
AN INGENIOUS APPROACH FOR IMPROVING TURNAROUND TIME OF GRID JOBS WITH

RESOURCE ASSURANCE AND ALLOCATION MECHANISM

Prachi Pandey, Shamjith KV, Shikha Mehrotra, Asvija B, R Sridharan

Centre for Development of Advanced Computing (C-DAC), Bangalore, India

{prachip, shamjithkv, shikham, asvijab, rsridharan}@cdac.in

Abstract— In a heavily used grid scenario, where there are

many jobs competing for the best resource, the meta-

scheduler is burdened with the task of judiciously allocating

appropriate resources to the jobs. However, as the demand

for the resources increases more and more, it becomes

really difficult to manage the jobs and allocate resources to

them and hence most of the jobs will be in the queued state

waiting for the resources to be free. Gradually, it leads to a

situation where the jobs stay in queued state longer than the

execution state, resulting in highly increased turnaround

times. The challenge therefore is to make sure that the jobs

don’t take an unreasonable time to complete because of the

increased waiting time. In this paper, we discuss about the

advance reservation mechanism adopted in Garuda Grid

for assuring the availability of compute resources and QoS

based resource allocation. Results of the experiments

carried out with this setup confirm the reduction in queuing

time of jobs in grid, thereby improving the turnaround time.

Keywords- Advance Reservation in grid, Guaranteeing

performance in grid computing, improving turnaround time,

QoS.

I. INTRODUCTION

In a typical computational grid
[1][2]

, job management is
handled by the Grid meta-scheduler

[3][4]
. It takes care of short

listing the candidate resources as per the job requirements,
managing job execution and job control. The meta-
scheduler

[3][4]
 schedules the job based on the availability of

resources at that instant. However, it is incapable of
guaranteeing the availability of a particular resource at any
point of time. In an ideal case, where there is enough number
of resources to satisfy each and every job request, it might be
sufficient to have a metascheduler, which does not take care
of guaranteeing the availability of resources to the user. But,
practically, as the demand of the resources increases, and
since most users want to execute their jobs on higher-ranking
resources, it becomes necessary to have a mechanism, which
will guarantee the availability of resources to a user at a
particular time. In the absence of such a system, many jobs
will have to go to the queue state and wait for the resources
to be free. This in turn will increase the turnaround time of
the jobs to a great extent decreasing the performance of the
system as a whole.

Garuda advance reservation
 [7]

 facility in grid ensures the

availability of resources required by a user or an application

at specified future times. Advanced grid resource

reservation, which can be independent of a job, can be

requested by a user or an administrator and granted by the

reservation manager based on the privileges of the user or

application, and with the policies enforced on the resources.

The reservation causes the associated resources to be

reserved for the specified user, administrator, or an

application for the duration of request. Thus as soon as the

reservation becomes active, the job submitted with the

reservation ID starts executing. This reduces considerably

the time spent in the queue by the jobs and thus improves

the turnaround time of the jobs.
The paper is thus organized in the following structure.

Section II gives a brief description of the architecture of the
reservation system and its components, followed by Section
III, describing the features of the Reservation System.
Section IV contains the implementation details of the System
while Section V details a Case study of the Garuda Grid,
where we conducted an experiment to prove how the
turnaround time can be improved by having the Reservation
System. Section VI includes a discussion on the impact of
the system on the utilization of the grid. The paper
concludes with a mention of the related works (Section VII)
carried out in the field of Advance Reservation of resources
in grid computing.

II. ARCHITECTURE

.
Figure 1. Architecture of the reservation system

Grid Reservation Manager

Meta-Scheduler

Grid Middleware

Cluster Reservation Manager

DB

Replica DB

FAILOVER

Local Resource Manager (LRM)

Reservation Bridge

API

Fig. 1 shows the architecture of Garuda Reservation
System, depicting the components involved and their
integration with Meta-scheduler

 [3][4]
, Middleware

[7]
 and

Local Resource Manager
[9]

.
The Garuda Advance Reservation System consists of the

following components:

 Advanced Reservation Manager.

 Reservation module for Grid Meta Scheduler.

 Reservation extension for Grid Middleware.

 Reservation enabled Local Resource Manager.

 Reservation accounting service.

Advanced reservation manager is the core of the grid

reservation system. This component is responsible for
managing the reservation activity across the grid resources.
The reservation manager is integrated with the Grid Meta-
scheduler, Grid Middleware and Local resource manager.
The Grid Meta-scheduler, which judiciously schedules jobs
on the grid, plays a major role in ensuring availability of
resources for advanced reservations. The reservation module
for Grid Meta-scheduler coordinates the submission of jobs
with a valid reservation to the grid. The local resource
manager accomplishes actual job execution on the
computing resources, which is the bottom layer entity
responsible for executing jobs on a cluster system

[10]
. The

reservation facility has been imposed through the Local
resource manager in order to guarantee the availability of the
reserved resources during the reservation period. The
reservation extension for Grid Middleware takes care of
integrating the reservation system with local resource
manager and meta-scheduler, thereby facilitating the
reservation enabled job execution. The accounting
service

[11]
available with reservation system keeps track of all

the reservations made in the grid resources.

A. Grid Reservation Manager

The Garuda Grid reservation manger is responsible for

initiating and enforcing the compute node reservation in the

grid. The grid reservation manager along with Gridway
[4]

ensures that the jobs with reservation are given higher

priority as compared to the unreserved jobs. The Grid

reservation manager extends the interfaces required for

reservation management ie. the creation, modification and

cancellation of grid reservation both by users as well as

applications. It also employs a resource selection algorithm

to provide the best available resources for the grid users or

applications. The resource selection is a highly dynamic

algorithm, which is based on the QOS
[12][13]

 parameters of

each resource in the Garuda grid. The Grid reservation

manager has been integrated with the Garuda QOS

Engine
[11][12]

 to shortlist the candidate resources according to

the reservation request. The Grid reservation manager also

implements the Garuda Reservation Policies to make sure of

the fair usage of resources by the grid users, applications

and services.

The application components, which constitute Garuda

Reservation Manager, reside on every head node in the

Garuda
 [5]

 grid to facilitate the reservation and job

submission on the grid from every head node.

B. Cluster Reservation Manager
[14][15]

It is necessary to have a layer for enforcement of

reservation of resources in the local resource manager level

to execute the reservation activity in a cluster environment.

The Garuda cluster reservation manager is the component,

which is responsible for enforcing the reservations in a

Garuda cluster. The cluster reservation manager along with

the Local resource manager and grid middleware guarantees

the mapping of Grid reservation on to the computing

resources in respective clusters. The cluster reservation

manager resides on every cluster, which is enabled with

Garuda grid reservation.

C. Garuda Middleware Reservation Bridge

The Garuda Middleware Reservation Bridge is the

component that acts as glue between the Grid Reservation

Manager and the Garuda Cluster Reservation Manager, thus

making the Garuda Grid Reservation System complete

across all the layers of Grid computing infrastructure. It has

been integrated with the job submission module of Globus

middleware to accomplish reservation management and job

submission activities.

III. FEATURES

The key features of Garuda Grid Reservation System are

as follows:

 Ensure resource availability: When a grid user

makes an advance reservation, the Garuda Reservation

System provides the reserved resources to the owner of the

reservation for the complete reservation period. During this

period, the grid reservation system does not allow any other

grid user to encroach and submit jobs on those resources.

Thus the Garuda Reservation System is able to guarantee

the availability of the required number of resources well in

advance, so that the grid users can plan their job run

activities without having to worry about the resource

availability.

 GSI
[16]

 based reservation: Garuda Reservation

depends on the Grid Security Infrastructure to impart

security in the reservation system. In the reservation system,

the Grid Distinguished Name (DN)
[17]

 identifies each user

uniquely. This makes it mandatory to have a valid grid

certificate from an internationally recognized Certification

Authority (CA)
[16]

 to use the Garuda Grid Reservation

System.

 Grid Reservation Failover mechanism: Failover

recovery is a very important aspect of a component in a grid

computing scenario. To make sure that the failure of any

reservation component does not affect the smooth operation

of the Garuda Reservation system, effective recovery

mechanisms have been incorporated to address both the

database and cluster system failures. In Garuda Reservation

System, failover mechanism has been considered for two

major components as described below.

o Grid and Cluster Level Reservation Components:

As mentioned before, the grid and cluster level

reservation program components are deployed in

each cluster in the Garuda grid, so that even if a

particular cluster fails, the users can login into the

nearby cluster and use the reservation commands to

make an advance reservation.

o Reservation Database System: Since the

reservation database is a very important component

for the efficient functioning of the reservation

system, we cannot afford to lose the critical

reservation data because of the database failure. To

overcome this, a replica of the centralized

reservation database has been created and

maintained using a trigger based replication

approach. In case of a failure, all the transactions

are carried out with the database replica instead of

the original database thus ensuring the high

availability of Garuda reservation system at all

times.

 Application Programming Interface: In order to

facilitate the use of reservation mechanism directly within

the applications, portals
[18]

, PSE and services, the Garuda

Reservation System exposes the Application Programming

Interface (API) for all the reservation management

activities. With the help of APIs, developers can easily plug

the reservation system in to their applications or services to

ensure the required amount of CPUs in a grid. This would

improve the performance and better utilization of resources.

 Intelligent resource allocation based on QoS
Parameters: The reservation system makes use of the Garuda
QOS Engine

to rank the available resources for reservation.

This helps the user to choose the best resource for his job to
ensure high throughput and availability of resources.

 Virtual Organization
[19]

 support: The resource

allocation algorithm respects the VO rules when making a

resource reservation. This helps users to get their reservation

created on only those resources which belong to their

registered VOs.

 Avoiding resource under utilization:

The reservation system also intelligently takes care of

avoiding under utilization of resources, by identifying the

unused reservations and de-allocating it for satisfying

further requests.

 Integration with Gridway Meta-scheduler and

Globus Middleware: The reservation system is not an

independent component, but it has been built on top of the

Gridway Meta-scheduler and Globus Middleware. Both the

Gridway as well as the Globus middleware have been

customized to handle reservation.

IV. IMPLEMENTATION

This system has been implemented as part of the

middleware stack of the GARUDA grid project.

Reservation flow control in Garuda

Figure 2. Flow of control for reservation
The steps involved in creating a reservation are detailed

below

 Input parameters: for creating a new reservation, the

parameters expected by the API are start time, end

time/duration and number of resources to be

reserved. The user credential with which the

reservation needs to be created also must be

provided.

 Authentication and authorization using GSI

credentials and VO rules: The credential provided by

the user is interpreted by the reservation system to

identify the Certificate Authority, Distinguished

Name and VO privileges. This information is used to

User

Database

gg-che

gridfs

gg-hyd

gg-blr

R
es

er
v

at
io

n
 I

d

R
eserv

atio
n

 req
u
est

authenticate and validate the user through Globus

and VOMS services.

 Resource allocation: Based on the inputs given by

the user, the reservation manager queries the

reservation repository to find out available resources.

Then, it interacts with the Garuda QoS engine to

shortlist best available resources for reservation,

based on their availability, performance and

reliability parameters.

 Interacting with reservation components in

respective clusters through Globus communication

protocols/services:

 Instructing the Maui scheduler to reserve compute

nodes as per the user requirements.

 Reservation details are published in a global

reservation information repository

 Unique identifier for the grid reservation is provided

Using this unique reservation ID the user can submit

jobs to the grid when the reservation time starts. Facilities

available with reservation system are,

 Advanced / Immediate Reservation of resources

across multiple clusters,

 Modification of reservation duration and resources,

 Cancellation of existing reservation,

 Job submission with reservation.

 Listing active reservations of users

 Providing CPU and node reservation.

 Failover and replication for information repository

 Application Programming Interface in Java.

 Interface for Administrators to manage/control

reservations.

 Automatic cancellation of un-used reservation

slots.

V. CASE STUDY

Garuda makes use of the Gridway meta-scheduler to

manage the jobs. The LRM used is Torque, which makes use
of Maui scheduler to schedule jobs and enforce reservation
on the nodes.

To study the performance of scheduling with advance

reservation, we conducted the following experiment. We

identified few HPC resources that are part of Garuda

computational grid infrastructure, and are distributed across

different geographical and administrative boundaries. A

compute intensive application was identified as our

workload. The Gridway meta-scheduler is used to submit

jobs to the respective HPC resources in the grid. The

experiment was repeated multiple times with same data sets,

both with and without enabling reservation on HPC

resources. The results obtained were analyzed to understand

the variations in turnaround times in both the scenarios.

PERFORMANCE METRICS

The following performance metrics were considered for

evaluation.

 Mean waiting time (Avg. amount of time the job

waits before it is scheduled to a resource)

 Execution time (time spent in execution of the task)

 Turnaround time (total time taken between the

submission of a program/process/thread/task (Linux)

for execution and the return of the complete output to

the customer/user)

Scenario I: Without the Reservation System

The compute intensive application was submitted multiple

times at different time slots. Jobs submitted in a particular

slot are considered as one job set. We noted the average of

waiting, execution and turnaround times of jobs in each set.

Table 1.0 shows the average time taken by the jobs in five

different job sets.

Table 1

Job Set Waiting Execution Turnaround

Job Set 1 0:04:00 0:17:16 0:22:02

Job Set 2 0:06:00 0:17:27 0:24:14

Job Set 3 0:44:00 0:18:31 1:02:49

Job Set 4 1:11:00 0:17:27 1:38:42

Job Set 5 1:20:00 0:18:26 1:37:41

Based on the output obtained, a bar graph is plotted which

depicts the average time spent by the jobs in waiting state

and in the state of execution.

Graph 1: Execution Vs Waiting Time without reservation

From the Graph 1, we observe that initially the waiting

time for jobs is very minimal, owing to the fact that the

resources are free, but as the resources become busy and

more and more jobs are submitted, the waiting time

increases and finally it reaches a stage where it starts to

exceed the execution time. The execution time however,

remains more or less the same throughout.

Assuming that all other factors are constant, the

turnaround time would be a simple combination of the

waiting time and the execution time. On calculating the

average of waiting time, execution time and turnaround time

of all job sets, we present the percentage division of the

turnaround time by means of a pie graph.

Graph 2: Turnaround time without reservation

From Graph 2, it is clear that the job spends more time

in waiting for the resources (almost 70%) than in execution

(around 30%).

Scenario II: With the Reservation System

The same experiment was performed again in the test

bed with the Reservation System enabled. We created a time

bound reservation on the resources and then using the

respective Reservation IDs, jobs were submitted in multiple

sets. Table 2 shows the average time taken by the jobs in

five different job sets.

Table 2

Job Set Waiting Execution Turnaround

Job Set 1 0:00:09 0:08:03 0:08:32

Job Set 2 0:00:09 0:08:05 0:08:35

Job Set 3 0:00:09 0:08:07 0:08:37

Job Set 4 0:00:09 0:08:05 0:08:37

Job Set 5 0:00:08 0:07:15 0:07:45

With the output obtained, a bar graph was plotted which

depicts the average time spent by the jobs in waiting state

and for execution.

Graph 3: Execution Vs Waiting Time with reservation

From Graph 3, it is very evident that the waiting time of

jobs has been minimized; in fact it is almost nullified.

To estimate the amount of time spent by the job in

waiting as compared to execution state, we draw a pie chart

for the turnaround time ignoring the other factors.

Graph 4: Turnaround time with reservation

It is to be noted that the above graph does not mean that

the execution time has increased as compared to the case

without reservation. It just shows that now the execution

time constitutes most of the turnaround time and the waiting

time is just a small fraction of it.

EXPERIMENTAL RESULTS AND DISCUSSION

Finally, we plot a graph to compare the turnaround time

of both cases turnaround time without reservation (TA-W/O

Resv) and turnaround time with reservation (TA-W-Resv)

Graph 5: Turnaround time plot with and without reservation

It is quite evident from the graph that there is a huge

improvement in the turnaround time with the Resource

Reservation System enabled, as compared to without it. This

is because the waiting time is reduced considerably when

the job is submitted with reservation

VI. IMPACT OF RESERVATION SYSTEM

Enforcing prior reservation of the resources ensures that

the applications execute with shorter turnaround times and

get benefited with higher sustained memory bandwidths and

lower message latencies. Nevertheless, a couple of concerns

need to be addressed for deriving optimal benefits out of the

reservation system. Foremost is the threat that implementing

a reservation system can result in lower utilization of the

resources, since there might be gaps between the successive

reservations which are too small to be able to schedule a

task. However, our studies conducted in a production grid

infrastructure indicate a minimal degradation in utilization,

as a result of this factor. Nevertheless, this small tradeoff

could well be justified with the compelling performance

improvements perceived by the applications running on

reserved resources.

An interesting argument with existing reservation

systems is that their usage will merely result in the waiting

time of the job, getting shifted from the resource to the user.

However, in the case of a grid, where the resources are

being heavily used, the information of availability of

resources in future will help the users plan their simulation

activities accordingly instead of waiting indefinitely for the

required resources. The current framework also provides a

mechanism for requesting immediate reservation if the job

has to be executed immediately.

Another major challenge in implementing reservation

systems is to ensure that the resources are being utilized

prudently during the reserved time slots. Jobs that exceed

the reserved duration of time can run into termination, as a

result of stringent policy enforcements. Such measures

would typically result in the users overestimating the

execution time. One of the measures to avoid such a

scenario is to provide an automatic extension of the

reservation slot by a predefined factor, to facilitate the

graceful terminations of user jobs. Simulation studies

carried out indicate that awarding an extra 25 percentage of

the reservation time, would result in a judicious termination

of the user jobs which exceed the pre-reserved slots. There

can also be cases when the user fails to cancel a reservation

which he does not intend to use in future. This would block

the time slot and would not allow other users to utilize the

time as well. To prevent this, the system implements the

automatic cancellation feature which keeps a check on the

unutilized reservations and cancels them automatically after

a specific reservation time has elapsed without being used.

VII. RELATED WORK

Globus team, in the pre-web service version of the grid

middleware, presented a General-purpose Architecture for

Reservation and Allocation (GARA)
[20]

 in which distributed

computing and communication resources provide a

reservation capability immediately or for some future time

span. However, it has been deprecated in the new Web

Service (WS) version of the Globus toolkit. Although some

of the commercial meta-schedulers like PBSPro
[21]

, Moab
[22]

etc also provide the advance reservation capabilities, they

have not been widely accepted by resource providers in a

grid-computing environment, because of their cost and

managerial complexities. The conventional grid reservation

systems provided by these meta-schedulers mostly fail to

address key features that are essential in a grid computing

environment like direct integration with Globus middleware

in clusters, resource underutilization avoidance mechanism,

and reservation across multiple clusters and Virtual

Organization support. The research we pursued to address

these concerns gave a way for the Garuda Reservation

System. The experiment results provided in this paper

confirm that the approach ensures that there is a marked

improvement in the turnaround times of jobs submitted with

Reservation as compared to without it.

VIII. CONCLUSION

In this paper, we have presented an approach to improve the

turnaround time of jobs in grid by adapting an Advance

Reservation Mechanism. The experiment results have

confirmed that by enforcing the reservation of resources in

the grid, we could almost eliminate the waiting time for jobs

and hence improve their turnaround time. This reservation

system has been deployed and being used by various grid

users of GARUDA grid including climate modeling, fluid

dynamics and bioinformatics.

REFERENCES

[1] Computational Grids., I. Foster, C. Kesselman. Chapter 2 of "The Grid:
Blueprint for a New Computing Infrastructure", Morgan-Kaufman, 1999.

[2] I. Foster. What is the Grid? A Three Point Checklist. http://www-
fp.mcs.anl.gov/~foster/Articles/WhatIsTheGrid.pdf, 2002

[3] E. Huedo, R.S. Montero, I.M. Llorente. Grid Architecture from a

Metascheduling Perspective. Computer, 43 (7):51-56, July 2010.

[4] E. Huedo, R.S. Montero, I.M. Llorente. The GridWay Framework for

Adaptive Scheduling and Execution on Grids. Scalable Computing:

Practice and Experience, 6(3):1-8, September 2005.

[5] Ram, N., Ramakrishnan, S. "GARUDA: India's National Grid

Computing Initiative," CTWatch Quarterly, Volume 2, Number 1, February
2006. http://www.ctwatch.org/quarterly/articles/2006/02/garuda-indias-

national-grid-computing-initiative/

[6] National Knowledge Network website, http://nkn.in/

[7] W. Smith, I. Foster, and V. Taylor, Scheduling with Advanced

Reservations, Proc. of the Int. Parallel and Distributed Processing
Symposium (IPDPS) Conf., Cancun, Mexico, 2000,
127–132.

[8]Foster, I., Globus Toolkit version 4: Software for Service-Oriented
Systems. IFIP International Conference on Network and Parallel
Computing, 2005

[9]Torque http://www.adaptivecomputing.com/products/torque.php

[10]Cluster Computing, http://en.wikipedia.org/wiki/Computer_cluster

[11] Zhengyou LIANG, Ling ZHANG, Shoubin DONG, Wengou WEI,
―Charging and Accounting for Grid Computing System‖

[12] Colling D, Ferrari T, Hassoun Y, Huang C, Kotsokalis C, McGough
A, Patel Y, Ronchieri E, Tsanakas P. On quality of service support for grid
computing. Proceedings of the Second International Workshop on
Distributed Cooperative Laboratories (Grid Enabled Remote
Instrumentation), Davoli F, Meyer N, Pugliese R, Zappatore S (eds.).
Springer: New York, 2008; 313–327.

[13] Asvija B, Kalaiselvan K, Sridharan R, Dr. S.R. Krishnamurthy. ―A
performance based QoS aware resource brokering framework for the grid‖

[14] Brett Bode, David M. Halstead, Ricky Kendall, and Zhou Lei

Scalable Computing Laboratory, Ames Laboratory, DOE
Wilhelm Hall, Ames, IA 50011, USA, help@scl.ameslab.gov

David Jackson, Maui High Performance Computing Center . ―The Portable
Batch Scheduler and the Maui Scheduler on Linux Clusters‖

[15]Maui Cluster Scheduler.
http://www.clusterresources.com/pages/products/maui-cluster-
scheduler.php

[16] The Globus Security Team, ―Globus Toolkit Version 4 Grid Security

Infrastructure: A Standards Perspective‖. Version 4 updated September 12,

2005

[17] Distinguished Name, http://www-
numi.fnal.gov/offline_software/srt_public_context/GridTools/docs/glossary
.html#dn

[18] Arackal, V.S., Arunachalam, B., Bijoy, M.B., Prahlada Rao, B.B.,
Kalasagar, B., Sridharan, R., Chattopadhyay, S. ―An access mechanism for
Grid Garuda‖. Internet Multimedia Services Architecture and Applications
(IMSAA), 2009 IEEE International Conference, Dec 2009, Bangalore.

[19] Katzy, B.R.; , "Design and implementation of virtual organizations,"
System Sciences, 1998., Proceedings of the Thirty-First Hawaii
International Conference on , vol.4, no., pp.142-151 vol.4, 6-9 Jan 1998
doi: 10.1109/HICSS.1998.655269

[20] Foster, I., Roy, A. and Sander, V., A Quality of Service Architecture

that Combines Resource Reservation and Application Adaptation. In Proc.
8th International Workshop on Quality of Service, 2000.

[21] PBS Website,

http://www.pbsworks.com/?AspxAutoDetectCookieSupport=1

[22] Moab website,
http://www.adaptivecomputing.com/resources/docs/mwm/6-
0/moabusers.php

http://nkn.in/
http://www.adaptivecomputing.com/products/torque.php
http://en.wikipedia.org/wiki/Computer_cluster
http://www.clusterresources.com/pages/products/maui-cluster-scheduler.php
http://www.clusterresources.com/pages/products/maui-cluster-scheduler.php
http://www-numi.fnal.gov/offline_software/srt_public_context/GridTools/docs/glossary.html#dn
http://www-numi.fnal.gov/offline_software/srt_public_context/GridTools/docs/glossary.html#dn
http://www-numi.fnal.gov/offline_software/srt_public_context/GridTools/docs/glossary.html#dn
http://www.pbsworks.com/?AspxAutoDetectCookieSupport=1
http://www.adaptivecomputing.com/resources/docs/mwm/6-0/moabusers.php
http://www.adaptivecomputing.com/resources/docs/mwm/6-0/moabusers.php

