
Fast Functional Simulation with a Dynamic Language

Craig S. Steele and JP Bonn
Exogi LLC

Las Vegas, Nevada, USA
steele@exogi.com

Abstract—Simulation of large computational systems-on-a-chip
(SoCs) is increasing challenging as the number and complexity of
components is scaled up. With the ubiquity of programmable
components in computational SoCs, fast functional instruction-
set simulation (ISS) is increasingly important. Much ISS has been
done with straightforward functional models of a non-pipelined
fetch-decode-execute iteration written in a low-to-mid-level C-
family static language, delivering mid-level efficiency. Some ISS
programs, such as QEMU, perform dynamic binary translation
to allow software emulation to reach more usable speeds. This
relatively complex methodology has not been widely adopted for
system modeling.

We demonstrate a fresh approach to ISS that achieves
performance comparable to a fast dynamic binary translator by
exploiting recent advances in just-in-time (JIT) compilers for
dynamic languages, such as JavaScript and Lua, together with a
specific programming idiom inspired by pipelined processor
design. We believe that this approach is relatively accessible to
system designers familiar with C-family functional simulator
coding styles, and may be generally useful for fast modeling of
complex SoC components.

Keywords-simulation; functional; dynamic language; scripting

I. INTRODUCTION
For system architectural exploration, early software

development, and test generation, functional simulation is
favored, making the trade-off of reduced timing information in
favor of improved simulation speed. In contrast to the trend
toward standardization of mid-level hardware modeling and
simulation languages, such as System Verilog and SystemC,
higher-level functional modeling remains largely a matter of
ad-hoc simulators written in Java, C, or C++. The performance
of these simulators is vastly superior to low-level cycle-
accurate alternatives, but is becoming inadequate as focus
shifts from uniprocessor modeling to many-core systems,
where the increasing runtime involved in simulating complex
systems becomes burdensome.

With the ubiquity of programmable components in
computational SoCs, fast functional instruction-set simulation
(ISS) is increasingly important. We demonstrate an approach to
ISS, TCOSim, that achieves performance comparable to the
best dynamic binary translating simulators by exploiting recent
advances in just-in-time (JIT) compilers for dynamic
languages, such as JavaScript and Lua, together with a specific
programming idiom inspired by pipelined processor design. If
effect, we code the simulator in the native style of the dynamic
language, and let the JIT compiler optimize the code at

runtime, rather than requiring mastery of a simulator-specific
domain-specific language (DSL) describing the binary-code
translation task.

II. RELATED WORK
Interpretative instruction-set simulators (ISS) abound, with

various levels of detail in the processor model. The sim-fast
simulator from SimpleScalar LLC is a well-known
representative of a straightforward C-based fetch-decode-
execute iterative ISS interpreter, achieving more than 10 MIPS
for basic functional instruction-set-architecture (ISA)
simulation [1]. This naïve approach is a software analog of a
non-pipelined hardware processor implementation, simple but
slow.

Many variations of binary translation for ISS exist,
translating instructions in the simulated ISA into code
sequences run on the host processor, ([2] contains a survey).
SyntSim [2] is representative of mainly static-translating
simulators emitting C code as an intermediate representation
that is compiled on the host machine, incurring a slowdown
factor of around 7 to 11 on a SPECcpu2000 sample compared
to native host execution. In addition to the typically complex
build procedure, one problem with static approaches is that it is
awkward to alter the tradeoff between simulation speed and
detailed visibility or interaction for different parts of the
simulated process. For example, a user may want to carefully
examine a suspect region of new code after skipping past
lengthy initialization and warm-up phases. SyntSim has both
interpretive and compiled modes to address this problem.

QEMU [3] is a popular open-source dynamic-binary-
translating (DBT) ISS that uses a per-ISA library of “micro-
ops” (TCG) to define host-machine equivalents for each
instruction, which are then dynamically assembled into
executable basic blocks to get a reasonable balance between
speed and hardware detail, for example, being able to recognize
interrupt signals well enough to allow high-level system
modeling. QEMU supports a number of simulated ISAs at
good speed, though most of its community effort is devoted to
x86 platform virtualization. Reported performance for Intel
386 platform emulation is a 15x slowdown on a recent host [4].
Support of a new ISA requires detailed understanding of both
the simulation-target architecture and the QEMU/TCG micro-
op intermediate representation, which is a barrier to adoption
compared to use of a general-purpose programming language
for instruction specification. In contrast to a general-purpose
programming language, the effort invested in learning a
simulator-specific domain-specific language (DSL) is not

This work performed under DARPA contract W91CRB-10-C-0129,
Dr. Robert Colwell, MTO Program Manager

transferable to other tasks, and the supportive user community
may be unhelpfully small.

QEMU is a useful and influential DBT simulator project,
but it has some significant drawbacks for use in exploratory
system design.

• The dominant community focus on x86 platform
virtualization has made the whole system large,
complex and non-portable.

• Grafting dynamic code generation onto a static
language like C compels mastery of a DSL, TCG,
peculiar to that project and various host-dependent
tricks to generate, load and execute translated code, all
of which is tediously orthogonal to the motivating
system architectural questions.

• The simulator core is monolithic and has resisted
efforts to use multi-core capabilities of host machines.

• The QEMU codebase is a mélange of various open-
and closed-source licenses, which is a concern for
possible impairment of intellectual-property rights
embodied in new system components.

QEMU supports ISA simulation of the LatticeMico32
processor [5], a small in-order pipelined 32-bit RISC processor,
optimized for FPGA implementations, for which Verilog HDL
is available under a permissive open-source license. We are
developing TCOSim as a high-performance alternative to the
QEMU simulator for this processor ISA and experimental
variants supporting multiprocessor SoC architectures.

III. PIPELINED PROCESSOR ANALOGY
Like QEMU, TCOSim works by translating each source

ISA instruction into a sequence of tiny operations, but in
TCOSim this sequence consists of a moderately deep series of
nested function calls in the Lua scripting language [6,7], rather
than a sequence of statements, as is typical of a C-language
simulator, or TCG declarations, as in QEMU. The stack of
function calls for each instruction has a close analogy to the
multiple (post-decode) stages of a classic RISC hardware
pipeline: the first function call in that stack reads a register
value or constant, the next reads the second register operand if
necessary, the third may perform an ALU operation, etc. The
first function call has a fat list of parameters that are
successively reduced at each subsequent level. The function
call pipeline has just a couple of defining ideas:

A. Each stage in the instruction processor pipeline is
translated to a function call that binds or consumes one or
more parameters

B. Each stage function in the pipeline ends with a tail call to
the next-stage function or to the start of a successor
instruction’s pipeline function stack.
If the bottom function in the per-instruction stack calls

another instruction, it’s straightforward to string instructions
together to execute an entire basic block at one invocation,
greatly improving JIT compiler optimization opportunities.
The bottom function returns a next-instruction reference; a

conditional branch instruction may have a couple of next-
instruction references held in a closure variable, for taken and
not-taken branch conditions.

A given RISC ISA will have a handful of instruction
formats, each with a fixed sequence of register or memory
accesses. For each format, TCOSim has a “Lua string builder”
function that writes the Lua code for a specific instruction
instance of that format, for example, converting a read-register
field value into a literal array indexing expression with a
constant index to aid optimization. The hallmark of a dynamic
language is the relative ease of converting this language string
into a chunk of executable code via some kind of eval function;
in Lua it’s called load. The executable version of the per-
instruction function stack, together with the parameter
bindings, is stored as a Lua function closure, which can be
executed as required. The basic associative array feature
(table) in Lua makes caching of decoded instructions easy.

IV. IMPLEMENTATION LANGUAGE
The TCOSim approach requires an implementation

language with good support for a functional-language
programming style. Specifically, its efficiency requires a good
implementation of function closures and tail-call optimization
(TCO), a concept largely popularized by the Scheme dialect of
the Lisp language [8]. Functions make the instruction pipe
look tidy, TCO makes it fast, and use of closure variables for
storing parameter bindings and next-instruction linkage makes
it flexible and dynamically tunable.

A. Lua Language
Lua is a small, multi-paradigm “scripting” language [6] that

supports a functional programming style. Since its inception in
1993, the language designers have preserved Lua’s small
conceptual and resource footprint to enhance its embeddability
and portability [7]. The Lua interpreter is written in ANSI C,
with few further dependencies, and has a well-defined C-
interface API, for use as an embedded scripting language in C-
family programs and for access to external libraries. Lua has
been adopted as an embedded scripting and template language
by developers of TeX and Wikipedia and is likewise popular in
the computer-gaming developer community.

B. LuaJIT Language Implementation
LuaJIT [9] is a high-performance implementation of Lua

that contains both a target-specific interpreter written in
assembly language and a well-engineered trace-based just-in-
time (JIT) optimizing compiler producing native code for high-
use code sequences. Target ISAs now include x86/x64, ARM,
PowerPC, and MIPS. LuaJIT 2.0 performance compares very
favorably to other dynamic-language implementations and
closely approaches static-language compiler performance on
many benchmarks. Also, LuaJIT has an excellent foreign-
function interface (FFI) mechanism for C, simplifying interface
coding and allowing direct access to primitive static data types,
which can improve storage and hardware simulation efficiency
compared to Lua’s standard dynamic data typing.

C. Advantages of a Dynamic Language and a Tracing JIT
Tail-call optimization allows a series of function calls to be

optimized into straight-line sequential code without superfluous
branching instructions, which improves performance. Using
dynamic code generation to build a stack of function calls for
each instruction, combined with use of explicit “next
instruction” references stored in instantiated function closure
variables, allows the JIT compiler to minimize conditional
branch instructions in “hot” execution traces. In contrast,
statically compiled simulator code will tend to litter the
instruction stream with conditional checks for even rare
conditions and uncommonly activated feature support. Even
unused features and checks will slow simulation speed and
clutter the simulator code. Tail-call optimization allows better
code organization by use of shared functions with little
performance impact except for slowly growing register
pressure for excessively deep sequences of function calls.
Dynamic generation of simulator code sequences allows
flexible tradeoffs between performance and visibility, for
debugging or verification. Various levels of detail can be set
selectively or locally, for example by setting memory-write
watchpoints at per-basic-block granularity in new code
routines. Visibility of PC updates, precision of arithmetic
exceptions and latency of interrupt recognition can have
similarly advantageous control of granularity.

V. EXPERIMENTAL RESULTS
For the LatticeMico32 simple 32-bit RISC ISA, we have

compared simulation speeds of the popular dynamic-binary-
translating ISS QEMU to our alternative, TCOSim, using
binaries created by a clang/LLVM version 3.1 compiler with a
LatticeMico32 code-generator backend we have written. At the
present early state of development, TCOSim simulation rates
generally are close to that of QEMU, roughly in the 500-900
simulated MIPS range using one core of an Intel i7 2.2 GHz
laptop host. We may improve performance with further
optimization, but believe that we have captured most of the
available single-thread performance. The TCOSim simulator
runs an order of magnitude faster than a simple iterative static
simulator, at perhaps double the code complexity. Our main
interest is now to extend the base design to support parallelism
on both the host and simulation target sides. We are using a
mix of ad-hoc and standard benchmark codes, such as
CoreMark [10], for validation and performance evaluation.

We observe that the LuaJIT tracing compiler is less likely
to optimize short-runtime code sequences with its default
parameter set. Usually this is a correct heuristic tuning, but
sometimes we can see that this puts TCOSim at a disadvantage
compared to QEMU, which performs its optimizations at the
start of runtime without needing to acquire program trace data.
Fig. 1 shows the lower performance of the initial interpreted
mode of a memory-access intense vector-add simulation (two
input and one output vectors) compared to the optimized code
dynamically generated for longer-running sequences. We can
put this in perspective by noting that the lower “short-
sequence” LuaJIT interpretive-mode performance is on par
with or better than simple iterative static simulators. The
optimized compiled mode improves the performance by a
factor of 15.

VI. CONCLUSIONS
We have demonstrated that a flexible dynamic scripting
language, Lua, can be used to implement a relatively simple
fast functional instruction-set simulator that rivals more
complex DBT simulators. The availability of a remarkably
effective trace-optimizing JIT compiler, LuaJIT, makes it
possible to write dynamic code generators for ISA simulation
with a straightforward programming idiom in a compact
scripting language. We believe that our approach, inspired by
the canonical RISC processor pipeline, will be readily
understood by hardware practitioners, and may be useful for
producing fast functional simulators for varied complex SoC
components, whether programmable or fixed-function.

ACKNOWLEDGMENT
The authors would like to thank LuaJIT creator Mike Pall

for his informative postings about LuaJIT optimization in
general, and tail-call optimizations as a basis for efficient
simulator chunk linkage in particular [11].

REFERENCES
[1] D. Burger and T. M. Austin, “The Simplescalar Tool Set Version 2.0.”

Technical Report 1342, Computer Sciences Department, University of
Wisconsin. June 1997.

[2] M. Burtscher and I. Ganusov, “Automatic Synthesis of High-Speed
Processor Simulators,” IEEE MICRO’04, pp. 55-66, December 2004.

[3] F. Bellard, “QEMU, a Fast and Portable Dynamic Translator,” M. B
USENIX 2005 Annual Technical Conference, pp. 41-46

[4] C. Guillon, “Program Instrumentation with QEMU,” 1st International
QEMU Users' Forum, DATE’11 Workshop

[5] LatticeMico32 website, http://www.latticesemi.com/mico32
[6] R. Ierusalimschy, “Programming with Multiple Paradigms in Lua”, Proc.

18th international conference on Functional and Constraint Logic
Programming, pp. 1-12, WFLP'09, Springer-Verlag, Berlin, 2010

[7] Roberto Ierusalimschy, Luiz Henrique de Figueiredo, Waldemar Celes,
Passing a Language through the Eye of a Needle: How the
embeddability of Lua impacted its design”, ACM Queue, Vol. 9 No. 5 –
May 2011, http://queue.acm.org/issuedetail.cfm?issue=1978862

[8] Guy L. Steele, Jr., "Debunking the 'Expensive Procedure Call' Myth, or,
Procedure Call Implementations Considered Harmful, or, Lambda: The
Ultimate GOTO". MIT AI Lab. AI Lab Memo AIM-443. October 1977.

[9] LuaJIT website, http://luajit.org, c. Mike Pall 2005-2012
[10] CoreMark, http://www.coremark.org
[11] Mike Pall, http://lua-users.org/lists/lua-l/2011-02/msg00671.html

Figure 1. Tracing just-in-time (JIT) compiler optimization is more likely
to be applied to more-used code sequences.

