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Abstract—Simulation of large computational systems-on-a-chip 
(SoCs) is increasing challenging as the number and complexity of 
components is scaled up. With the ubiquity of programmable 
components in computational SoCs, fast functional instruction-
set simulation (ISS) is increasingly important. Much ISS has been 
done with straightforward functional models of a non-pipelined 
fetch-decode-execute iteration written in a low-to-mid-level C-
family static language, delivering mid-level efficiency.  Some ISS 
programs, such as QEMU, perform dynamic binary translation 
to allow software emulation to reach more usable speeds.  This 
relatively complex methodology has not been widely adopted for 
system modeling. 

We demonstrate a fresh approach to ISS that achieves 
performance comparable to a fast dynamic binary translator by 
exploiting recent advances in just-in-time (JIT) compilers for 
dynamic languages, such as JavaScript and Lua, together with a 
specific programming idiom inspired by pipelined processor 
design.  We believe that this approach is relatively accessible to 
system designers familiar with C-family functional simulator 
coding styles, and may be generally useful for fast modeling of 
complex SoC components. 
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I.  INTRODUCTION 
For system architectural exploration, early software 

development, and test generation, functional simulation is 
favored, making the trade-off of reduced timing information in 
favor of improved simulation speed.  In contrast to the trend 
toward standardization of mid-level hardware modeling and 
simulation languages, such as System Verilog and SystemC, 
higher-level functional modeling remains largely a matter of 
ad-hoc simulators written in Java, C, or C++.  The performance 
of these simulators is vastly superior to low-level cycle-
accurate alternatives, but is becoming inadequate as focus 
shifts from uniprocessor modeling to many-core systems, 
where the increasing runtime involved in simulating complex 
systems becomes burdensome. 

With the ubiquity of programmable components in 
computational SoCs, fast functional instruction-set simulation 
(ISS) is increasingly important. We demonstrate an approach to 
ISS, TCOSim, that achieves performance comparable to the 
best dynamic binary translating simulators by exploiting recent 
advances in just-in-time (JIT) compilers for dynamic 
languages, such as JavaScript and Lua, together with a specific 
programming idiom inspired by pipelined processor design.  If 
effect, we code the simulator in the native style of the dynamic 
language, and let the JIT compiler optimize the code at 

runtime, rather than requiring mastery of a simulator-specific 
domain-specific language (DSL) describing the binary-code 
translation task. 

II. RELATED WORK 
Interpretative instruction-set simulators (ISS) abound, with 

various levels of detail in the processor model.  The sim-fast 
simulator from SimpleScalar LLC is a well-known 
representative of a straightforward C-based fetch-decode-
execute iterative ISS interpreter, achieving more than 10 MIPS 
for basic functional instruction-set-architecture (ISA) 
simulation [1].  This naïve approach is a software analog of a 
non-pipelined hardware processor implementation, simple but 
slow. 

Many variations of binary translation for ISS exist, 
translating instructions in the simulated ISA into code 
sequences run on the host processor, ([2] contains a survey).  
SyntSim [2] is representative of mainly static-translating 
simulators emitting C code as an intermediate representation 
that is compiled on the host machine, incurring a slowdown 
factor of around 7 to 11 on a SPECcpu2000 sample compared 
to native host execution.  In addition to the typically complex 
build procedure, one problem with static approaches is that it is 
awkward to alter the tradeoff between simulation speed and 
detailed visibility or interaction for different parts of the 
simulated process. For example, a user may want to carefully 
examine a suspect region of new code after skipping past 
lengthy initialization and warm-up phases.  SyntSim has both 
interpretive and compiled modes to address this problem. 

QEMU [3] is a popular open-source dynamic-binary-
translating (DBT) ISS that uses a per-ISA library of “micro-
ops” (TCG) to define host-machine equivalents for each 
instruction, which are then dynamically assembled into 
executable basic blocks to get a reasonable balance between 
speed and hardware detail, for example, being able to recognize 
interrupt signals well enough to allow high-level system 
modeling.  QEMU supports a number of simulated ISAs at 
good speed, though most of its community effort is devoted to 
x86 platform virtualization.  Reported performance for Intel 
386 platform emulation is a 15x slowdown on a recent host [4].  
Support of a new ISA requires detailed understanding of both 
the simulation-target architecture and the QEMU/TCG micro-
op intermediate representation, which is a barrier to adoption 
compared to use of a general-purpose programming language 
for instruction specification.  In contrast to a general-purpose 
programming language, the effort invested in learning a 
simulator-specific domain-specific language (DSL) is not 
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transferable to other tasks, and the supportive user community 
may be unhelpfully small. 

QEMU is a useful and influential DBT simulator project, 
but it has some significant drawbacks for use in exploratory 
system design. 

• The dominant community focus on x86 platform 
virtualization has made the whole system large, 
complex and non-portable. 

• Grafting dynamic code generation onto a static 
language like C compels mastery of a DSL, TCG, 
peculiar to that project and various host-dependent 
tricks to generate, load and execute translated code, all 
of which is tediously orthogonal to the motivating 
system architectural questions. 

• The simulator core is monolithic and has resisted 
efforts to use multi-core capabilities of host machines. 

• The QEMU codebase is a mélange of various open- 
and closed-source licenses, which is a concern for 
possible impairment of intellectual-property rights 
embodied in new system components. 

QEMU supports ISA simulation of the LatticeMico32 
processor [5], a small in-order pipelined 32-bit RISC processor, 
optimized for FPGA implementations, for which Verilog HDL 
is available under a permissive open-source license.  We are 
developing TCOSim as a high-performance alternative to the 
QEMU simulator for this processor ISA and experimental 
variants supporting multiprocessor SoC architectures. 

III. PIPELINED PROCESSOR ANALOGY 
Like QEMU, TCOSim works by translating each source 

ISA instruction into a sequence of tiny operations, but in 
TCOSim this sequence consists of a moderately deep series of 
nested function calls in the Lua scripting language [6,7], rather 
than a sequence of statements, as is typical of a C-language 
simulator, or TCG declarations, as in QEMU.  The stack of 
function calls for each instruction has a close analogy to the 
multiple (post-decode) stages of a classic RISC hardware 
pipeline:  the first function call in that stack reads a register 
value or constant, the next reads the second register operand if 
necessary, the third may perform an ALU operation, etc.  The 
first function call has a fat list of parameters that are 
successively reduced at each subsequent level.  The function 
call pipeline has just a couple of defining ideas: 

A. Each stage in the instruction processor pipeline is 
translated to a function call that binds or consumes one or 
more parameters 

B. Each stage function in the pipeline ends with a tail call to 
the next-stage function or to the start of a successor 
instruction’s pipeline function stack. 
If the bottom function in the per-instruction stack calls 

another instruction, it’s straightforward to string instructions 
together to execute an entire basic block at one invocation, 
greatly improving JIT compiler optimization opportunities.  
The bottom function returns a next-instruction reference; a 

conditional branch instruction may have a couple of next-
instruction references held in a closure variable, for taken and 
not-taken branch conditions. 

A given RISC ISA will have a handful of instruction 
formats, each with a fixed sequence of register or memory 
accesses.  For each format, TCOSim has a “Lua string builder” 
function that writes the Lua code for a specific instruction 
instance of that format, for example, converting a read-register 
field value into a literal array indexing expression with a 
constant index to aid optimization.  The hallmark of a dynamic 
language is the relative ease of converting this language string 
into a chunk of executable code via some kind of eval function; 
in Lua it’s called load.  The executable version of the per-
instruction function stack, together with the parameter 
bindings, is stored as a Lua function closure, which can be 
executed as required.  The basic associative array feature 
(table) in Lua makes caching of decoded instructions easy. 

IV. IMPLEMENTATION LANGUAGE 
The TCOSim approach requires an implementation 

language with good support for a functional-language 
programming style.  Specifically, its efficiency requires a good 
implementation of function closures and tail-call optimization 
(TCO), a concept largely popularized by the Scheme dialect of 
the Lisp language [8].  Functions make the instruction pipe 
look tidy, TCO makes it fast, and use of closure variables for 
storing parameter bindings and next-instruction linkage makes 
it flexible and dynamically tunable. 

A. Lua Language 
Lua is a small, multi-paradigm “scripting” language [6] that 

supports a functional programming style.  Since its inception in 
1993, the language designers have preserved Lua’s small 
conceptual and resource footprint to enhance its embeddability 
and portability [7]. The Lua interpreter is written in ANSI C, 
with few further dependencies, and has a well-defined C-
interface API, for use as an embedded scripting language in C-
family programs and for access to external libraries.  Lua has 
been adopted as an embedded scripting and template language 
by developers of TeX and Wikipedia and is likewise popular in 
the computer-gaming developer community. 

B. LuaJIT Language Implementation 
LuaJIT [9] is a high-performance implementation of Lua 

that contains both a target-specific interpreter written in 
assembly language and a well-engineered trace-based just-in-
time (JIT) optimizing compiler producing native code for high-
use code sequences.  Target ISAs now include x86/x64, ARM, 
PowerPC, and MIPS.  LuaJIT 2.0 performance compares very 
favorably to other dynamic-language implementations and 
closely approaches static-language compiler performance on 
many benchmarks.  Also, LuaJIT has an excellent foreign-
function interface (FFI) mechanism for C, simplifying interface 
coding and allowing direct access to primitive static data types, 
which can improve storage and hardware simulation efficiency 
compared to Lua’s standard dynamic data typing. 



C. Advantages of a Dynamic Language and a Tracing JIT 
Tail-call optimization allows a series of function calls to be 

optimized into straight-line sequential code without superfluous 
branching instructions, which improves performance.  Using 
dynamic code generation to build a stack of function calls for 
each instruction, combined with use of explicit “next 
instruction” references stored in instantiated function closure 
variables, allows the JIT compiler to minimize conditional 
branch instructions in “hot” execution traces.  In contrast, 
statically compiled simulator code will tend to litter the 
instruction stream with conditional checks for even rare 
conditions and uncommonly activated feature support.  Even 
unused features and checks will slow simulation speed and 
clutter the simulator code.  Tail-call optimization allows better 
code organization by use of shared functions with little 
performance impact except for slowly growing register 
pressure for excessively deep sequences of function calls.  
Dynamic generation of simulator code sequences allows 
flexible tradeoffs between performance and visibility, for 
debugging or verification.  Various levels of detail can be set 
selectively or locally, for example by setting memory-write 
watchpoints at per-basic-block granularity in new code 
routines.  Visibility of PC updates, precision of arithmetic 
exceptions and latency of interrupt recognition can have 
similarly advantageous control of granularity. 

V. EXPERIMENTAL RESULTS 
For the LatticeMico32 simple 32-bit RISC ISA, we have 

compared simulation speeds of the popular dynamic-binary-
translating ISS QEMU to our alternative, TCOSim, using 
binaries created by a clang/LLVM version 3.1 compiler with a 
LatticeMico32 code-generator backend we have written. At the 
present early state of development, TCOSim simulation rates 
generally are close to that of QEMU, roughly in the 500-900 
simulated MIPS range using one core of an Intel i7 2.2 GHz 
laptop host.  We may improve performance with further 
optimization, but believe that we have captured most of the 
available single-thread performance.  The TCOSim simulator 
runs an order of magnitude faster than a simple iterative static 
simulator, at perhaps double the code complexity.  Our main 
interest is now to extend the base design to support parallelism 
on both the host and simulation target sides. We are using a 
mix of ad-hoc and standard benchmark codes, such as 
CoreMark [10], for validation and performance evaluation. 

We observe that the LuaJIT tracing compiler is less likely 
to optimize short-runtime code sequences with its default 
parameter set.  Usually this is a correct heuristic tuning, but 
sometimes we can see that this puts TCOSim at a disadvantage 
compared to QEMU, which performs its optimizations at the 
start of runtime without needing to acquire program trace data.  
Fig. 1 shows the lower performance of the initial interpreted 
mode of a memory-access intense vector-add simulation (two 
input and one output vectors) compared to the optimized code 
dynamically generated for longer-running sequences.  We can 
put this in perspective by noting that the lower “short-
sequence” LuaJIT interpretive-mode performance is on par 
with or better than simple iterative static simulators.  The 
optimized compiled mode improves the performance by a 
factor of 15. 

VI. CONCLUSIONS 
We have demonstrated that a flexible dynamic scripting 
language, Lua, can be used to implement a relatively simple 
fast functional instruction-set simulator that rivals more 
complex DBT simulators.  The availability of a remarkably 
effective trace-optimizing JIT compiler, LuaJIT, makes it 
possible to write dynamic code generators for ISA simulation 
with a straightforward programming idiom in a compact 
scripting language.  We believe that our approach, inspired by 
the canonical RISC processor pipeline, will be readily 
understood by hardware practitioners, and may be useful for 
producing fast functional simulators for varied complex SoC 
components, whether programmable or fixed-function. 
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Figure 1. Tracing just-in-time (JIT) compiler optimization is more likely 
to be applied to more-used code sequences. 


