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I. Introduction 

 

Vector processing is useful for implementation of many 

linear algebra algorithms used in many commercial, 

government and military applications. Typically, this is 

implemented using software on specialized multi-core CPU 

or GPU architectures. A compelling alternative is FPGA-

based implementation, using floating point single precision 

implementation. This paper examines implementation of one 

such algorithm, the QR decomposition and  back substitution, 

a common for solution of non-square over-determined 

systems of equations. This has been implemented using a 

mid-sized 28nm FPGA. Performance (GFLOPs), throughput, 

Fmax  and power consumption are measured. The algorithm 

is implemented as a parameterizable core, which can be 

easily configured for all the matrix sizes benchmarked herein. 

 

II. FPGA Design Entry Methodology 

 

FPGA vendors have long offered floating point operator 

libraries such as multiply and add/subtract which have similar 

areas, performance levels, and latencies. The combination of 

multiple arithmetic operators into higher level functions such 

a vector dot product operator are inefficient, and suffer from 

significantly reduced Fmax. Typical latencies for both 

multipliers and adders are in the range of 10 clock cycles; a 

dot product operator with a few tens of inputs may therefore 

exceed a latency of 100. Routing congestion and data path 

latencies are have been critical restrictions on floating point 

implementation on FPGA architectures. Parallelism is a key 

advantage of a hardware solution like FPGAs, but it is often 

not applied to floating point signal processing because the 

long latencies make the data dependencies in algorithms such 

as matrix decomposition difficult to manage. Therefore, the 

resultant systems offered poor performance levels, 

uncompetitive to other platforms such as GPU or multi-core 

CPU architectures. 

 

An alternative FPGA design flow can overcome these issues. 

Rather than building up a data path from individual operators, 

the entire data path can be considered as a single function, 

with inter-operator redundancy factored out. Mantissa 

representation can be converted to hardware-friendly twos 

complement, and mantissa widths extended to reduce the 

frequency of normalizations. This approach, when combined 

with the Altera’s new 28nm Variable Precision DSP block 

architecture, offers extremely high data processing 

capabilities, in excess of one Teraflop on a single FPGA die.  

High order math functions and basic operations are 

supported. Of interest in this application are the square root, 

and inverse square root functions. These can be implemented 

for little cost – usually 3-4 times the logic resources of a 

floating point adder or multiplier, and produce one result per 

clock cycle.  This is in contrast to CPUs or GPUs , where 

various math.h functions can require up to 100 times more 

resources, in term of cycles. 

 

This design flow, DSP Builder Advanced Blockset (DSPBA) 

facilitates these types of designs with several important 

features: 

  

 Leverages Mathworks design environment, allowing 

the MATLAB/Simulink simulation to act as the test 

bench and design environment 

 Fixed and floating point data type support, with 

automatic data-type propagation.   The upstream 

source determines the data-type downstream unless 

it is purposely constrained or converted.  

 The DSPBA takes advantage of Simulink’s vector 

processing capability and most components support 

vector input/output and processing.  It also has a 

“complex” data type, allowing easy use in DSP 

applications.   

 The DSPBA performs registering and pipelining 

during its high level synthesis based upon the 

requested Fmax.  It automatically balances and 

schedules all parallel paths.  As a result, the design 

entry is behavioral in nature.  The design is better 

described as an zero latency algorithmic block 

diagram, where the hardware specific elements such 

as pipeline registers, which you find in typical 

hardware oriented design schematics, are abstracted 

away during the design entry stage, and will be 

automatically inserted later during the compilation 



stage. Only registers or delays which are a functional 

part of the algorithm are entered by the designer. 

 Required processing latency in iterative loops is 

automatically computed by the tool. The designer 

merely places a FIFO or memory in the feedback 

path to model the cumulative pipeline latencies in 

the forward path. The depth of the FIFO is updated 

by the tool after simulation analysis. 

 DSPBA toolflow supports variable mantissa floating 

point implementation. In addition to the common 

single (23 bit mantissa) and double precision (52 bit 

mantissa)  formats, the design can also choose single 

reduced (16 bit mantissa) for reduced logic, or single 

extended (32 bit mantissa) for extra precision to 

stabilize certain linear algebra implementations. 

III. QR Decomposition 

  

Linear equation system is defined in matrix form using Ax = b  

where A is a [m x n]  matrix , x and b are n and m size vectors 

respectively. There many ways to solve this algebra problem 

and to find the unknown vector x. The direct method is using 

inverse A matrix to calculate x vector. However direct method 

suffers from mathematical complexity to find A inverse 

matrix and solution stability issues. On the other hand there 

are techniques to decompose A matrix to other simpler to 

solve matrices that simplify the linear equation system 

solution. QR Decomposition is one of these techniques. 

 

Defining  A = Q · R where Q is [m x n] orthogonal matrix and 

R is a [m x n] upper triangular matrix. 

The new form of linear problem is given by: bxRQ   

Since Q matrix is orthogonal, meaning IQQT  and 
TQQ 1

  
Thus dbQxR T    

Once we find d by multiplying [matrix x vector] bQT  , we 

can easily solve the system by doing back substitution 

operation since the R matrix is upper triangular matrix. 

As defined above A is decomposed to Q orthogonal matrix 

and R upper triangular. For QR Decomposition, a number of 

algorithms exist, including Gram Schmidt and modified Gram 

Schmidt, Householder transformations and Givens rotations.  

Gram-Schmidt has implementation advantages:  It largely 

consists of multiplications and additions, which are efficient to 

implement in FPGAs, in both fixed and floating point format.  

A variation referred to as “modified Gram-Schmidt” is similar 

in implementation cost and offers greater numerical stability.  

Givens rotations require more complex operations, such as 

arctan, cos, sin and square roots.  Due to higher latency 

required, this is undesirable in the implementation of highly 

iterative algorithms.  Householder transformations need to 

process in columns and rows.  This is difficult in high speed 

applications, where parallel access across memory locations is 

required, since memory cannot easily be organized to provide 

easy access to both rows and columns at the same time. 

 

IV. Gram Schmidt 

 

Define the projection: 
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 Where 
wv,

is inner product that satisfies 
wvwv  *,

 

for complex numbers. According to Gram-Schmidt algorithm 

Uk is orthogonal set and Ek is corresponding orthonormal set 

after being normalized: 
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After rearranging the equations so Ai on the left side: 
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Rewriting the equations using the definition for “proj” and 

the fact that denominator 
1, ii ee

, as the set of E is 

orthonormal. 
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It can be rewritten in matrix form: 
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A = Q · R 

 

V. Algorithm Implementation using DSPBA 

The QR Decomposition can be described in code using the 

following looping construction, using Gram-Schmidt method.  

 
for k=1:n 

r(k,k) = norm(A(1:m, k)); 

for j = k+1:n 

  r(k,j)=dot(A(1:m,k),A(1:m,j))/r(k,k); 

end 

q(1:m, k) = A(1:m, k) / r(k,k); 

for j = k+1:n 

  A(1:m,j)=A(1:m,j)-r(k, j)*q(1:m,k); 

end 

end 
 

The calculations of the diagonal elements r(k,k) requires n 

square root operations and n*m complex multiplications and 

additions.  The calculation of the other elements of R require 

approximately n
2
/2 divides and m*n

2
/2 complex 

multiplications and additions.  The calculation of Q requires a 

further m*n divisions, and the updates to the original matrix A 

for further processing needs a further m*n
2
/2 complex 

multiplications and additions.  In total, n square root 

operations, n
2
/2 + m*n divisions and m*(n

2
+n) complex 

multiplications and additions need to be performed. 

 

High throughput requires minimizing computational latencies, 

as this is an iterative algorithms.  The calculation of the 

diagonal elements r(k,k) must be completed before subsequent 

elements of R or Q can be calculated.  The calculation of 

q(1:m,k) must finish prior to updating the A matrix for 

processing the next column.  This can cause large number of 

inactive or idle cycles, where no useful computations can be 

performed.  The number of inactive cycles that is introduced is 

k*lr, where lr is the latency, in clock cycles, for calculating 

r(k,k), and k* lq, where lq is the latency of the calculation of q. 

Therefore, the calculation of the diagonal elements is split into 

a dot product, which returns the squared magnitude r2, and the 

square root calculation.  The calculation of the other elements 

of R can be split into a dot product that returns the un-

normalised version rn of element r, and a division by r(k,k) to 

compete the normalization. The calculation of A can be 

optimized by substituting q(1:m,k) with A(1:m,k/r(k,k), and 

r(k,j) can be substituted with rn(k,j)/r(k/k).  This allows 

reordering the algorithm into two separate loops: 

 

For loop 1: 
for k=1:n 

r2(k,k) = dot(A(1:m, k), A(1:m,k); 

for j = k+1:n 

  rn(k,j) = dot(A(1:m, k), A(1:m, j)); 

end 

for j = k+1:n 

  A(1:m,j)=A(1:m,j)–(rn(k,j)/r2(k,k))*A(1:m,k); 

end 

end 

 

For loop 2: 
for k=1:n 

r(k,k) = sqrt(r2(k,k)); 

for j = k+1:n 

    r(k,j) = rn(k,j)/ r(k,k); 

end 

q(1:m,k) = A(1:m,k) / r(k,k); 

end 

 

 

These loops are simulated in the MATLAB/Simulink 

environment, and then implemented in an optimized fashion 

in the FPGA using DSPBA. This different than the timing 

optimizations performed by Quartus II or similar FPGA 

design tools. For design entry using Verilog or VHDL, the 

Quartus II tool is performs place and route the design to 

minimize delays on critical paths in the design. Design 

optimization is not possible, only placement/routing. DSPBA 

will change the design itself to the optimize critical paths, 

performing the designer from the timing closure process. 

Additional benefits are design reuse, as the tool free the 

designer from needing to take advantage of features particular 

to a particular FPGA architecture. In this way, DSPBA also 

“future-proofs” designs, allowing a given design to be easily 



ported to future FPGA families with new features or higher 

levels of performance in an automated fashion. 

  

The output of the DSPBA tool is a VHDL file optimized for 

the FPGA device specified by the designer. This is then input 

to the Quartus project, and can be integrated into any other 

circuit blocks in the FPGA, with ports for I/O, memory 

mapped register access, or any necessary external DDR 

memory access. 

 

 
Figure 1: QRD Block Diagram 

 

The implementation can the thought of as building a vector 

processing engine, with separate blocks for the vector 

processor, control circuits and the memory. Control circuitry 

for the processing engine is automatically generated by the 

tool. One useful control block is a nested “for-while” looping 

block, which allows for easy implementation of complex 

looping and address structures. The width of the vector 

engine is referred to as the vector size, and is a design 

parameter. This controls the degree of parallelism of the 

design. The matrix width is frequently a multiple of the 

vector size. In this way a trade-off between FPGA resources 

and matrix throughput can be achieved. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: R Matrix and Q’*b sample calculation order 
 

An advantage of this transformation is that the calculations of 

Q can be need not be stored, as Q
T
 each row is used as 

generated to calculate each value for the vector d. Since 

internal memory is limited, efficient use is required.  With 

QR Decomposition, we need to continuously read and write 

from a large memory, which stores the entire matrix.  One 

write port is sufficient, but it would be desirable to have two 

read ports for the calculations of the new A values and the rn 

values, as they both require the k
th

vector A(1:m,k) which is 

combined with the remaining vectors A(1:m,j) .  Instead of 

using a separate read port on the large A memory, an 

additional memory is introduced that just stores the l
th

 vector.  

This memory is loaded during the r(k,k) calculation, when 

A(1:m,k) is read from the A memory, and stored for re-use 

for the other operations.  

 

Latency modeling is also required in feedback loops. This 

must be accounted for in the design, as it will be determined 

by the algorithmic and circuit pipeline delays present in  

algorithm datapath. In this case, all the latency is placed into 

a single memory or FIFO in the feedback path, and the 

DSPBuilder tool will distribute this delay throughout the 

design as needed to assure optimal performance. The tool will 

indicate and update the design with the minimum amount of 

delay required in the feedback memory. 

 

 

 

 Figure 3: Top level design file in Simulink 

 

The QR Decomposition plus back substitution are packaged 

hierarchically into a parameterizable core, where the user can 

specify the vector engine width and maximum matrix size at 

compile time, and the desired matrix size at run time. 

 

This level of automated optimization is far more than the 

timing optimizations performed by Quartus II or similar 

FPGA design tools. For design entry using Verilog or VHDL, 

the Quartus II tool is limited to trying to place and route the 

design to minimize delays on critical paths in the design. It 

cannot optimize the actual design itself. In contrast, 

DSPBuilder is able to change the design itself to optimize 

critical paths, relieving the designer from the timing closure 

process. Additional benefits are allowing easy design updates, 

such as parameterizing the number of channels, FIR filter 

lengths, vector sizes and many other aspects of the design. 

DSPBuilder also “future-proofs” designs, allowing a given 

design to be easily ported to different FPGA families, 

including future FPGA families in an automated fashion.  

 

VI. GFLOPs, Performance and Resource Usage 
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The FLOPs of the QRD algorithm is defined as follows, 

where n and m are matrix rows and columns respectively. 

This is for complex matrices, although the number of floating 

point operations is specified in real or scalar operations.  

 

Algorithm Step Number of Real FLOP 

QR 

Decomposition 

233.5 mn  

bQT   nmn 28   

Backward 

Substitution 

24n  

Total: 22 42833.5 nnmnmn   

Table 1: QRD Solver Real Flops 

 

The performance and resource usage of the QR 

Decomposition core is shown for several matrix and vector 

size combinations. Since these are user defined parameters, 

any reasonable size can be easily generated by the QRD core. 

All results are using single precision floating point, with 

complex input and output data. 

 

The FPGA used to compile the QRD core is a mid-sized 

Stratix V FPGA, specifically the 5SGSD5 in –C2 speed 

grade. The Fmax figure shown is actually exceeded in most 

compile results. In some cases, faster performance can also be 

achieved using the Quartus II DSE feature. 

 

The level of resources used indicates that multiple QRD cores 

may be built in the same device depending upon the 

matrix/vector size. This is particularly true if a larger Stratix 

V FPGA device is used. 

 

By examining Table 1, it is evident that the GFLOPS, logic 

and multiplier resources are approximately proportional to the 

vector size chosen. The memory resources are approximately 

proportional to matrix size chosen. 

    
Input 

Matrix 

Size  

Vect

or 

Size 

ALUTs / 

Memory 

blocks / 

27x27s 

Latency 

@ 

Operatin

g 

frequenc

y 

Throug

h-put 

(Matrix 

per 

second)  

GFLOPS 

per core 

(complex 

single 

precision) 

50x100 50 105K 

230 M20K 

227 mults  

45 us @ 

 250 MHz 

31,681  43.8 

100x200 50 106K 

304 M20K 

228 mults  

213 us @ 

 250 MHz 

5,920  64.3 

100x200 100 202K 

504 M20K 

428 mults  

173 us @ 

 200 MHz 

8,467  91.9 

250x400  100 200K 1586 us 
@ 

789 106 

858 M20K 

428 mults  

 200 MHz 

400x400 100 203K 

1566 M20K 

428 mults  

4029 us 

@ 

 200 MHz 

310  106 

450x450 75 157K 

1985 M20K 

328 mults  

7121 us 

 @ 200 

MHz 

165  80 

Table 2: QRD performance using Stratix V 5SGSD5 FPGA 

 

The throughput is a number of matrices processed per second, 

includes both the QR decomposition and back substitution. 

The latency is the time from the load in of the last input data 

sample to the reading out of the last output sample. 

 

Power consumption and GFLOPS per watt measurements are 

also presented. The reader should keep in mind that these are 

actual measured GFLOPS/W on a complex algorithm (QRD), 

and should not to be compared to other published figures 

showing theoretical GFLOPS/W, often using a trivial 

implementation which is just exercising multipliers. This 

approach can result in “marketing” figures an order of 

magnitude higher, but are not realistic in what an actual 

application will experience.   

    
Input 

Matrix 

Size  

Vect

or 

Size 

Throug

h-put 

(Matrix 

per 

second)  

GFLOPS 

per core 

(complex 

single 

precision) 

Core power 

consumptio

n as 

measured 

using Altera 

5SGSD5 

eval board 

GFLOP

s/Watt 

50x100 50 31,681  43.8 10.77 W 4.07 

100x200 50 5,920  64.3 13.9 W 4.63 

100x200 100 8,467  91.9 20.97 W 4.38 

400x400 100 310  106 25.20 W 4.21 

450x450 75 165 80 20.25 3.95 

Table 3: QRD GFLOPs/Watt using Stratix V 5SGSD5 FPGA 

 

 

VII. Numerical Accuracy Concerns 

These results are achieved using an FPGA based parallel 

processing architecture. Therefore, the results will not 

precisely match the same algorithm implemented serially 

with a microprocessor architecture (the same situation exists 

for most GPU implementations). To address this concern, 

care has been taken to assure that the hardware based results 

are equally or better accurate than those achieved by 

IEEE754 compliant CPU architectures. This is accomplished 

by using a larger then required mantissa width. For example, 

Stratix V FPGAs employ thousands of native 27x27 size 

hardened multipliers, which is larger than the 23x23 size 



multiplier required to implement single precision floating 

point IEEE754. 

 

The numerical precision is evaluated by first computing 

results in MATLAB using double precision. These results are 

compared to both single precision results using MATLAB on 

an IEEE754 compliant PC, and the single precision results 

computed in the FPGA. Both the maximum error and 

normalized error are shown. The normalized error is found 

using the Frobenius norm determined by: 
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The resultant errors are tabulated for a sample collection of 

matrix and vector sizes. The parallelized FPGA based signal 

processing produces normalized errors that are smaller than 

that computed the CPU architecture, employing an IEEE754 

based serial architecture. The maximum error found is also 

slightly smaller on FPGA, compared to IEEE754. 

 

Matrix / 

Vector Size 

MATLAB using 

computer 

Norm/Max 

DSPBA 

generated 

RTL 

Norm/Max 

50x100 / 50 5.01e-005 / 6.42e-

006 

4.87e-005 / 

6.02e-006 

100x200 / 100 2.3e-5 / 1.24e-6 1.68e-5 / 

9.97e-7 

400x400 / 100 8.8e-5 / 4.81e-6 7.07e-5 / 

4.03e-6 

 

Table 4: QRD floating point error comparison 

 

Several matrix and vector are presented to show the 

performance attainable in reasonable large matrix processing 

core. All possible permutations and options cannot be 

explored within this example design. However, due to the 

ability to design and quickly develop within the Mathworks 

environment, many design options can be investigated 

quickly, without resorting to Quartus II FPGA compiles, 

which is in contrast to HDL design methodology. Floating 

point designs of this complexity and performance are not 

feasible using traditional HDL design techniques. 

 

VIII. Summary 

 

Production released FPGAs and tools are available to build 

high throughput, low latency floating point linear algebra and 

other functions, which exceed the capabilities of CPUs and 

DSPs, and rival that of latest GPUs. In addition, the native 

connectivity, streaming capabilities, and power consumption 

advantages of FPGAs can provide a significant advantage 

over GPU based solutions. The resultant FPGA designs may 

also be used as hardware accelerators to off-load CPUs, 

allowing much of the existing code base to be preserved on 

current processors while still allowing a dramatic increase in 

system throughput or inclusion of higher computation rate 

algorithms to meet requirements. 

 

Using the DSPBA design flow, similar results have been 

achieved using FPGAs on other designs, such as floating 

point FFTs, matrix multiplies, Cholesky decomposition, LU 

decomposition, and other functions.   

 

A vendor independent benchmarking effort has been 

completed by Berkeley Design Technology Inc (BDTi) using 

QR and Cholesky decomposition cores on 28nm Stratix V 

and Arria V FPGAs. This report is available at www.bdti.com 
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