
Parallel Circuit and Interconnect Simulation Using
Multi-core PC

Chun-Jung Chen

Department of Computer Science
Chinese Culture University

Taipei, Taiwan
teacherchen@faculty.pccu.edu.tw

Tien-Hao Shih

Department of Mechanical Engineering
Master’s Program of Digital Mechatronics, Chinese Culture

University
Taipei, Taiwan

Abstract—This paper presents methods that utilize multi-core PC

to perform MOSFET circuit simulation and transmission line

calculation. A very coarse-grained parallel computing strategy is

proposed for circuit simulation. A parallel transmission line

calculation method based on Method of Characteristic is also

described. All proposed methods have been implemented and

tested. Experimental results justify pleasing effects of proposed

methods.

Keywords-circuit simulation; parallel computing; transmission

line; relaxation-based; simulation-on-demand

I. INTRODUCTION

Undertaking circuit simulation is very important in IC
design community. Accurate approaches to solve circuit
simulation problem include the “standard” simulators (such as
SPICE) and relaxation-based simulators (such as RELAX [1],
and SPLICE [2]). There exist faster simulation approaches
using simpler simulation models (such as piecewise-linear
model and switch-level model). But they only provide coarse
waveforms. The trade-off between the solution accuracy and
simulation speed firmly exists. Also, it is well known that
delays of interconnects play a very important role today. There
exist many researches, e.g. [3, 4], discussing calculations of
transmission lines, but few of them consider the situation of
large-scale simulation, in which the flexibility and efficiency of
transmission line calculations are very important.

In this paper, we propose PC-based parallel-computing
strategies to raise the calculation efficiency directly, and then
break the trade-off mentioned above. Since multi-core PCs are
very popular today, this paper has practical values.

We propose parallel-computing strategies for MOSFET
circuit simulation and transmission line calculation respectively.
In the first subject, we ask various processors to simulate
different portions of the simulated circuit, and then combined
waveforms derived by various processors. We call this strategy
the Combining Simulation Method (CSM). Backward-
traversing Waveform Relaxation (BTWR) [5] is a specialized
algorithm that simulates subcircuits by traversing subcircuits
from the rear end to front end backwardly. So, it has the
function of “simulation-on-demand” (SOD), i.e. only simulate
subcircuits contributing to wanted outputs. Implementing CSM,
we find that there are many methods to divide the simulated
circuits into portions. We will use SOD of BTWR to divide.

In the second subject, we exploit [3]. We call this method
FMOC (Fast method based on the Method of Characteristic) in
this paper. FMOC is flexible enough to cooperate with Fast
SPICE. It transforms transmission lines into time-domain
equivalent circuit elements and calculate their parameter values
at (FMOC’s) “inner” time points. We will show that
calculations on inner time points can be computed in parallel.

The solving strategies for the two designated subjects of
this paper all have been implemented. Experiments are made to
justify their effects. The outline of this paper is as follows. In
Section 2, the methods for solving first subject are explained,
including BTWR algorithm and the Combining Simulation
Method. In Section 3, we illustrate FMOC and the related
parallel computing. Section 4 then shows experimental results
to illustrate the effeteness of proposed methods. Finally,
conclusions are made in Section 5.

II. BTWR AND COMBINING SIMULATION METHOD

A. BTWR Algorithm

The fundamental circuit simulation algorithm of our work
is BTWR, which is relaxation-based [1, 2]. The two famous
algorithms of this class of algorithms are WR (Waveform
Relaxation) and ITA (Iterated Timing Analysis) [1, 2]. BTWR
is a more complicated algorithm. In fact, it collects advantages
of WR and ITA and performs circuit simulations efficiently
and stably [5]. We describe mathematic equations now. The
simulated circuit can be described as following time-varying
differential equation:

 0)),(),((
.

=ttYtYF (1)

Where Y is the vector of circuit variables, t is the time, F is
a continuous function and “.” means differentiation with
respect to time. The simulated circuit is partitioned into
subcircuits, and the ith subcircuit is:

 0)),(),(),(),((
..

=ttDtDtYtYF iiiii
 (2)

This equation, a, can be expressed as the abbreviate form:

 0)),(),(),(),((
..

=ttwtwtytyf (3)

Where y (Yi, a sub-vector of Y) is the vector of circuit
variables in a, w (Di, the decoupling vector) is the vector of
circuit variables not in a, and f is a continuous function. In this
paper, a subcircuit calculation (used as performance index)
means the computation efforts to solve (3) for y(tn+1) (tn+1 is
current time point), which include applying integral formula
(such as Trapezoidal method) to (3), and solving the derived
nonlinear algebraic equations by Newton’s iteration.

The basic idea of BTWR is to consider the cause-and-
consequence concept. The left part of Fig. 1 is a signal flow
graph for partitioned subcircuits, in which the transient solution
of subcircuit a is obviously the consequence of transient
solutions of b and c. Therefore, b and c need to be solved
before a to raise the computation efficiency. To trace these
cause-and-consequence relations, we use the backward graph
traversal technique. Introducing more clearly, we define some
variables inside each subcircuit: tc is the time point for which
the subcircuit has converged so far, tnow is the current time
point to be solved, and ta (time arrived) is the time boundary at
which the subcircuit is asked to be solved. In Fig. 1, the
traversal starts from subcircuit a (tries to solve for y at a.tnow).
The traversal visits a’s fan-in subcircuit b at first and ask it to
be solved at time point later than b.ta (which is also a.tnow) in
order to provide waveform references for subcircuit a. The
traversal then continually visits c and asks it to be solved at
time point later than c.ta (which is also b.tnow) for the same sake.
Subcircuit c needs to forward two time points to move its tnow
to over c.ta. In Fig. 1, the actual subcircuit calculation sequence
would be: c be solved at its two tnow time points, b be solved at
its tnow time points, and then a be solved at its tnow time points.
This process might repeat several times until a.tnow is
converged. The job of main program of BTWR is simple. It
just picks subcircuit with smallest tnow, activates the “starting”
backward traversal (called Mode-0 traversal) from it, and
repeats the same process until no subcircuit left.

There are software schemes [5] to handle the feedback
subcircuits (including adjacent coupling and global feedback
loops) to strengthen the robustness of BTWR. BTWR exhibits
several advantages. First, the multi-rate behaviors of circuits
can be exploited. Second, the windowing technique [1] is
automatically applied. Third, the function of selective-tracing
scheme of ITA [2] (to calculate connected subcircuits) is
retained. Finally and most important for this paper, it’s easy to
implement high quality SOD on BTWR. BTWR is represented
in the pseudo codes in Algorithm 1. Note that SOD function is
built in lines labeled by “Sod1” and “Sod2.”

Figure 1. A traversal starting from subcircuit a. Subcircuit b and c are asked

to be calculated to time point later then ta.

Algorithm 1 (BTWR-based Circuit Simulation):

// ckt is the simulated circuit partitioned into) subcircuits.
// Simulation duration is Tbegin ∼Tend
BTWR(ckt, Tbegin, Tend) {
 Set tc, tnow of all subcircuits to their initial values;
 while(there is any subcircuit whose tc is not equal to Tend) {
 Pick the subcircuit x with smallest tnow;
Sod1:
 if(! contribute[x]) continue; // the SOD function
 BTWRtrace(0, x.tnow, x); // begin to call the traversal
 }
}

BTWRtrace(mode, ta, sub) {
 // sub.in_stack array records whether sub has been traversed
 if(mode is 0) Clear all subcircuits’ in_stack flag, tever = 0;
 else if(mode == 1) sub.in_stack = 1;
 if(mode is 0) Clear GFL; // the set containing subcircuits of GFLs
 dtnow = sub.tnow; // the old tnow
 do {
 for(all sub’s fan-in subcircuit x) {
 // backwardly traverse all predecessors
 if(x is strongly coupled with sub) synchronize x and sub;
Rtr: if(! sub.in_stack) BTWRtrace(1, sub.tnow, x);
Loop: else { // has encountered a back edge
 Add subcircuits from sub to x (in the recursion queue)
 into GFL;

 }

 }
S1: if(sub is not in GFL) { // simulate sub or all subcircuits in GFL
 Solve (3) of sub at sub.tnow;
 if(Newton iteration diverges or solution quality is bad)
 reduce tnow; // shrink the time step
 else if(results have been converged) {
 tever = MAX(tever , sub.tc);
 sub.tc = sub.tnow;
 Estimate new sub.tnow;
 }
 }
 // simulate GFL
S2: if(sub is the first subcircuit of GFL) {
 Simulate GFL by using WR algorithm;
 break;
 }
Sod2: contribute[sub] = true; // the SOD function
Stop1: if(mode is 0 && sub.tc >= dtnow) break;
Stop2: else if(mode is 1 && tever >= ta) break;
 } while (true);

}

B. The Combining Simulation Method

In using relaxation-based algorithm, there exist many
strategies to utilize the parallelism. These strategies can be
classified into space, temporal, and iteration respects [6]. The
Combining Simulation Method is in the space respect. The
basic idea is to use “client” processors to simulate different
portions of the simulated circuit, and then combine the
obtained “client-waveforms,” which is illustrated in Fig. 2. In
this figure, there is a master-simulation that analyzes the
simulated circuit, divides the circuit, sends the divided portions
to client-simulations (which is simulated by one single
processor), waits for the end of client-simulations, and then
combines client-waveforms. The client-simulation just
simulates portions of the analyzed circuits and generates
portions of the wanted waveforms.

For the success of CSM, dividing the simulated circuit is a
critical step. The divided portions of the simulated circuit

should be independent or the client-waveforms would be
inaccurate. It is possible to undertake waveform relaxation
between client-simulations to achieve the convergence of
client-waveforms [6], but we don’t consider this complex
process in this paper. Moreover, we don’t really divide the
simulated circuit. We exploit the SOD ability of BTWR. Our
dividing method is to divide the list of wanted outputs and send
them to client-simulations, while each client-simulation
simulates the same circuit. This strategy is simple and trustable,
since each client-simulation simulates the entire circuit by
using SOD, in which the obtained client-waveforms are
accurate and no waveform relaxation processes are needed.

To derive better efficiency of CSM, client-simulations need
to exhaust roughly the same amount of CPU time and simulate
as few overlapping portions of the simulated circuit as possible.
These necessities can be taken cared by considering the
“quality” of dividing of the list of wanted outputs. The criterion
for dividing is to put outputs of the same independent portion
of the simulated circuit together such that they are computed by
the same client-simulation. Since SOD is used, the client-
simulation will only simulate the related independent portion of
the simulated circuit, and hence save the simulation time. To
accomplish this dividing criterion, we need to analyze the
simulated circuit. Because the relaxation-based algorithm
(BTWR) is used, the simulated circuit has been partitioned into
subcircuits. We can utilize the signal flow graph of subcircuits
to do such analysis, e.g. traversing the signal flow graph from
the wanted outputs backwardly to see the “contributing”
subcircuits. We have designed an automatic dividing
subroutine to divide the list of wanted outputs.

We note that CSM is a very coarse-grained strategy for
parallel circuit simulation, in which several circuit simulators
execute at the same time. Therefore, there is no necessity to
rewrite any code of circuit simulators. Moreover, various
simulators can be used to purchase better simulation results, e.g.
use SPICE to simulate analog portions, and use Fast SPICE to
simulate digital portions. CSM is also a high level algorithm
that omits many details. So, it can be used in single computer
that has many cores or many computers (having one or several
cores) on networks. In the latter case, CSM constructs the
distributed circuit simulation. In this paper, we just implement
CSM in the multiple-core PC and only use our simulator
(MOSTIME). Experiments will be described later.

Figure 2. An example of Combining Simulation Method, in which only two
processors (and hence two client simulations) are shown.

III. FMOC AND ITS PARALLELISM

A. The FMOC Method

The method to transform transmission lines is based on the
Method of Characteristic [3]. Consider a coupled uniform
transmission line whose resistance, inductance, capacitance,
and conductance per unit length are R, L, C, and G respectively.
The electrical behaviors (voltages v, and currents i) are
described by following Telegraph’s equation:

),(),(),(txRitxi
t

Ltxv
x

−
∂

∂
−=

∂

∂ (4)

),(),(),(txGvtxv
t

Ctxi
x

−
∂

∂
−=

∂

∂ (5)

Where x denotes distance, t denotes time. These equations are
partially decoupled (on the L and C sense only) by (6) to derive
(7) and (8):

),()(),(

),,(),(

1 txjXtxi

txXutxv

T −=

=
 (6)

),(),(),(txjRtxj
t

Ltxu
x

))
−

∂

∂
−=

∂

∂ (7)

),(),(),(txuGtxu
t

Ctxj
x

))
−

∂

∂
−=

∂

∂ (8)

Where X is the eigenvector matrix of LC, 11)(−−= TXLXL
)

,

CXXC T=
)

, 11)(−−= TXRXR
)

, and GXXG T=
)

. Note that both

L
)
 and C

)
 are diagonal matrices. We consider the kth equation

of both (7) and (8):

 ∑
=

−=
∂

∂
+

∂

∂)

l

llk
k

k
k txjR

t

txj
L

x

txu

1

,)],([
),(),()) (9)

 ∑
=

−=
∂

∂
+

∂

∂)

l

llk
k

k
k txuG

t

txu
C

x

txj

1

,)],([
),(),())

 (10)

Where)k ≤≤1 , and) is the number of lines of this
transmission line. Now we apply the Method of Characteristic.

We use the equations
k

dt

dx
γ= and

k
dt

dx
γ−= (where

5.0)(−= kkk CL
))

γ) to define the characteristic lines in the x-t

plane, which are called the kth characteristic α and β lines
respectively. Consider the differentiating along the kth
characteristic α line:

∑ ∑
= =

−−

=+

)

t

)

l k

llk

llkk

kkk

C

txuG
txjR

txjZtxu
dt

d

1 1

,

,

),(
)],([

)],(),([

)

)
)

γ

α

 (11)

, in which 5.0)/(kkk CLZ
))

= is the characteristic impedance of

the kth transmission line. Similarly, along the kth characteristic
β line, we have:

∑ ∑
= =

−+

=−

)

t

)

l k

llk

llkk

kkk

C

txuG
txjR

txjZtxu
dt

d

1 1

,

,

),(
)],([

)],(),([

)

)
)

γ

β

 (12)

Now, solve (12) by Forward Euler (FE) integral method:

k

)

l k

nltk

i

)

l

nllkki

nkknknkknk

V
C

tuG
ttjRt

tjZtutjZtu

,0

1

1,

1

1,

11

)(
)]([

)()()()(

=∆−∆+

−=−

∑∑
=

−

=

−

−−

)

)
)

γ

 (13)

Note that both x-axis and t-axis have been divided into
segments (∆ti is the segment length of t-axis) in order to use

(13). The x-t planes of all lines are divided in the same ∆t and

∆x. FMOC uses 1/max{γk| k=1~)} as the slope in the x-t

plane, shown in Fig. 3. The denser and sparser grids are drawn
in Fig. 2 together, in which the u/j values of point a are derived
by referring point ap and af, and those of point b are derived by
referring point bp and bf. Note the horizontal segment numbers
are reversely proportional to the size of ∆ti.

Equation (13) is expended into matrix form to represent)
lines (now i, j, v, and u are represented in upper case):

0)()(VtZJtU nn =− (14)

Then, by substituting (6) into (14) we get:

00)()(ItVGtI nn += (15)

, where G0=(X
T)-1Z -1

X
 -1, and I0=-(XT)-1Z -1

V0. Equation (15)
represents the x = 0 end terminal equivalent circuit of this
transmission line. The x = D (D is the length of this
transmission line) end terminal equivalent circuit can be
obtained by processing (11) similarly. The result is:

kD

)

l k

nltk

i

)

l

nllkki

nkknknkknk

V
C

tuG
ttjRt

tjZtutjZtu

,

1

1,

1

1,

11

)(
)]([

)()()()(

=∆−∆−

+=+

∑∑
=

−

=

−

−−

)

)
)

γ

 (16)

DnDn ItVGtI +=−)()((17)

, in which GD = G0, ID = -(XT)-1Z -1
VD. Equations (15) and (17)

are the time-domain equivalent circuits of a transmission line to
be used in circuit simulation.

Figure 3. Space (horizontal) and time (vertical) grids for simulating a

transmission line. Sparser and denser grids are shown together.

B. Parallel Computing in FMOC

Multi-core machines are popular recently. To exploit
parallelism of FMOC is a direct way to speedup the simulation.
Equations (13) and (16) have to be solved for M times, one of
which represents one point on the x-axis of Fig. 3, with respect
to an inner time point. Each solving process for both equations
is independent to those of other inner time points. So, parallel
computing can be exploited here. Algorithm 2 represents the
pseudo code, in which OpenMP API is utilized to realize
parallel computations. The parallelism is small-grained.
Therefore, our circuit simulator, MOSTIME [5], needs to be
carefully rewritten. The major concern is that codes computing
(13) and (16) should use shared memories carefully.

Algorithm 2 (Parallel Computing in FMOC):

 #pragma omp parallel for

 for(s = 1; s < M; s++) {

 Solve (13) and (16) for the sth point on the x-axis;

 }

In [4], Waveform Relaxation methods for the longitudinal
partitioning of transmission lines are investigated, in which
parallel computing is applied on the WR iterations. However,
our method is more robust, and its performance will be shown
in next section. Our method shows very good parallel-
computing efficiency (approximates to single-cored machine).

IV. EXPERIMENTAL RESULTS

We have implemented all proposed methods in our
simulator MOSTIME, and run it on multi-core PCs. CSM is
implemented in a single PC, in which several MOSTIME will
run at the same time. The master-simulation activates client-
simulations and then combines client-waveforms, in which the
passing of simulated circuits (which is described in the “deck”
file) and retrieving of client-waveforms all use the file system
of Windows. Note that when parallel FMOC runs, several
processors would be activated in one MOSTIME. So, to avoid
“processor competition,” CSM and parallel FMOC are tested
separately. The experimental results are machine-dependent.
Our practical environment includes: Visual Studio 2008,
OpenMP API, Intel Core 2 Duo CPU, and Intel Core i7 CPU.

At first, we check the effect of CSM. Several circuits have
been simulated, and results are listed in Table 1. The two types
of circuits are inverter chain and ALU (whose schematics are
given in Fig. 4) chain. Waveforms of a tested circuit generated
by BTWR and CSM are compared in Fig. 5, which shows that
our implementation is correct. There are several independent
portions in these circuits, e.g. “inv100x2” has two independent
inverter chains. The number of cores is specified manually,
depending on the number of independent portions. Numbers of
outputs are important in BTWR-based CSM, since SOD is
used. The list of wanted outputs is partitioned automatically in
each CSM simulation. Three algorithms are tested for each
circuit, which are BTWR, BTWR plus SOD and BTWR-based
CSM. The used CPU times of simulations are listed. The
column labeled with “IO” is the time for combining client-
waveforms, which can be referred to know the amount of
overheads for processing client-waveforms. In the two right-
most columns are speedup (compared with BTWR) and
efficiency of CSM. Note that efficiency is defined as follows:

#*)(

)(

CoreCSMT

BTWRT
=η (18)

In which T(x) is the used CPU time of algorithm x. We can
observe obvious performance enhancements. Note that last two
circuits have not simulated well by BTWR due to the lack of
memory.

The efficiencies of parallel computing are not good in some
circuits, e.g. in the last circuit, only 46% of efficiency is
recorded. We find that one client-simulation, which needs to
compete for “global resources” of the same PC (such as the
right to access disc and global main memory, and so on) with
other client-simulations, spends more simulation time than
normal simulation processing the same circuit. Therefore, to
use network of PCs might be an improvement method.

Next, we check the effect of parallel FMOC. We run some
circuits with many transmission lines and record the used CPU
time in Table 2. The more popular ITA algorithm is used. The

transmission line’s parameters are: 10cm long, R=75Ω /m,

L=500nH/m, C=63pF/m, G=50m Ω -1/m, and M=500.
Transmission lines have been added to each output of inverter
(or RC), and each circuit runs for three clocks. The used CPU
has two cores. Speedups and efficiencies are good. Using
parallel computing in FMOC is quite successful.

V. CONCLUSION

In this paper, we have presented two techniques to utilize
the popular and powerful multi-core PC. The first technique is
CSM, and the second one is parallel FMOC. Real
implementations on multi-core PC have been tested.
Experimental results justify that proposed techniques provide
good parallel-computing efficiencies. The more complicated
and better partitioning method for CSM and using computer
networks might be our future works.

TABLE I. CPU TIME COMPARISON FOR PARALLEL CIRCUIT
SIMULATIONS

Used CPU Time*
Ckt.

BTWR +SOD CSM IO

Output # Core # Speedup η $

inv100x2 9.438 9.613 6.475 0.187 2 2 1.4 0.72

inv100x4 19.23 18.68 8.783 0.359 3 4 2.1 0.54

alu4x2 10.26 9.454 7.099 0.53 8 2 1.4 0.72

alu2x4 9.064 7.566 4.04 0.577 8 4 2.2 0.56

alu32x2 N. A. 14.384 10.93 1.029 8 2 1.3 0.65

alu16x4 N. A. 14.025 7.472 1.264 8 4 1.8 0.46

*: The used CPU is Intel Core i7 (1.73 GHZ) that has eight cores

$: The efficiency of parallel computing

TABLE II. CPU TIME* COMPARISON FOR PARALLEL FMOC

Ckt.
Tr.

Line#
ITA

Parallel

FMOC
Speedup η

RC 1 7.00 3.76 1.86 0.93

1-stage Inverter 1 11.13 7.34 1.51 0.75

4-stage Inverter 4 54.30 27.40 1.98 0.99

10-stage Inverter 10 104.0 68.67 1.51 0.75

*: CPU is Intel Core 2 Duo (2.53 GHZ) that has two cores

Figure 4. The schematic of ALU.

Figure 5. Waveform comparison for circuit alu4-2, which has two 4-bit ALU.

REFERENCES

[1] A. R. Newton and A. L. Sangiovanni-Vincentelli, “Relaxation-based
electrical simulation,” IEEE Trans on CAD, Vol. CAD-3, pp. 308-311,
Oct. 1984.

[2] R. A. Saleh and A. R. Newton, “The exploitation of latency and
multirate behavior using nonlinear relaxation for circuit simulation,”
IEEE Trans., Computer-aided Design, vol. 8, pp. 1286-1298, December
1989.

[3] J. F. Mao, E. S. Kuh, “Fast simulation and sensitivity analysis of lossy
transmission lines by the method of characteristics,” IEEE Tran. on
Computer-aided Design, Vol. 44, No. 5, pp. 391-401, May 1997.

[4] Martin J. Gander, Mohammad Al-Khaleel and Albert E. Ruehli,
“Optimized Waveform Relaxation Methods for the Longitudinal
Partitioning of Transmission Lines,” IEEE Trans. Circuits and System,
pp. 1732~1743, 2009.

[5] C. J. Chen, T. N. Yang, and J. D. Sun, “The Backward-traversing
Relaxation Algorithm for Circuit Simulation,” IEEE Custom Integrated
Circuit Conference, San Jose, California, pp. 353-356, September 10-13,
2006.

[6] Carlos Pon Soto, Resve Saleh, and Tad Kwasniewski, “Time warping-
waveform relaxation in a distributed circuit simulation environment,” pp.
338-341, Proceedings of the 38th Midwest Symposium on Circuit and
System, 1995.

