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Abstract—We present a new study of parallel algorithms for
locating k-nearest neighbors (kNN) of each single query in a
high dimensional (feature) space on a many-core processor or
accelerator that favors synchronous operations, such as on a
graphics processing unit. Exploiting the intimate relationships
between two primitive operations, select and sort, we introduce
a cohort of truncated sort algorithms for parallel kNN search.
The truncated bitonic sort (TBiS) in particular has desirable data
locality, synchronous concurrency and simple data and program
structures. Its implementation on a graphics processing unit
outperforms the other existing implementations for kNN search
based on either sort or select operations. We provide algorithm
analysis and experimental results.

I. INTRODUCTION

A. Parallel kNN Search

The search for nearest neighbors to a given query point

in a metric space [1], such as an image query in an image

feature corpus, with a particular similarity measure, has been

a primitive operation in statistical learning, interpolation, es-

timation, recognition or classification. It becomes prevalent

with rapid and broad growth in volume or video data acqui-

sition and analysis, in both conventional and new fields of

quantitative studies. Design and development of algorithms

for searching k nearest neighbors (kNN) remain active be-

cause its performance is critical to timely or real-time data

processing and analysis, such as segmentation or retrieval of

video images [2], [3], collaborative filtering [4], GIS-moving

objects in road networks [5], network intrusion detection [6]

and text categorization [7], to name a few. The desire and effort

to accelerate data processing are undoubtedly encouraged by

the radical shifts in computer engineering and architectures to

available and affordable commercial parallel processors.

We introduce in this paper a new study of parallel algorithms

for kNN search on a parallel processor or accelerator that

favors synchronous operations and has high synchronization

cost. We examine the intimate relationship between two related

basic operations, sort and select, and introduce a cohort of

truncated sort algorithms for kNN search. We use a graphics

processing unit (GPU) by NVIDIA, instead of a customized

accelerator, as the experiment platform, because the GPU re-

sides in nearly every desktop or laptop computer and NVIDIA

provides a convenient software programming environment and

application interface1. The truncated bitonic sort (TBiS), in

particular, renders outstanding performance on a GPU, which

would be unexpected had one looked only at the conventional

complexity in terms of logical comparisons taken by the full

bitonic sort. We show that TBiS is advantageous in all other

performance factors, it has desirable data locality, synchronous

concurrency and regular data and program structures for

efficient kNN search.

B. Associated and Related Work

There has been substantial work on accelerating kNN
search, with various algorithmic or/and architectural means.

For kNN search over a large data corpus, it is important

to locate a near neighborhood first, utilizing both distance

and population information. To this end, many algorithms

use space partitions with tree-type data structures, and use

in addition preprocessed reference data points. Tree-type data

structures are typically associated with regular space parti-

tions [8], [9], [10]. For a high dimensional space, however,

algorithms based on regular space partitions suffer from high

overhead costs [11] as the data distributions tend to be non-

uniform and relatively sparse. Irregular spatial partitions, such

as triangulation, seem exclusively limited to a two or three

dimensional space [12]. Another popular approach is to use

probabilistically approximate algorithms when certain approx-

imation is acceptable and beneficial [13]. Approximate algo-

rithms cluster or project data points of the high dimensional

corpus to bins and then search the bins that are most likely to

contain the nearest neighbors. The search time is sublinear in

corpus data size. At the core of each main approach, however,

is the exact kNN search over a smaller corpus, which is still

large enough to take a significant or even dominant portion of

the total kNN search time [14]. With these associated outer-

layer methods in mind, we focus on the core case, the exact

kNN search, for the rest of the paper.

In utilizing architectural means, many efforts have used

GPUs (especially, those by NVIDIA) as many-core parallel

processing units, available and affordable, with increased and

increasing support of application interfaces [15], [16], [17],

1http://developer.nvidia.com/cuda-downloads



[18], [19]. Most of the GPU implementations are based on cer-

tain sort algorithms, with some modification or customization.

We give a few examples. Garcia et al. used the insertion sort

and a parallel version of the comb sort [16]. Kuang and Zhao

opted to sort the entire list [6] by using the radix sort. Kato and

Hosino modified the heap sort with atomic operations for inter-

thread synchronization [17]. They also mentioned the option

of sorting the entire list by using the quick sort. Some explore

other approaches. Barrientos et al. used the range search as the

basic algorithmic step, with the help of priority queues [15].

Pan et al. introduced an approximate kNN algorithm, using

the locality sensitive hashing technique, and implemented it

on GPUs [20].

There are two common phenomena in previous, although di-

verse, efforts on parallel kNN search: the kNN search is taken

as a single invocation of a stand-alone module procedure; each

module procedure is singularly designed and isolatedly tuned.

In the next section, we present a unified approach to truncating

sort algorithms for kNN search. In the subsequent sections,

we elaborate a particular one with surprisingly outstanding

performance, and we extend our study to explore additional

concurrency patterns as well as data reuse for more efficient

kNN search in practical applications.

II. TRUNCATED SORT ALGORITHMS

In this section, we introduce truncated sort algorithms.

Assume that we are provided with a corpus Ω of n feature

vectors and a distance function or a similarity score function

φ. The feature vectors may be, for example, the SIFT feature

vectors [21] for the images in BelgaLogos data set [22]. For

any test image, a region of interest (a subimage for logo

identification for instance) may be submitted as a query to

have its feature vector y extracted and k nearest neighbors

located,

max
1≤i≤k

φ(y,xi) ≤ φ(y, z), ∀z ∈ Ω−{xi, 1 ≤ i ≤ k}. (1)

where k is a modest integer, substantially smaller than the

corpus size n.

The computation of (1) can be done by an ascending sort of

the n scalar elements φ(y, z), z ∈ Ω, followed by a truncation

of the last n−k elements. High-performance implementations

of sort algorithms are made available on many computation

platforms. But this approach of sort-and-truncate is expected to

be outperformed by any kNN search algorithm 2. We introduce

a more efficient way to utilizing the sort algorithms: truncation

during the sorting process.

Table I summarizes the truncated versions, in terms of

the conventional time complexity, corresponding to a few

distinguished sort algorithms. Each recovers the respective

complete sort when k = n. We describe briefly for each how

to truncate and reduce the data during the sort and how to

parallelize the operations.

2We were surprised to find that some existing kNN algorithms fail to
outperform the approach of truncation after a complete sort.

TABLE I: Truncated Sort Algorithms

Algorithm Serial Parallel (in length) Truncation Method

BubbleSort nk k(logn−log k+1) k reversal passes

MergeSort n log k k(logn−log k+1) eliminate half

InsertionSort nk k(logn−log k+1) length-k array

HeapSort n log k k(logn−log k+1) max-heap of size k
QuickSort nk k(logn−log k+1) eliminate half

RadixSort nb b reverse radix (MSB)

BitonicSort n log2 k log k logn length-k bitonic

≻ The truncated bubble sort takes k passes and n compar-

isons in each pass. It can be efficiently mapped into any

synchronous parallel architecture as n/k systolic priority

queues [23] that are pairwise merged/eliminated.

≻ The truncated merge sort starts with sublists of length one

and merges them pairwise, in parallel, until the sublist length

reaches k. Subsequent merges purge the upper half of each

resulting list until there is only one list of length k left.

≻ The truncated insertion sort uses a k-length sorted list

to hold the k smallest elements found so far. When an

element smaller than the last on the list is found, the

former is inserted at the right place by a scan operation

and the latter is removed. The operations are parallelized

by partitioning the corpus into multiple subcorpora, each

subcorpus maintains a private k-length sorted list. These k-
length lists are then merged pairwise, followed by a purge

of the larger k elements. As the insertion into each list is

data dependent, the parallel insertions at multiple lists are

unnecessarily synchronous. In a similar truncation fashion,

the truncated heap sort uses a k-node max-heap instead of a

sequential list.

≻ The truncation in QuickSort is to prune off the branch that

does not contain the smallest k elements. So is in RadixSort,

which utilizes the finite range of the elements in b bits or

digits in other radix base. The savings by truncation is data

dependent, it is by half in average for any k, regardless its
value.

Two of the algorithms have data-independent synchronous

operations: BubbleSort and BitonicSort, the former has much

higher complexity. We note that the comparisons in RadixSort

can be synchronous, but the branching at every recursion level

(and hence the pruning) is data dependent, strictly speaking.

The above puts kNN search over the sorting spectrum. At

the extreme case k = 1, one selects the first only. 3 This

brings us to consider an alternative path for kNN search that

is built upon two basic operations select and prefix-scan. One

first locates the k-th element as a threshold, then use a scan

to find all the elements smaller than the threshold, followed

by another scan to finish the k-list with elements equal to the

threshold. The time complexity of parallel scan is O(log n).
There are many algorithms for select, such as QuickSelect and

3We shall comment on the existence, in theory, of an algorithm with k
consecutive minimum searches. Each min search takes O(log(log n)) steps on
n/2 processors in synchronous comparisons [24], assuming a CRCW PRAM
with the COMMON policy in concurrent writes, which has not materialized
yet in operational systems.



RadixSelect [25], [26]. In particular, RadixSelect, which starts

with the most significant bit, has the same time complexity in

parallel as the RadixSort. For very large n and k, k-NN search

using RadixSelect and scans is effective and has efficient GPU

implementations 4 [27]. Also like RadixSort, the branching

and data access pattern of this algorithm are data dependent,

dynamic and weaken the performance in the practical range

of k and n at the core level of kNN search. Such performance

penalty is not reflected in the complexity model that is based

on idealistic PRAM model.

We provide a detailed discussion on the truncated bitonic

sort (TBiS) in the next section.

III. TRUNCATED BITONIC SORT (TBIS)

Bitonic sort is known for being well suited for parallel

computers or networks with synchronous operations because

its sequence of reads, comparisons, exchanges and writes for

sorting is data independent [28], despite the fact that it takes

more logical comparisons than some other sort algorithms, as

seen in Table I.

A. The Basic Algorithm

The basic algorithm of truncated bitonic sort consists of two

functions, it recovers the complete sort algorithm when k = n,
assuming that n and k are powers of 2.

Function b = TBiSort(a, n, k, dir)

if n == 1 then
b = a ;

else
h1 = TBiSort(a(1 : n

2
), n

2
, k, dir);

h2 = TBiSort(a(n
2
+ 1 : n), n

2
, k, -dir);

b = TBiMerge( [h1, h2], n, k, dir)

Function b = TBiMerge( hh, n, k, dir)

[hmin,hmax] = minmax( hh(1 : n
2
),hh(1+ n

2
:n)) ;

bmin = TBiMerge( hmin,
n

2
, k, dir );

if n == 2k then
b = bmin ;

else
bmax = TBiMerge( hmax,

n

2
, k, dir );

if dir == ’up’ then
b = [bmin,bmax] ;

else
b = [bmax,bmin] ;

For conceptual clarity we present the algorithm in recursion

fashion. We comment on the truncation. The TBiSort recursion

goes downward first portioning the initial data list a all the

way to the base level (sublist length 1), then goes upward with

monotonic merges. In TBiMerge, the minmax function renders

4http://www.moderngpu.com

the minimal and maximal between each element pair on the

two input lists. The truncation begins at, and continues from,

the point where the monotonic sublists reach in size to k. At
each merge step, bmax, the upper part of the merged list is

purged, and the total data is reduced by half. By TBiMerge, the

merged sublists never exceed k in size. There are at most log k
TBiSort steps, each of which invokes at most log(k) TBiMerge

steps, involving all n elements. The total number of pairwise

comparisons is n log2(k)/4. In kNN search applications, the

numerical range of log(k) is modest (less than 10 mostly). This

makes TBiS even competitive in the conventional complexity

with other truncated sort algorithms, see Table I.

In parallel implementation, the recursion is unfolded. The

concurrency degree, i.e., the number of simultaneous opera-

tions, is at the maximal in the first log(k) TBiSort steps. More

critically important to performance, the concurrent operations

are inherently synchronous or systolic because they are data

independent. The algorithm is therefore free of hashing or

conditional branching (except the comparison between k and

n). Data arrays are the natural choice of data structures, and

data accesses are in regular strides, with locality no greater

than k. In fact, the data access pattern for the full bitonic

sort can be supported the best by the shuffle network, the

same as used for the fast Fourier transform [29]. TBiS for

a modest k simplifies the shuffle network substantially. After

log k TBiSort steps, work volume per step is reduced as the

data are purged, which we will address shortly.

B. Scoring and Sorting Interleaved

Upon any query, evaluating its similarity scores or distances

takes a significant portion of kNN search time in a high

dimensional search space. For example, the dimension of a

SIFT feature space may be 128 or higher [21].

When the Euclidean metric is used for scoring, the cal-

culation of the squared distances can be cast as a low-rank

matrix multiplication with a BLAS routine [16], [30], which is

broadly supported on many computer architectures, including

CUBLAS on GPUs. This can be extended straightforwardly

to multiple queries as well. However, a couple of other issues

may arise : (i) the bandwidth in data transportation between

the host processor and the GPU may be limited in comparison

to the speed in parallel low-rank matrix multiplication; (ii) the

data reuse is poor between scoring and sorting. A simple solu-

tion is to interleave the scoring and sorting operations. These

operations can be interleaved by elements or by segments of

certain size.

C. Corpus Partition and Streaming

We have at least two supporting arguments for corpus

partition and streaming between subcorpora. First, the cor-

pus may be too large, especially in high dimensions, to be

accommodated all at once at the memory of an accelerator,

such as a GPU. Secondly, the workload by TBiS is reduced

every step after the first log(k) TBiSort steps and the GPU

is under utilized. A simple solution is to partition the corpus

at the external or host memory into subcorpora, according to



the size of the GPU memory. Apply TBiS for kNN search

on each subcorpus, successively, followed by a merge-and-

purge step to update the historical kNN list with the kNN list

for the current subcorpus. We then explore and exploit two

kinds of overlaps to reduce latency. One is the overlap between

data communication (load data from the external memory) and

computation. The other is the overlap between the terminal

stage of processing the previous corpus and the initial stage

of processing the current corpus. Most of the time, there are

three subcorpora on GPU, one is in the read buffer and two

are in the processing buffers. The output takes place only at

the end of processing the last subcorpus.

IV. EXPERIMENTAL STUDIES

In experimental study of parallel kNN search algorithms

on computing architectures that favor synchronous operations,

we use graphics processing units (GPUs) by NVIDIA. In

particular, we used the GTX480 graphics card (Fermi) with

480 CUDA cores in 15 streaming multiprocessors, with 48KB
of shared memory per streaming multiprocessor, operating at

a core clock of 1.401GHz and 1.5GB of on board memory.

The programs were written in CUDA version 4.0. We report

a few sets of experiments.

A. TBiS vs. Sort and Select

The experiments presented in this section assume that the

corpus data are on GPU memory and there is a single query.

The test corpus is composed of 128 dimensional SIFT vectors

extracted from the BelgaLogos dataset [22]. We let the corpus

size to vary from 1, 024 to 1, 048, 576 in terms of feature

vectors.

Figure 1 shows the ratio, in kNN search time, of the ap-

proach with truncation after a full sort and that with truncation

during the sort process. For the former, we use the radix sort

algorithm provided by thrust::sort [31]. For the latter,

we use TBiS. Without the distance calculation, TBiS is 2 to 16
times faster. With the distance calculation (using CUBLAS in

both), TBiS is 1.3 to 4 times faster. We found that some other

existing GPU implementations for kNN search are actually

slower than the radix sort followed by truncation.

Figure 2 shows the comparison between TBiS and the use

of the MGPU radix select for kNN search 5. Radix select

locates the kth smallest element and scans the corpus again in

order to find all elements smaller than the kth. The truncated

bitonic is faster than the thrust::sort, up to 16 times, for

corpus size up to 217, depending on the number k of neighbors.

Over the same parameter ranges, the MGPU select is at best

3 times faster than thrust::sort. We address next a few

other performance factors.

Figure 3 shows the effect of interleaving the distance cal-

culation with the operations for locating the nearest neighbors.

The performance is improved by up to 2.4 times.

5http://www.moderngpu.com
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Fig. 1: Comparison between two approaches : truncation after

sort and truncation during sort, without distance evaluation

(top) or with distance evaluation (bottom) but without inter-

leaved with sorting.
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Fig. 2: Comparison of TBiS and the MGPU radix-select for

kNN search.

B. TBiS in Stream Processing

This set of experiments is concerned with the impact of

data transportation. The bar chart in Figure 4 is a performance

profile among distance calculation (in red), neighbor search

(green) and data transfer (blue) from the external memory to

GPU memory.
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Fig. 3: Improved kNN search by TBiS with the distance

calculation and truncated sorting interleaved.
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Fig. 4: Performance profile in percentile for a single query

(top) and 128 queries (bottom), respectively, data transporta-

tion in blue, distance calculation in red and neighbor location

in green.

The top bar chart shows the experimental results for a

single query. For each experiment with a different corpus

size, the green bar to the left is by thrust::sort, and

the green bar to the right is by TBiS. The bottom chart shows

the experimental results for 128 queries per experiment. In

many image data processing applications, multiple subimages

or multiple image frames in a time sequence are submitted

as multiple queries for search of k nearest neighbors each.

Both charts show that the kNN performance evaluation for

timely or real-time processing must not ignore the limitation

in communication bandwidth and that one must find every way

to reduce the ratio of communication over computation.

The bottom chart illustrates the benefit of grouping multiple

queries in a neighborhood. It indicates also the opportunity

to overlap the communication and computation by partition-

ing the corpus and then pipeline processing the subcorpora.

There are also situations where the corpus is large and high

dimensional, the data volume is too large to be accommodated

on GPU memory all at once. The corpus partition becomes

necessary.
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Fig. 5: Further improvement with 2, 4 and 8 streams over

a single stream when processing large and high-dimensional

corpus (16, 777, 216 vectors of 128 dimensions).

Figure 5 shows the effect of the streaming approach. In

a stream, we overlap the computational processing over a

subcorpus with data transferring of another stream. Only the

output data of kNN search are transferred back to the exter-

nal memory. We also overlap the computation between two

successive subcorpora, by careful design of the initial corpus

partition, according to the available resources. We use 2 (red),

4 (green) and 8 (blue) GPU streams, pipelining the processing

of respective subcorpora. All bars show the speed-up from

using a single GPU stream, without pipelining data transfer

and computations. The further improvement, up to another

1.75 times, in performance by corpus partition and stream

processing the subcorpora, is shown. The corpus is composed

of 16, 777, 216 SIFT vectors of 128 dimensions, extracted

from approximately 10, 000 images in the BelgaLogos data

set [22].

C. Application of TBiS to Feature Matching

TBiS on GPU is applied to image retrieval via SIFT

vector matching [21]. Figure 6 presents the comparison in

performance for feature matching to the kNN search proce-

dure in VLFeat, which is an open source computer vision

library [32]. The VLFeat procedure for kNN search is based

on an approximate algorithm with space partition and tree-

type data structure. VLFeat executes serially on one CPU core.

The CPU used in these experiments is an AMD Opteron 6168

processor. The speedup of TBiS on GPU over the VLFeat

kNN search routine on the CPU is remarkable, from 180 to

250 times, depending on the values of k, for 1, 024 queries into
65, 536 corpus feature vectors of 128 dimensions. The chosen
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Fig. 6: Speedup in SIFT feature matching by the parallel

execution of TBiS on the GPU (the nearly invisible magenta

bar to the right) over the serial execution of the kNN search

procedure in VLFeat on a single-core CPU (the magenta bar to

the left), for 1, 024 queries into 65, 536 corpus feature vectors

of 128 dimensions and 32 neighbors. The light blue bars are

the time for feature extraction on the single-core CPU.

number of queries is close to the average number of query

regions in one or more image frames in certain image retrieval

applications [3]. The algorithm for SIFT feature extraction is

provided in VLFeat also. It has parallel implementation on

GPUs [33].
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