/mnt/cfs/pkgs/PTOOLS/pk : .55/l dhat5.6-gi 86_64/Python-2.7.2 7.50.1.0]
BACKTRACE 9  [PyEval_EvalCode] [/u/US_HOME2 /jlinford /ptoolsrte/0.55 /build /Python-2.7.2. :667) [, fs/pkgs/PTOOLS) .55/l dhats.6-gnu-x86_64 /Python-2.7.2 7.50.1.0)
BACKTRACE 10 [Pylmport_ExecCe [/u/US_HOME2 /]| build /Python-2.7.2 /Python/import.c:681] [/mnt/cfs/pkgs/PTOOLS/pk : .55 /li dhat5.6-gi _64 /Python-2.7.2 .50.1.0]
BACKTRACE 11 [load_source_module] [/u/US_HOME2 jlinford/ptoolsrte/0.55 /build /Python-2.7.2 /Python/import.c:1021] [/mnt/cfs/pkgs/PTOOLS/pk Isrte-0.55 /I dhat5.6-gr _64 /Python-2.7.2/lib/libpython2.7.50.1.0]
BACKTRACE 12 [import_: [/u/US_HOME?2 /jlinford /ptools: /build /Python-2.7.2 /Python/import.c:2596) [/mn(/:fs/pkgs/PTOOle ki te-0.55/I; .6-gr _64 /Python-2.7.2/lib/libpython2.7.50.1.0]
BACKTRACE 13 [load_next] [/u/US_HOMEZ2 /jlinford, /build /Python-2.7.2 .C:2416) [, P k te-0.55/I; dl .6-gi _64 /Python-2.7.2/lib/libpython2.7.50.1.0]
BACKTRACE 14 [import_module_level] [/u/US_HOMEZ2 jlinford, I /build /Python-2.7.2 .c:2137) |, /PTOOLS/pkgs/ptoolsrte-0.55 /I dh ar 86_64 /Python-2.7.2/lib/libpython2.7.50.1.0]
BACKTRACE 15 ([builtin__import_] [/u/US_HOMEZ2 jlinfo /build/Python-2.7.2 49) [/mm/cfs/pkgs/PToOu/pkgs/nmo\sne 0 SS/Imux redhals 6 gnu-x86_64 /Python-2.7.2/lib/libpython2.7.50.1.0]
BACKTRACE 16 [PyObject_Call] [/u/US_| HOMEZ/Jllnford/n(oo\sr(elo 55 /build /Python-2.7.2 /Ol L.C: 9] [, 86_64 /Python-2.7.2, .7.50.1.0]
BACKTRACE 17 [PyEval_CallObj [/u/us. .55 /build /Python-2.7.2/§ :3882] [/ : kgs /PTOOLS; .55 /li dh: 86_64/Python-2.7.2, 7.50.1.0]
BACKTRACE 18 [PyEval_EvalFrameEx] [/u/US_| HOMEZ/J\mford/nmmsne/o 55/build /Python-2.7.2 /Python/ceval.c:2333) [/mnt/cfs/pkgs/PTOOLS/pk s .55 /linux-redhats. 8 64/Pv: on-2.7.2/lil 50.1.0)
BACKTRACE 19 [fast_function] [/u/US_HOMEZ2 /jlinford/ptoolsrte/0.55 /build /Python-2.7.2 /Python/ceval.c:4099) [/mnt/cfs/pkgs/PTOOLS, .55 /li dhats. 86_64/Python-2.7.2/lib/libpython2.7.s0.1. 0]
BACKTRACE 20 [PyEval_EvalCodeEx] [/u/US_HOME?2 jlinford /ptoolsrte/0.55 /build /Python-2.7.2 /Python/ceval.c:3253) [/mm/ds/pkgs/PTOOl_’ ki s .55/l dhats. 86_64 /Python-2.7.2 7.50.1.0]
BACKTRACE 21 [PyEval_EvalCode] [/u/US_HOME2 /jlinford /ptoolsrte/0.55 /build /Python-2.7.2 :667) [, .55 /li dhat5.6-gr 86_64/Python-2.7.2 1.0]
BACKTRACE 22 [run_mod] [/u/US_HOMEZ fjlinford /ptoolsrte/0.55 /build /Python-2.7.2 /Python/pythonrun.c:1346) [/mnl/ds/pkgs/PTOOI_ kgs/ptoolsrte-0.55 /i dhat5.6-gnu-x86_64 /Python-2.7.2/lib /libpython2. 7 0. 1 0]
BACKTRACE 23 [exec_statement] [/u/US_HOME2 /jlinford /ptoolsrte/0.55 /build /Python-2.7.2 /Python/ceval.c:4 746) [/mnt/cfs/pkgs/PTOOLS/pkgs/ptoolsrte-0.55 /li dhatS5.6-gnu-x86_64 /Python-2.7.2/lib/libpython2.7.50.1.0]
BACKTRACE 24 ([PyEval_EvalCodeEx] [/u/US_HOMEZ2 /jlinford/ptools: .55 /build /Python-2.7.. Z/Pyxhon/(evalc 3253] [/mnt/cfs/pkgs/PTOOLS/pk : .55/l dhat5.6-gi 86_64/Python-2.7.2 7.50.1.0]
BACKTRACE 25 [fast_function] [/u/US_HOMEZ2 /jlinford/ptoolsrte/0.55 /build /Python-2.7.2 4109] (/1 fs/pkgs/PTOOLS, .55 /li dhat5.6-gi _64 /Python-2.7.2/lib/libpython2.7.50.1.0]
|BACKTRACE 26 [fast_function] [/u/US_} HOMEZ/JImfovd/pme\srle/O 55 /build /Python-2.7.2 /Python/ceval.c: 4099] [/mnt/cfs/pkgs/PTOOLS/pk s .55/ dhat5.6-gi _64 /Python-2.7.2/lib/libpython2.7.50.1.0]
BACKTRACE 27 ([PyEval_EvalCodeEx] [/u/US_HOME?2 jlinford, /build /Python-2.7.2, ] [/mnt/cfs/pkgs/PTOOLS/pk { .55/l dh: g1 _64/Python-2.7.2 7.50.1.0]
BACKTRACE 28 [fast_function] [/u/US_HOMEZ2 /jlinford, : /build/Python-2.7.2 :4109) [/mnt/cfs/pkgs/PTOOLS/pkgs/ptoolsrte-0.55 /linux-redhats .6- gnu x86_64 /Python-2.7.2/lib/libpython2.7.50.1.0]
BACKTRACE 29 ([PyEval_EvalCodeEx] [/u/US_HOME2 /jlinford l: /build /Python-2.7.2 =3, ‘l/mm/dslokgs/PTOO\S/Dkgs/pmn!srle 0 SS/Imux redhat5.6-gnu-x86_64/Python-2.7.2/lib/libpython2.7.50.1.0])
BACKTRACE 30 [PyEval_EvalCode] [/u/US_t HOMEZ/Jhnford/ploo!snelo SS/bul\d/Pvmun 2.7.2 .c:667) [/1 fs/pkgs/PTOOLS, dh gr 86_64 /Python-2.7.2/lib/libpython2.7.50.1.0]
BACKTRACE 31 [run_mod] [/u/US_HOMEZ2 /i id/Python-2.7.2/ :1346] [/mnt/cfs/pkgs/PTOOLS/pkgs/ptoolsrte-0. SSl\mux redhats. 6 -gnu-x86_64 /Python-2.7.2/lib/libpython2.7.50.1.0]
BACKTRACE 32 [PyRun, Pl ) [/u/US_HOME?2 /jlinford Isrte/0.55 /build /Python-2.7.2 /Python/pythonrun.c:936] [/mn(/cfs/nkgs/PTOo\_S/pkgs/n(oo\sr(e 0.55/linux-redhat5.6-gnu-x86_64/Python-2. 7 2/lib/libpython2.7.50.1.0]
BACKTRACE 33 [Pyl Mam] [fu/us_t HOMEZ/jl\nford/pmo!srle/o 55 /build /Python-2.7.; ZlModu\es/maln C:! 599] [/mm/cfs/nkgs/PTOOl /pk 86_64 /Python-2.7.2/lit 7.50.1.0]
BACKTRACE 34 [pyMPI_Main_with_communicator] [(unknown):0] [/mnt/cfs/pkgs/PTOOLS/pk .. 86_64/pyMPI-. Z yMPI]
BACKTRACE 35 [main] [(unknown):0] [/mnt/cfs/pkgs/PTOOLS/pkgs/ptool .55/ dhat5.6-gnu-x86_64 /pyMPI-, 2 bO0/bi 0 D
BACKTRACE 36 [_libc_start_main] [(unknown):0) [/lib64/libc-2.5.s0)
BACKTRACE 37 [_start] [(unknown):0] [/mnt/cfs/pkgs/PTOOLS, .55/l dhat5.6-gnu-x86_64 /pyMPI-2.. ]
CPU Cores 4
CPU MHz 2793.106
CPU Type Intel(R) Xeon(R) CPU X5560 @ 2.80GHz
CPU Vendor Genuinelntel
WD /mnt/cfs/scratch/sameer/kestrel_debug
Cache Size 8192 KB
Command Line  pyMPI /mnt/cfs/sc kestrel2.1.2_¢ -c /mnt/cfs/scratch/sadamec/kestrel2.1.2_debug/config/ie.xml -i AGARD_AS_CAP1.xml -p 8
Executable fe /PTOOLS .55 /linux-redhats.6-g: 86_64/pyMPI-2..
File Type Index 0
File Type Name  ParaProf Packed Profile
Hostname m0297.mana
Local Time 2012-03-16T08:18:39-10:00
MPI Processor. m0297.mana
Memory Size 24671604 kB
Node Name m0297.mana
0S Machine x86_64
OS Name Linux
0S Release 2.6.18-238.19.1.elS.perfctr
0S Version #1 SMP Fri Jul 15 14:46:14 HST 2011 -
(=) <1 »] |SIGNAL Segmentation fault v
Figure 2. A segmentation violation callstack captured for the Kestrel application.
BACKTRACE 1 [Initialize] [/mnt/cfs/pkgs/create/av/kestrel/maintainer/kestrel2.1.2 /ForcesMomentsCalc/ForcesMomentsCalc.c:73] [/mnt/
BACKTRACE 2 [_wrap_Initialize] [/mnt/cfs/pkgs/create/av/kestrel/maintainer/2.1.2_buildDir/ForcesMomentsCalc/ForcesMomentsCalc_wrap.c:19639]

Figure 3. Zooming into a segment of the callstack shows the routine name and the source code location.

TAU: ParaProf: Mean - kestrel_io_mem.ppk 0O00 TAU: ParaProf: Mean - kestrel_io_mem.ppk |
Metric: TIME Metric: TIME
Value: Inclusive Value: Exclusive
Units: seconds Units: seconds ‘
3002.92 7 | _TAWU application O 223.528 Sl Setup C
298014 IEEEE—— OurMain( 33.242 [l LoadMesh
298.014 OurMain [{wrapper.py}{3}] 20.748 [_] MPI_Ssend() ‘
297.961 [ <module> [{ie.py}{1}] 17.14 [] fopen64(
284.47 run [{Executive.py}{738}] 2.857 MPI_Allreduce() |
283239 o] executeQueue [{Executive.py}{168}] 1.944 | MPI_Bcast()
283.239 _notifyComponents [{Executive.py}{527}] 1.203 | MPLInitQ
244.838 | ] handleEvent [{AVUS.py}{127}] 0.314 | MPI_Barrier() |
244.736 Sl Setup 0.24 | MPI_Reduce() |
38.337 [@mml handleEvent [{ReadMesh.py}{109}] 0.187 | MPI_Comm_dup( |
38.337 [Emm LoadMesh 0.148 | MPI_Gather() |
20.748 [_] MPI_Ssend( 0.144 | .TAU application |
17.14 [ fopen640 0.085 | read |
13.438 [] <module> [{Executive.py}{1}] 0.077 | MPI_Gatherv() |
6.379 [] <module> [{_init__.py}{106}] 0.069 | MPI_Scatter() |
5.128 <module> [{add_newdocs.py}9}] 0.065 | MPI_Recv() |
5.12 <module> [{_init__py}{1}] 0.063 | <module> [{socket.py}{45}] |
4.027 <module> [{_init__.pyH2}] 0.058 | fclose()
4.011 | <module> [{type_check.py}3}] 0.053 | <module> [{numeric.py}{1}]
3.537 | <module> [{_init__.py}6}] 0.052 | Initialize
2.958 <module> [{__init__.pyH45}] 0.042 | MPI_Comm_create()
2.857 | MPI_Allreduce() 0.041 | MPI_WaitallQ)
2.039 | <module> [{result.py}{1}] 0.029 | MPI_Alltoall(Q
1.944 | MPI_Bcast() 0.025 | load_module
1.82 <module> [{util.py}{1}] 0.022 | MPI_Wait(
1.775 | <module> [{socket.py}45}] 0.02 | <module> [{Executive.py}{1}]
1.75 | <module> [{JobModel.py}{1}] A 0.019 | append -
1615 <module> [{collections.py}{1}] v 0.016 | add_newdoc [{function_base.py}{3178}] v
€ Y <rijic Y <

Figure 4. Inclusive (left) and exclusive (right) time spent in Kestrel code regions.

In addition to capturing the frames, the tool retains the performance data TAU has collected for the run. Figure
4 shows the exclusive and inclusive time spent in code regions. We see that the application executed on 8
processors for 302.9 seconds before terminating with the error. In addition to the code region performance data, the
TAU callstack information reveals the Python routines that were called before the segmentation fault. Because I/O



activity is also measured, the message sizes for communication operations can be record. Figure 5 highlights these
features for he Kestrel testcase.

000

TAU: ParaProf: Mean Context Events - kestrel_error_8p.ppk

¥ OurMain(
¥ OurMal
v <m

Name A Total NumSamples MaxValue MinValue MeanValue Std. Dev.

¥ .TAU application

in [{wrapper.py}{3}]
odule> [fie.py}{1}]

¥ run [{Executive.py}{738}]

v executeQueue [{Executive.py}{168}]
¥ _notifyComponents [{Executive.py}{527}]

v [{Forc alcpy}{105})
¥ Initialize

1 1 1 1 1 0
Message size for all-gather 10,621,936 38 10,318,464 4 279,524.632 1,651,028.694
Message size for all-reduce 13,700 597 1,008 4 22.948 42.576
Message size for all-to-all 152 19 8 8 8 0
Message size for broadcast 144,068,872 204 56,427,296 3 706,219.961 4,746,523.542
Message size for gather 41,492,662.361 10.375 14,167,198 4 3,999,292.758 4,242,989.257
Message size for reduce 92 22 8 4 4.182 0.833
Message size for scatter 621,421 12 621,377 4 51,785.083 171,738.425
TAU_SIGNAL (Segmentation fault) 1 1 1 1 1 0

Figure 5. TAU’s callstack reveals the Python routines that lead to the segmentation fault.

000 Metadata for n,c,t 7,0,0

Name

BACKTRACE 1 (Initialize] [/mnt/cfs/pkgs/creat kestrel2.1.2 /Forc For alc.c:73] [/mnt/cfs/scratch/sadamec/kestrel2.1.2_debug/KIE/_ForcesMomentsCalc_wrap.so] 3
BACKTRACE 2 [_wrap_lnitialize] [/mnt/cfs/pkgs/create iner/2.1.2_buildDir/For alc/For alc_wrap.c:19639) [/mnt/cfs/scratch/sadamec/kestrel2.1.2_debug/KIE/_ForcesMomentsCalc_wrap.so)
BACKTRACE 3 [call_function] [/u/US_HOME2 /jlinford/ptoolsrte/0.55 /build /Python- 2/Python/ceval.c:4013] [/mn(/cfs/pkgs/PTOOLS/pkgs/ploo\sne—o.SS/Imux—redhars.6-gnu»x86j4/Pymon—2.7.2/hb/hbpvmon2.7.50.1.0]
BACKTRACE 4 [fast_function] [/u/US_HOMEZ jjlinford /ptoolsrte/0.55 /build /Python-2.7.2 /Python/ceval.c:4099] [/mnt/cfs/pkgs/PTOOLS/pkgs/ptool: 0.55/li dhat5.6-gi _64 /Python-2.7.2/lib/libpython2.7.50.1.0]
BACKTRACE 5 [fast_function] [/u/US_HOME2 /jlinford /ptoolsrte/0.55 /build /Python-2.7.2 /Python/ceval.c:4099] [/mnt/cfs/pkgs/PTOOLS/pkgs/ptoolsrte-0.55 /linux- redhats.6-gnu-x86_64 Python-2.7.2 i liopython2.7.50.1.0]
BACKTRACE 6 [fast_function) [/u/US_HOMEZ jjlinford /ptoolsrte/0.55 /build /Python-2.7.2 /Python/ceval.c:4099) [/mnt/cfs/pkgs/PTOOLS/pkgs/ptool: 0.55/li 6-gr 86_64 /Python-2.7.2/lib/libpython2.7.50.1.0]
BACKTRACE 7 [fast_function) [/u/US_HOMEZ jjlinford /ptoolsrte/0.55 /build /Python-2.7.2 /Python/ceval.c:4099) [/mnt/cfs/pkgs/PTOOLS/pkgs/ptool: 0.55/li dhat5.6-gi 8 64/Pvthon -2.7.2/lib/libpython2.7.50.1.0]
BACKTRACE 8 [PyEval_EvalCodeEx] [/u/US_HOMEZ2 /jlinford /ptoolsrte/0.55 /build /Python-2.7.2 /Python/ceval.c:3253] [/mnt/cfs/pkgs/PTOOLS/pkgs/ptool 0.55/li dhat5.6-gi _64 /Python-2.7.2/lib/libpython2.7.50.1.0]
BACKTRACE 9 [PyEval_EvalCode] [/u/US_HOME2 /jlinford /ptoolsrte /0.5 5 /build /Python-2.7.2 /Python/ceval.c:66 7] [/mnt/cfs/pkgs/PTOOLS/pkgs/ptoolsrte-0.55 /linux-redhats.6-gnu-x86_64 /Python-2.7.2 /lib /libpython2.7.50.1.0)
BACKTRACE 10 [Pylmport_ExecCodeModuleEx] [/u/US_HOME2 /jlinford /ptoolsrte /0.55 /build /Python-2.7.2 {Python/import.c:681] [/mnt/cfs/pkgs /PTOOLS/pkgs/ptoolsrte-0.55 /linux-redhats.6-gnu-x86_64 /Python-2.7.2 /lib/libpython2
BACKTRACE 11 [load_source_module] [/u/US_HOME2 /jlinford/ptoolsrte/0.55 /build /Python-2.7.2 /Python/import.c:1021] [/mnt/cfs/pkgs/PTOOLS/pkgs/ptoolsrte-0.55 /linux-redhats.6-gnu-x86_64 /Python-2.7.2/lib/libpython2.7.50. 1.1
BACKTRACE 12 [import_submodule] [/u/US_HOMEZ2 /jlinford /ptoolsrte/0.55 /build /Python-2.7.2 /Python/import.c:2596) [/mnt/cfs/pkgs/PTOOLS/pkgs/ptoolsrte-0.55 /linux-redhat5.6-gnu-x86_64 /Python-2.7.2/lib/libpython2.7.50.1.0]
BACKTRACE 13 [load_next] [/u/US_HOME2 /jlinford /ptoolsrte /0.5 /build /Python-2.7.2 /Python/import.c:24 16] [/mnt/cfs/pkgs /PTOOLS/pkgs /ptoolsrte-0.55 /linux-redhats.6-gnu-x86_64 /Python-2.7.2/lib/libpython2.7.50.1.0]
BACKTRACE 14 (import_module_level] [/u/US_HOMEZ2 /jlinford /ptoolsrte/0.55 /build /Python-2.7.2 /Python/import.c:2137] [/mnt/cfs/pkgs/PTOOLS/pkgs/ptoolsrte-0.55 /linux-redhat5.6-g 86_64 /Python-2.7.2/lib, .7.50.1.0]
BACKTRACE 15 [builtin__import__] [/u/US_HOMEZ2 /jlinford /ptoolsrte/0.55 /build /Python-2.7.2 /Python/bltinmodule.c:49] [/mnt/cfs/pkgs/PTOOLS/pkgs/p(oolsne 0.55/linux-redhat5.6- gnu -x86_64 /Python-2.7.2/lib/libpython2.7.50.1.0]
BACKTRACE 16 [PyObject_Call] [/u/US_HOME2 /jlinford/ptoolsrte/0.55 /build /Python-2.7.2 /Objects /abstract.c:2529] [/mnt/cfs/pkgs/PTOOLS/pkgs/| .55/ dhat5.6 _64 /Python-2.7.2/lib/libpython2.7.50.1.0]
BACKTRACE 17 [PyEval_CallObjectWithKeywords] [/u/US_HOME2 jlinfordptoolsrte/0.5 5 /build /Python-2.7.2 /Python/ceval.c: 3882] [/mnt/cfs/pkgs/PTOOLS/pkgs/ptoolsrte-0.55 /linux-redhats..6-gnu-xB6_64 /Python-2.7.2/lib libpython
BACKTRACE 18 [PyEval_EvalFrameEx] [/u/US_HOME2 /jlinford/ptoolsrte/0.55 /build /Python-2.7.2 /Python/ceval.c:2333] [/mnt/cfs/pkgs/PTOOLS/pkgs/ptoolsrte-0.55 /linux-redhat5.6-gnu-x86_64 /Python-2.7.2/lib/libpython2.7.50.1.0]
BACKTRACE 19 [fast_function] [/u/US_HOMEZ jjlinford /ptoolsrte/0.55 /build /Python-2.7.2 /Python/ceval.c:4099) [/mnt/cfs/pkgs/PTOOLS/pkgs/ptool: 0.55/li dhat5.6-gi 8 64/?V[hon -2.7.2/lib/libpython2.7.50.1.0]
BACKTRACE 20 [PyEval_EvalCodeEx] [/u/US_HOMEZ2 /jlinford /ptoolsrte/0.55 /build /Python-2.7.2 /Python/ceval.c:3253) [/mnt/cfs/pkgs/PTOOLS/pkgs/ptool 0.55/li dhat5.6-gr _64 /Python-2.7.2/lib/libpython2.7.50.1.0]
BACKTRACE 21 [PyEval_EvalCode) [/u/US_HOME2 /jlinford /ptoolsrte /0.55 /build /Python-2.7.2 /Python/ceval.c:66 7] [/mnt/cfs/pkgs/PTOOLS/pkgs/ptoolsrte-0.55 /linux-redhats.6-gnu-x86_64 /Python-2.7.2 /lib /libpython2.7.50.1.0)
BACKTRACE 22 [run_mod] [/u/US_HOME? jlinford /ptoolsrte /0.5 5 /build /Python-2.7.2 /Python/pythonrun.c: 1346] [/mnt/cfs/pkgs /PTOOLS/pkgs/ptoolsrte-0.55 /linux-redhats.6-gnu-x86_64 /Python-2.7.2/lib /libpython2.7.50.1.0)
BACKTRACE 23 [exec_statement] [/u/US_HOME2 /jlinford /ptoolsrte/0.55 /build /Python-2.7.2 /Python/ceval.c:4746] [/mn(/cfs/pkgs/PTOOLS/pkgs/p(oo\sne—o.SS/Imux—redhals.s—gnu-xssjiilemon—Z.7.2/hb/hbpymonz.?.so.l.o]
BACKTRACE 24 [PyEval_EvalCodeEx] [/u/US_HOMEZ2 /jlinford /ptoolsrte/0.55 /build /Python-2.7.2 /Python/ceval.c:3253) [/mnt/cfs/pkgs/PTOOLS/pkgs/ptool. 0.55/li dhat5.6 _64 /Python-2.7.2/lib/libpython2.7.50.1.0]
BACKTRACE 25 [fast_function] [/u/US_HOME2 jlinford /ptoolsrte/0.55 /build /Python-2.7.2 /Python/ceval.c:4 109] [/mnt/cfs/pkgs/PTOOLS/pkgs/ptoolsrte-0.55 /linux- redhals 6-gnu-x86_64 Python-2.7.2 /lib/libpython2.7.50.1.0]
BACKTRACE 26 [fast_function) [/u/US_HOMEZ jjlinford /ptoolsrte/0.55 /build /Python-2.7.2 /Python/ceval.c:4099) [/mnt/cfs/pkgs/PTOOLS/pkgs/ptool: 0.55/li dhat5.6-gi 86_64 /Python-2.7.2/lib/libpython2.7.50.1.0]
BACKTRACE 27 [PyEval_EvalCodeEx] [/u/US_HOMEZ2 /jlinford /ptoolsrte/0.55 /build /Python-2.7.2 /Python/ceval.c:3253) [/mnt/cfs/pkgs /PTOOLS/pkgs/ptool 0.55/Ii dhat5.6-gi 86_64 /Python-2.7.2/lib/libpython2.7.50.1.0]
BACKTRACE 28 [fast_function] [/u/US_HOMEZ jjlinford /ptoolsrte/0.55 /build /Python-2.7.2 /Python/ceval.c:4 109] [/mnt/cfs/pkgs/PTOOLS/pkgs/ptool: 0.55/li dhat5.6-gi 86_64 /Python-2.7.2/lib/libpython2.7.50.1.0]
BACKTRACE 29 [PyEval_EvalCodeEx] [/u/US_HOME? jlinford /ptoolsrte/0.55 /build /Python-2.7.2 /Python/ceval.c:3253] [/mnt/cfs/pkgs /PTOOLS/pkgs/ptoolsrte-0.55 /linux-redhats.6-gnu-x86_64 /Python-2.7.2 lib/libpython2.7.50.1.0]
BACKTRACE 30 [PyEval_EvalCode] [/u/US_HOMEZ2 /jlinford /ptoolsrte/0.55 /build /Python-2.7.2 /Python/ceval.c:667) [/mnt/cfs/pkgs/PTOOLS/pkgs/ptoolsrte-0.55 /linux-redhatS.6-gnu-x86_64 /Python-2.7.2/lib/libpython2.7.50.1.0]
BACKTRACE 31 [run_mod] [/u/US_HOMEZ jjlinford /ptoolsrte/0.55 /build /Python-2.7.2 /Python/pythonrun.c:1346] [/mnt/cfs/pkgs/PTOOLS/pkgs/ptoolsrte-0.55/linux-redhats.6-gnu-x86_64 /Python-2.7.2/lib/libpython2.7.50.1.0]
BACKTRACE 32 [PyRun_SimpleFileExFlags] [/u/US_HOME2 jlinford /ptoolsrte/0.55 /build /Python-2.7.2 /Python/pythonrun.c:936] [/mnt/cfs/pkgs/PTOOLS/pkgs/ptoolsrte-0.55 /linux-redhat5.6-gnu-x86_64 /Python-2.7.2/lib/libpython2.7.
BACKTRACE 33 [Py_Main] (/u/US_HOME2 /jlinford /ptoolsrte/0.55 /build /Python-2.7.2 /Modules/main.c:599] [/mnt/cfs/pkgs/PTOOLS/pkgs/ptoolsrte-0.55 /linux-redhats.6-gnu-x86_64 /Python-2.7.2/lib /libpython2.7.50.1.0]
BACKTRACE 34 [PYMPI_Main_with_communicator] [(unknown):0] [/mnt/cfs/pkgs/PTOOLS/pkgs/ptoolsrte-0.55 /linux-redhats.6-gnu-x86_64 /pyMPI-2.5b0/bin/pyMPI]

BACKTRACE 35 [main] [(unknown):0] [/mnt/cfs/pkgs/PTOOLS/pkgs/ptoolsrte-0.55 /linux-redhats.6-gnu-x86_64 /pyMPI-2.5b0/bin/pyMPI]

BACKTRACE 36 [_libc_start_main] [(unknown):0] [/lib64 /libc-2.5.50]

BACKTRACE 37 [_start] [(unknown):0] [/mnt/cfs/pkgs/PTOOLS/pkgs/ptoolsrte-0.55 /linux-redhat5.6-gnu-x86_64 /pyMPI-2.5b0 /bin/pyMPI]

CPU Cores 4

CPU MHz 2793.106

CPU Type Intel(R) Xeon(R) CPU X5560 @ 2.80CGHz

CPU Vendor Genuinelntel

WD Jmnt/cfs/scratch/sameer/kestrel_debug P
Cache Size 8192 KB

Command Line PYMPI /mnt/cfs/scratch Jkestrel2.1.2_debug, pper.py ~¢ /mnt/jcfs/scratch/sad Jkestrel2.1.2_debug/config/ie.xml -i AGARD_AS_CAP1.xml -p &

Executable Jmnt/cfs/pkgs/PTOOLS/pkgs/ptoolsrte-0.55 /linux-redhats.6-gnu-x86_64 /pyMPI-2.5b0 /bin/pyMPI

File Type Index ]

File Type Name ParaProf Packed Profile

Hostname m0297.mana

Local Time 2012-03-16T08:18:39-10:00

MPI Processor Name m0297.mana

Memory Size 24671604 kB

Node Name m0297.mana

0S Machine x86_64

0S Name Linux

OS Release 2.6.18-238.19.1.el5.perfctr

0S Version #1 SMP Fri Jul 15 14:46:14 HST 2011

SIGNAL Segmentation fault

Starting Timestamp  1331921919260893

TAU Architecture x86_64

TAU Config —iowrapper -bfd=/mnt/cfs/pkgs/PTOOLS/pkgs/tau-2.21.2/x86_64 /binutils-2.20 -pythoninc=/mnt/cfs/pkgs/PTOOLS/pkgs/ptoolsrte-0.55 /linux-redhats.6-gnu-x86_64 /Python-2.7.2 /include /python2.7 -c++=icpc -c.
TAU Makefile Jmnt/cfs/pkgs/PTOOLS/pkgs/ptoolsrte /linux-redhats.6-gnu-x86_64 /tau-2.2 1.2 /x86_64/lib /Makefile.tau-icpc-mpi-python-pdt :
TALL Version 2212

Figure 6. System callstack leading up to the fault on the MPI rank 7.

It is important to understand that a distinct callstack and performance profile is captured for each rank. Different

ranks may

have different faults (or none at all) and it is necessary to see all states. It is possible to analyze any

particular rank, such as rank 7 in Figure 6. The location of the error can also be seen across all ranks in Figure 7 (the
bargraph indicates the number of samples of the error event on each rank).
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Name: TAU_SIGNAL (Segmentation fault) : .TAU application => OurMain() => OurMain [{wrapper.py}{3}]
=> <module> [{ie.py}{1}] => run [{Executive.py{738}] => executeQueue [{Executive.py{168}] =>
_notifyComponents [{Executive.py{527}] => handleEvent [{ForcesMomentsCalc.py{105}] => Initialize
Value Type: Number of Samples

Mean

node 0
node 1
node 2
node 3
node 4
node 5
node 6
node 7

b et e ek ek e ek ek et

Figure 7. Callstack and the location of the error shown for all MPI ranks.

The same application can be re-executed to generate I/O and memory data using the -io -memory command line
options for tau_exec. Figure 8 shows the peak heap memory usage (~1.3GB) for the application on rank 0. Figure 9
shows the TAU callstack with the I/O and memory statistics leading up to the point of failure on rank 0. The total
memory allocated till the point of failure was ~3GB and the total de-allocated was 2.24GB.

e 00 TAU: ParaProf: Context Events for: n,c,t 0,0,0 - kestrel_io_mem.ppk
Name Total NumSamples 7 MaxValue MinValue MeanValue Std. Dev.

» .TAU application m
47,690,869 1,319,090.592| 0.023 275,509.524 38,071.609
malloc size (bytes) 3,012,988,071 23,869,030 496,523,280 1 126.23 113,322.074
free size (bytes) 2,248,780,956 23,821,839 496,523,280 1 94.4 108,796.005
Bytes Read 158,530,329 19,180 1,126,076 2 8,265.398 9,607.032
Read Bandwidth (MB/s) 19,156 10,982 0.051 1,209.371 277.131
Bytes Read <file=/mnt/cfs/pkgs/create/av 151,920,360 18,545 8,192 8,172 8,191.985 0.543
Read Bandwidth (MB/s) <file=/mnt/cfs/pk 18,545 2,048 327.68 1,238.092 153.524
Message size for all-reduce 13,700 597 1,008 4 22.948 42.576
Bytes Written 64,053 238 4,161 2 269.13 973.394 .
Write Bandwidth (MB/s) 212 1,040.25 0.085 46.81 174.011 v

Figure 8. Memory and I/O diagnostic information for rank 0.

4. Inclusion of Performance Analysis

The new debugging support in TAU discussed above works seamlessly with the performance measurement and
analysis that TAU has traditionally been used for. Performance testing is not impeded in any way by having
debugging enabled. To demonstrate this, we included performance evaluation of the CREATE-AV rotary-wing
code Helios [1], which performs high-fidelity modeling of rotorcraft aero and structural dynamics. Helios consists
of multiple components performing different parts of the multi-disciplinary application — computational fluid
dynamics (CFD), computational structural dynamics (CSD), six degree of freedom dynamics (6DOF), etc. The
different components are written in different languages — Fortran90, C, and C++ — which are integrated through a
high-level Python-based infrastructure. Further details on the implementation and validation of Helios are included
in reference [1]. Details of prior work integrating TAU with Helios are included in reference [11].
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TAU: ParaProf: Context Events for: node 0 - kestrel_io_mem.ppk

Name
¥ .TAU application

Total A

NumSamples

MaxValue

MinValue

MeanValue

Std. Dev.

» MPI_InitQ m
¥ OurMain()
v OurMain [{wrapper.py}3}]
v <module> [{ie.py}1}]
» <module> [{Executive.py}{1}]
» fclose(
» fopen64(
v read()
Read Bandwidth (MB/s)
Read Bandwidth (MB/s) <file=/mnt/cfs/scratch/sadamec/kestrel2.1.2_debug/KIE/Executive.pyc>
Bytes Read
Bytes Read <file=/mnt/cfs/scratch/sadamec/kestrel2.1.2_debug/KIE/Executive.pyc>
¥ run [{Executive.py}{738}]
» _init__ [{ElementTree.py}{607}]
> [{Event.py}{19}]
> _i [{EventQueue.py}{14}]
» _init__ [{Executive.py}{69}]
» _init__ [{JobModel.py}{19}]
» addComponents [{JobModel.py}{49}]
» allreduce
>
>
>
>
v

755.538
755.538
19,644
19,644

755.538
755.538
19,644
19,644

755.538
755.538
19,644
19,644

19,644
19,644

o e
© o oo

append
beast
checkResources [{Executive.py}{103}]
close
executeQueue [{Executive.py}{168}]
¥ _notifyComponents [{Executive.py}{527}]
> bcast
» gather
> handleEvent [{AVUS.py}{127}]
v F alc.py}105}]

v Initialize
» fcloseQ
fopen()
fopen64()
fprintfQ
read()
1 1 1 1 1 0
free size (bytes) 1,095,600 3,069 231,808 2 356.989 7,021.732
malloc size (bytes) 10,372,529 17,625 1,126,076 2 588.512 12,114.147 ,

Figure 9. Location of error with memory and 1/0 combined with the callstack data.

>
S
>
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To demonstrate use of the new tool to assess multi-language performance, we executed Helios using tau_exec.
Figure 10 shows the profile from Helios with TAU instrumentation at the Python, mpidpy, MPI, C++, C, and
Fortran. It shows an integrated view of fault diagnostic information with the TAU callstack that shows Python
entities clearly in the profile. PToolsRTE v0.55 supports both pyMPI and mpidpy based executions using TAU.
While the earlier example with Kestrel shows the performance data truncated at a location of failure, the user may
use TAU to investigate the performance characteristics of the test case that executes without an error as well, as
shown in Figure 10. Here we see the I/O characteristics of the application executed on Mana, a Dell system at the
MHPCC DSRC. It shows that MPI rank 0 wrote ~440MB and read ~8MB of data. It also shows the extent of I/O
performed on each file. Figure 11 shows the peak read bandwidth obtained for all ranks of the application. Here we
see that during the course of the entire execution, rank 18 had a peak bandwidth of 4089 MB/s compared to nearly
8178 MB/s for other ranks. Having access to such detailed information about each rank and file can help developers
identify sources of performance bugs.

eNnoO TAU: ParaProf: Context Events for: node 0 - /Users/sameer/Downloads/sphere_np32_nstepsl_io.ppk i
Name Total NumSamples MaxValue ¥ MinValue MeanValue Std. Dev. ]

» .TAU application [I‘U
440,030,769 7,337 1,559,188 1 59,974.209  259,527.721
Bytes Written <file=/mnt/cfs/scratch/jlinford/3 /samarc/q000000.p3d> 114,043,256 360 1,559,188 12 316,786.822 566,468.339
Bytes Written <file=/mnt/cfs/scratch/jlinford /3 /samarc/q000001.p3d> 114,043,256 360 1,559,188 12 316,786.822 566,468.339 I
Bytes Written <file=/mnt/cfs/scratch/jlinford/3 /samarc/x000000.p3d> 91,231,888 181 1,247,352 12 504,043.58 531,178.218 L
Bytes Written <file=/mnt/cfs/scratch/jlinford/3/samarc/x000001.p3d> 91,231,888 181 1,247,352 12 504,043.58 531,178.218
Bytes Written <file=samarc/restore.000000/nodes.000032 /proc.000000> 12,735,147 614 1,048,576 1 20,741.282 134,304.859
Bytes Written <file=samarc/restore.000001/nodes.000032/proc.000000> 12,735,147 614 1,048,576 1 20,741.282 134,304.859|,
Bytes Written <file=/mnt/cfs/scratch/jlinford/3 /igbps.in> 482,132 2 482,120 12 241,066 241,054/4 f

OO0 TAU: ParaProf: Context Events for: node 0 - /Users/sameer/Downloads/sphere_np32_nsteps1_io.ppk

Name Total NumSamples MaxValue 7 MinValue MeanValue Std. Dev.

8,445,832 501 352,136 1 16,857.948 45,921.92)
Bytes Read <file=/mnt/cfs/scratch/jlinford /3 /nsu3d/subset.mcell.part.32 /part.0> 3,004,352 17 352,136 8,192 176,726.588 118,915.498~
Bytes Read <file=/mnt/cfs/pkgs/PTOOLS/pkgs/ptoolsrte-0.55/linux-redhat5.6-inte 252,079 1 252,079 252,079 252,079 0
Bytes Read <file=/mnt/cfs/pkgs/PTOOLS/pkgs/ptoolsrte-0.55/linux-redhat5.6-inte 228,653 1 228,653 228,653 228,653 0
Bytes Read <file=/mnt/cfs/scratch/jlinford/3/nsu3d/subset.mcell.part.32/parta.0> 2,405,012 38 196,300 7,056 63,289.789 41,633.172
Bytes Read <file=/mnt/cfs/pkgs/PTOOLS/pkgs/ptoolsrte-0.55 /linux-redhat5.6-inte 110,498 1 110,498 110,498 110,498 0/a
Bytes Read <file=/mnt/cfs/pkgs/PTOOLS/pkgs/ptoolsrte-0.55 /linux-redhat5.6-inte 88,256 1 88,256 88,256 88,256 0 v

Figure 10. I/O performed by MPI rank 0.



5. Related Work

Debugging mixed language parallel programs that use Python is a daunting task. Commercial debuggers such
as TotalView [16], DDT [17], and open source debuggers such as gdb [14] excel at generating backtraces for
compiled executions. It is difficult if not impossible at this time to stop a program at a breakpoint, and move up or
down the frames traversing Python and C boundaries in the same debugger, and examining and invoking Python
routines and data structures. Python level entities are visible to performance evaluation tools that operate at the
Python interpreter level. By merging the backtrace operations traditionally in the debugging domain with
performance introspection, we create a hybrid tool capable of diagnosing fault information based on performance
instrumentation. Extensive work has been done in the area of callstack unwinding and sampling based
measurements in the DyninstAPI, TAU, and HPCToolkit projects [18].

To better understand the performance characteristics of an application, both profiling and tracing are relevant.
While profiling shows summary statistics, tracing can reveal the temporal variation in application performance.
Among tools that use the direct measurement approach, the VampirTrace [12] package provides a wrapper
interposition library that can capture the traces of I/O operations using the Linux preloading scheme used in
tau_exec. Scalasca [7] is a portable and scalable profiling and tracing system that can automate the detection of
performance bottlenecks in message passing and shared memory programs. Like many other tools, including
VampirTrace, it uses library wrapping for MPI. TAU may be configured to use Scalasca or VampirTrace internally.
TAU, VampirTrace, and Scalasca use the PAPI [4] library to access hardware performance counters present on most
modern processors. However, only the tau exec scheme provides the level of integration of all sources of
performance information — MPI, I/O, and memory — of interest to us, with the rich context provided by TAU. With
this support, we can utilize the VampirServer [5] robust parallel trace visualization system to show the performance
data through scalable timeline displays the state transitions of each process along a global timeline. Profile
performance data can also be easily stored in the PerfDMF database [7]. TAU’s profile browser, ParaProf, and its
cross-experiment analysis and data-mining tool PerfExplorer [6] can interface with the performance database to help
evaluate the scalability of an application.

. YeYe! User Event Window: /Users/sameer/Downloads/sphere_np32_nsteps1_io.ppk

Name: Read Bandwidth (MB/s)
Value Type: Max Value
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Figure 11. Peak read bandwidth by MPI rank.



6. Significance to DoD

When application software experiences a runtime failure or performance problem, it is important for concise
information about the error to be communicated to the development team. Particularly for multi-language
applications that use a mix of Python, Fortran, C, and C++, current solutions are inadequate. This leaves a gap in
communication between users experiencing bugs and/or performance issues and the code development team. This
project delivers a tool that consolidates the execution data required for diagnostic purposes by utilizing powerful
techniques for comprehensive measurement in the presence of execution errors. The goals of the project are
twofold; first, to develop a runtime fault reporting tool to assist with debugging multi-language applications, and
second, to close the loop with developers for more rapid turnaround of bug fixes. Absent any errors, the tool will
report diagnostic information to users about the computational performance, memory usage, and 10. Such
information is useful for users to understand the computational characteristics of their application and for planning
their computing requirements.

The new tool addresses security concerns by avoiding the need for the user to provide the problem geometry
and inputs to the development team diagnosing problems. The diagnostic file contains only runtime information so
it is more easily exchangeable to members of the development team that may not have the requisite permissions to
see the problem data. This is particularly important for the large amount of classified or proprictary work that takes
place within the DoD.

The extensions to TAU described in this paper - simplified assessment of error diagnostics coupled with I/O and
memory inspection for un-instrumented and instrumented applications - expand the available capabilities, allowing
users to ask questions such as:

*  Where and when did the program experience an anomalous operation?

*  What was the nature of the fault?

*  What is the heap memory utilization in the application at the time of failure?

*  Were there any memory leaks in the application?

*  What was the level of nesting of the callstack?

*  What was the routine name, source file name, line number and module name at the fault location?

*  What were the performance characteristics of the application at that time?

*  How much time did the application spend in I/O, and communication operations at the time of fault?

without re-compiling or re-linking the application and evaluate the fault diagnostics and performance of codes that
use multiple languages such as Python, Fortran, C, and C++.

7. Conclusions

Modern scientific software requires software components written in different languages to interact with one
another. For instance, software being developed by the CREATE air vehicles program involves high-level Python
scripts executing lower-level C, C++, and Fortran90 software components. While this multi-language paradigm
enhances the re-usability and extensibility of software, programming it is challenging due to a lack of debugging
tools available for inter-language execution and memory leak analysis. Also, the software is intended to run on
high-end parallel computer systems that demand a high level of sophistication from performance evaluation tools. In
this paper, we describe a new diagnostic tool under development for multi-language applications. The tool, which
builds on our previous efforts using TAU for performance and memory analysis, reports memory and IO
information as well as useful diagnostic call-stack information when the code experiences some form of anomalous
operation, such as a segmentation fault. As CREATE software gets deployed for classified and proprietary projects
within the DoD, users that experience bugs or anomalous behavior can provide details on the code execution
through the diagnostic report generated by the tool, without revealing details about the application that the code is
being applied to.
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