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Abstract—This paper presents methods that utilize multi-core PC 

to perform MOSFET circuit simulation and transmission line 

calculation. A very coarse-grained parallel computing strategy is 

proposed for circuit simulation. A parallel transmission line 

calculation method based on Method of Characteristic is also 

described. All proposed methods have been implemented and 

tested. Experimental results justify pleasing effects of proposed 

methods. 
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I.  INTRODUCTION 

Undertaking circuit simulation is very important in IC 
design community. Accurate approaches to solve circuit 
simulation problem include the “standard” simulators (such as 
SPICE) and relaxation-based simulators (such as RELAX [1], 
and SPLICE [2]). There exist faster simulation approaches 
using simpler simulation models (such as piecewise-linear 
model and switch-level model). But they only provide coarse 
waveforms. The trade-off between the solution accuracy and 
simulation speed firmly exists. Also, it is well known that 
delays of interconnects play a very important role today. There 
exist many researches, e.g. [3, 4], discussing calculations of 
transmission lines, but few of them consider the situation of 
large-scale simulation, in which the flexibility and efficiency of 
transmission line calculations are very important. 

In this paper, we propose PC-based parallel-computing 
strategies to raise the calculation efficiency directly, and then 
break the trade-off mentioned above. Since multi-core PCs are 
very popular today, this paper has practical values.  

We propose parallel-computing strategies for MOSFET 
circuit simulation and transmission line calculation respectively. 
In the first subject, we ask various processors to simulate 
different portions of the simulated circuit, and then combined 
waveforms derived by various processors. We call this strategy 
the Combining Simulation Method (CSM). Backward-
traversing Waveform Relaxation (BTWR) [5] is a specialized 
algorithm that simulates subcircuits by traversing subcircuits 
from the rear end to front end backwardly. So, it has the 
function of “simulation-on-demand” (SOD), i.e. only simulate 
subcircuits contributing to wanted outputs. Implementing CSM, 
we find that there are many methods to divide the simulated 
circuits into portions. We will use SOD of BTWR to divide. 

In the second subject, we exploit [3]. We call this method 
FMOC (Fast method based on the Method of Characteristic) in 
this paper. FMOC is flexible enough to cooperate with Fast 
SPICE. It transforms transmission lines into time-domain 
equivalent circuit elements and calculate their parameter values 
at (FMOC’s) “inner” time points. We will show that 
calculations on inner time points can be computed in parallel.  

The solving strategies for the two designated subjects of 
this paper all have been implemented. Experiments are made to 
justify their effects. The outline of this paper is as follows. In 
Section 2, the methods for solving first subject are explained, 
including BTWR algorithm and the Combining Simulation 
Method. In Section 3, we illustrate FMOC and the related 
parallel computing. Section 4 then shows experimental results 
to illustrate the effeteness of proposed methods. Finally, 
conclusions are made in Section 5. 

II. BTWR AND COMBINING SIMULATION METHOD  

A. BTWR Algorithm 

The fundamental circuit simulation algorithm of our work 
is BTWR, which is relaxation-based [1, 2]. The two famous 
algorithms of this class of algorithms are WR (Waveform 
Relaxation) and ITA (Iterated Timing Analysis) [1, 2]. BTWR 
is a more complicated algorithm. In fact, it collects advantages 
of WR and ITA and performs circuit simulations efficiently 
and stably [5]. We describe mathematic equations now. The 
simulated circuit can be described as following time-varying 
differential equation: 
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Where Y is the vector of circuit variables, t is the time, F is 
a continuous function and “.” means differentiation with 
respect to time. The simulated circuit is partitioned into 
subcircuits, and the ith subcircuit is: 
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This equation, a, can be expressed as the abbreviate form: 

 0)),(),(),(),((
..

=ttwtwtytyf   (3) 



Where y (Yi, a sub-vector of Y) is the vector of circuit 
variables in a, w (Di, the decoupling vector) is the vector of 
circuit variables not in a, and f is a continuous function. In this 
paper, a subcircuit calculation (used as performance index) 
means the computation efforts to solve (3) for y(tn+1) (tn+1 is 
current time point), which include applying integral formula 
(such as Trapezoidal method) to (3), and solving the derived 
nonlinear algebraic equations by Newton’s iteration.  

The basic idea of BTWR is to consider the cause-and-
consequence concept. The left part of Fig. 1 is a signal flow 
graph for partitioned subcircuits, in which the transient solution 
of subcircuit a is obviously the consequence of transient 
solutions of b and c. Therefore, b and c need to be solved 
before a to raise the computation efficiency. To trace these 
cause-and-consequence relations, we use the backward graph 
traversal technique. Introducing more clearly, we define some 
variables inside each subcircuit: tc is the time point for which 
the subcircuit has converged so far, tnow is the current time 
point to be solved, and ta (time arrived) is the time boundary at 
which the subcircuit is asked to be solved. In Fig. 1, the 
traversal starts from subcircuit a (tries to solve for y at a.tnow). 
The traversal visits a’s fan-in subcircuit b at first and ask it to 
be solved at time point later than b.ta (which is also a.tnow) in 
order to provide waveform references for subcircuit a. The 
traversal then continually visits c and asks it to be solved at 
time point later than c.ta (which is also b.tnow) for the same sake. 
Subcircuit c needs to forward two time points to move its tnow 
to over c.ta. In Fig. 1, the actual subcircuit calculation sequence 
would be: c be solved at its two tnow time points, b be solved at 
its tnow time points, and then a be solved at its tnow time points. 
This process might repeat several times until a.tnow is 
converged. The job of main program of BTWR is simple. It 
just picks subcircuit with smallest tnow, activates the “starting” 
backward traversal (called Mode-0 traversal) from it, and 
repeats the same process until no subcircuit left. 

There are software schemes [5] to handle the feedback 
subcircuits (including adjacent coupling and global feedback 
loops) to strengthen the robustness of BTWR. BTWR exhibits 
several advantages. First, the multi-rate behaviors of circuits 
can be exploited. Second, the windowing technique [1] is 
automatically applied. Third, the function of selective-tracing 
scheme of ITA [2] (to calculate connected subcircuits) is 
retained. Finally and most important for this paper, it’s easy to 
implement high quality SOD on BTWR. BTWR is represented 
in the pseudo codes in Algorithm 1. Note that SOD function is 
built in lines labeled by “Sod1” and “Sod2.” 

 

 
Figure 1.  A traversal starting from subcircuit a. Subcircuit b and c are asked 

to be calculated to time point later then ta. 

Algorithm 1 (BTWR-based Circuit Simulation): 

// ckt is the simulated circuit partitioned into ) subcircuits. 
// Simulation duration is Tbegin ∼Tend 
BTWR(ckt, Tbegin, Tend) { 
 Set tc, tnow of all subcircuits to their initial values;  
 while(there is any subcircuit whose tc is not equal to Tend) { 
  Pick the subcircuit x with smallest tnow;  
Sod1: 
  if(! contribute[x]) continue;  // the SOD function 
  BTWRtrace(0, x.tnow, x);  // begin to call the traversal 
 } 
} 
 
BTWRtrace(mode, ta, sub) {  
  // sub.in_stack array records whether sub has been traversed 
  if(mode is 0) Clear all subcircuits’ in_stack flag, tever = 0;  
  else if(mode == 1) sub.in_stack = 1; 
  if(mode is 0) Clear GFL; // the set containing subcircuits of GFLs 
  dtnow = sub.tnow; // the old tnow  
  do { 
   for(all sub’s fan-in subcircuit x) { 
    // backwardly traverse all predecessors  
    if(x is strongly coupled with sub) synchronize x and sub;  
Rtr:   if(! sub.in_stack) BTWRtrace(1, sub.tnow, x);  
Loop:  else { // has encountered a back edge 
     Add subcircuits from sub to x (in the recursion queue) 
      into GFL; 

    } 

   } 
S1:  if(sub is not in GFL) { // simulate sub or all subcircuits in GFL 
    Solve (3) of sub at sub.tnow;  
    if(Newton iteration diverges or solution quality is bad) 
     reduce tnow;  // shrink the time step 
    else if(results have been converged) { 
     tever = MAX(tever , sub.tc); 
     sub.tc = sub.tnow; 
     Estimate new sub.tnow;  
    } 
   } 
   // simulate GFL  
S2:  if(sub is the first subcircuit of GFL) { 
    Simulate GFL by using WR algorithm; 
    break; 
   } 
Sod2:  contribute[sub] = true;  // the SOD function 
Stop1: if(mode is 0 && sub.tc >= dtnow) break; 
Stop2: else if(mode is 1 && tever >= ta) break; 
 } while (true); 

} 
 

B. The Combining Simulation Method 

In using relaxation-based algorithm, there exist many 
strategies to utilize the parallelism. These strategies can be 
classified into space, temporal, and iteration respects [6]. The 
Combining Simulation Method is in the space respect. The 
basic idea is to use “client” processors to simulate different 
portions of the simulated circuit, and then combine the 
obtained “client-waveforms,” which is illustrated in Fig. 2. In 
this figure, there is a master-simulation that analyzes the 
simulated circuit, divides the circuit, sends the divided portions 
to client-simulations (which is simulated by one single 
processor), waits for the end of client-simulations, and then 
combines client-waveforms. The client-simulation just 
simulates portions of the analyzed circuits and generates 
portions of the wanted waveforms. 

For the success of CSM, dividing the simulated circuit is a 
critical step. The divided portions of the simulated circuit 



should be independent or the client-waveforms would be 
inaccurate. It is possible to undertake waveform relaxation 
between client-simulations to achieve the convergence of 
client-waveforms [6], but we don’t consider this complex 
process in this paper. Moreover, we don’t really divide the 
simulated circuit. We exploit the SOD ability of BTWR. Our 
dividing method is to divide the list of wanted outputs and send 
them to client-simulations, while each client-simulation 
simulates the same circuit. This strategy is simple and trustable, 
since each client-simulation simulates the entire circuit by 
using SOD, in which the obtained client-waveforms are 
accurate and no waveform relaxation processes are needed. 

To derive better efficiency of CSM, client-simulations need 
to exhaust roughly the same amount of CPU time and simulate 
as few overlapping portions of the simulated circuit as possible. 
These necessities can be taken cared by considering the 
“quality” of dividing of the list of wanted outputs. The criterion 
for dividing is to put outputs of the same independent portion 
of the simulated circuit together such that they are computed by 
the same client-simulation. Since SOD is used, the client-
simulation will only simulate the related independent portion of 
the simulated circuit, and hence save the simulation time. To 
accomplish this dividing criterion, we need to analyze the 
simulated circuit. Because the relaxation-based algorithm 
(BTWR) is used, the simulated circuit has been partitioned into 
subcircuits. We can utilize the signal flow graph of subcircuits 
to do such analysis, e.g. traversing the signal flow graph from 
the wanted outputs backwardly to see the “contributing” 
subcircuits. We have designed an automatic dividing 
subroutine to divide the list of wanted outputs.  

We note that CSM is a very coarse-grained strategy for 
parallel circuit simulation, in which several circuit simulators 
execute at the same time. Therefore, there is no necessity to 
rewrite any code of circuit simulators. Moreover, various 
simulators can be used to purchase better simulation results, e.g. 
use SPICE to simulate analog portions, and use Fast SPICE to 
simulate digital portions. CSM is also a high level algorithm 
that omits many details. So, it can be used in single computer 
that has many cores or many computers (having one or several 
cores) on networks. In the latter case, CSM constructs the 
distributed circuit simulation. In this paper, we just implement 
CSM in the multiple-core PC and only use our simulator 
(MOSTIME). Experiments will be described later. 

 

Figure 2.  An example of Combining Simulation Method, in which only two 
processors (and hence two client simulations) are shown. 

III. FMOC AND ITS PARALLELISM 

A. The FMOC Method 

The method to transform transmission lines is based on the 
Method of Characteristic [3]. Consider a coupled uniform 
transmission line whose resistance, inductance, capacitance, 
and conductance per unit length are R, L, C, and G respectively. 
The electrical behaviors (voltages v, and currents i) are 
described by following Telegraph’s equation: 
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Where x denotes distance, t denotes time. These equations are 
partially decoupled (on the L and C sense only) by (6) to derive 
(7) and (8): 
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Where )k ≤≤1 , and ) is the number of lines of this 
transmission line. Now we apply the Method of Characteristic. 

We use the equations 
k

dt

dx
γ=  and 
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γ ) to define the characteristic lines in the x-t 

plane, which are called the kth characteristic α and β lines 
respectively. Consider the differentiating along the kth 
characteristic α  line: 
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, in which 5.0)/( kkk CLZ
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=  is the characteristic impedance of 

the kth transmission line. Similarly, along the kth characteristic 
β  line, we have: 
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Now, solve (12) by Forward Euler (FE) integral method: 
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Note that both x-axis and t-axis have been divided into 
segments (∆ti is the segment length of t-axis) in order to use 

(13). The x-t planes of all lines are divided in the same ∆t and 

∆x. FMOC uses 1/max{γk| k=1~)} as the slope in the x-t 

plane, shown in Fig. 3. The denser and sparser grids are drawn 
in Fig. 2 together, in which the u/j values of point a are derived 
by referring point ap and af, and those of point b are derived by 
referring point bp and bf. Note the horizontal segment numbers 
are reversely proportional to the size of ∆ti. 

Equation (13) is expended into matrix form to represent ) 
lines (now i, j, v, and u are represented in upper case): 
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Then, by substituting (6) into (14) we get: 
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, where G0=(X
T)-1Z -1

X
 -1, and I0=-(XT)-1Z -1

V0. Equation (15) 
represents the x = 0 end terminal equivalent circuit of this 
transmission line. The x = D (D is the length of this 
transmission line) end terminal equivalent circuit can be 
obtained by processing (11) similarly. The result is: 
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, in which GD = G0, ID = -(XT)-1Z -1
VD. Equations (15) and (17) 

are the time-domain equivalent circuits of a transmission line to 
be used in circuit simulation. 

 
Figure 3.  Space (horizontal) and time (vertical) grids for simulating a 

transmission line. Sparser and denser grids are shown together. 

B. Parallel Computing in FMOC 

Multi-core machines are popular recently. To exploit 
parallelism of FMOC is a direct way to speedup the simulation. 
Equations (13) and (16) have to be solved for M times, one of 
which represents one point on the x-axis of Fig. 3, with respect 
to an inner time point. Each solving process for both equations 
is independent to those of other inner time points. So, parallel 
computing can be exploited here. Algorithm 2 represents the 
pseudo code, in which OpenMP API is utilized to realize 
parallel computations. The parallelism is small-grained. 
Therefore, our circuit simulator, MOSTIME [5], needs to be 
carefully rewritten. The major concern is that codes computing 
(13) and (16) should use shared memories carefully.  

Algorithm 2 (Parallel Computing in FMOC): 

 #pragma omp parallel for 

 for(s = 1; s < M; s++) { 

  Solve (13) and (16) for the sth point on the x-axis; 

 } 
 

In [4], Waveform Relaxation methods for the longitudinal 
partitioning of transmission lines are investigated, in which 
parallel computing is applied on the WR iterations. However, 
our method is more robust, and its performance will be shown 
in next section. Our method shows very good parallel-
computing efficiency (approximates to single-cored machine). 

IV. EXPERIMENTAL RESULTS 

We have implemented all proposed methods in our 
simulator MOSTIME, and run it on multi-core PCs. CSM is 
implemented in a single PC, in which several MOSTIME will 
run at the same time. The master-simulation activates client-
simulations and then combines client-waveforms, in which the 
passing of simulated circuits (which is described in the “deck” 
file) and retrieving of client-waveforms all use the file system 
of Windows. Note that when parallel FMOC runs, several 
processors would be activated in one MOSTIME. So, to avoid 
“processor competition,” CSM and parallel FMOC are tested 
separately. The experimental results are machine-dependent. 
Our practical environment includes: Visual Studio 2008, 
OpenMP API, Intel Core 2 Duo CPU, and Intel Core i7 CPU. 

At first, we check the effect of CSM. Several circuits have 
been simulated, and results are listed in Table 1. The two types 
of circuits are inverter chain and ALU (whose schematics are 
given in Fig. 4) chain. Waveforms of a tested circuit generated 
by BTWR and CSM are compared in Fig. 5, which shows that 
our implementation is correct. There are several independent 
portions in these circuits, e.g. “inv100x2” has two independent 
inverter chains. The number of cores is specified manually, 
depending on the number of independent portions. Numbers of 
outputs are important in BTWR-based CSM, since SOD is 
used. The list of wanted outputs is partitioned automatically in 
each CSM simulation. Three algorithms are tested for each 
circuit, which are BTWR, BTWR plus SOD and BTWR-based 
CSM. The used CPU times of simulations are listed. The 
column labeled with “IO” is the time for combining client-
waveforms, which can be referred to know the amount of 
overheads for processing client-waveforms. In the two right-
most columns are speedup (compared with BTWR) and 
efficiency of CSM. Note that efficiency is defined as follows: 
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In which T(x) is the used CPU time of algorithm x. We can 
observe obvious performance enhancements. Note that last two 
circuits have not simulated well by BTWR due to the lack of 
memory. 

The efficiencies of parallel computing are not good in some 
circuits, e.g. in the last circuit, only 46% of efficiency is 
recorded. We find that one client-simulation, which needs to 
compete for “global resources” of the same PC (such as the 
right to access disc and global main memory, and so on) with 
other client-simulations, spends more simulation time than 
normal simulation processing the same circuit. Therefore, to 
use network of PCs might be an improvement method. 

Next, we check the effect of parallel FMOC. We run some 
circuits with many transmission lines and record the used CPU 
time in Table 2. The more popular ITA algorithm is used. The 

transmission line’s parameters are: 10cm long, R=75Ω /m, 

L=500nH/m, C=63pF/m, G=50m Ω -1/m, and M=500. 
Transmission lines have been added to each output of inverter 
(or RC), and each circuit runs for three clocks. The used CPU 
has two cores. Speedups and efficiencies are good. Using 
parallel computing in FMOC is quite successful. 

V. CONCLUSION 

In this paper, we have presented two techniques to utilize 
the popular and powerful multi-core PC. The first technique is 
CSM, and the second one is parallel FMOC. Real 
implementations on multi-core PC have been tested. 
Experimental results justify that proposed techniques provide 
good parallel-computing efficiencies. The more complicated 
and better partitioning method for CSM and using computer 
networks might be our future works. 

TABLE I.  CPU TIME COMPARISON FOR PARALLEL CIRCUIT 
SIMULATIONS 

Used CPU Time* 
Ckt. 

BTWR +SOD CSM IO 

Output # Core # Speedup η $ 

inv100x2 9.438 9.613 6.475 0.187 2 2 1.4 0.72 

inv100x4 19.23 18.68 8.783 0.359 3 4 2.1 0.54 

alu4x2 10.26 9.454 7.099 0.53 8 2 1.4 0.72 

alu2x4 9.064 7.566 4.04 0.577 8 4 2.2 0.56 

alu32x2 N. A. 14.384 10.93 1.029 8 2 1.3 0.65 

alu16x4 N. A. 14.025 7.472 1.264 8 4 1.8 0.46 

*: The used CPU is Intel Core i7 (1.73 GHZ) that has eight cores 

$: The efficiency of parallel computing 

TABLE II.  CPU TIME* COMPARISON FOR PARALLEL FMOC 

Ckt. 
Tr. 

Line# 
ITA 

Parallel 

FMOC 
Speedup η  

RC 1 7.00  3.76  1.86 0.93 

1-stage Inverter 1 11.13  7.34  1.51 0.75 

4-stage Inverter 4 54.30  27.40  1.98 0.99 

10-stage Inverter 10 104.0 68.67  1.51 0.75 

*: CPU is Intel Core 2 Duo (2.53 GHZ) that has two cores 

 
Figure 4.  The schematic of ALU. 

 
Figure 5.  Waveform comparison for circuit alu4-2, which has two 4-bit ALU. 
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