
 Floating Point Vector Processing using 28nm FPGAs

Michael Parker

DSP Product Planning

Altera Corporation

San Jose, California

Dan Pritsker

Hardware Engineering Group

Altera Corporation

San Diego, California

I. Introduction

Vector processing is useful for implementation of many

linear algebra algorithms used in many commercial,

government and military applications. Typically, this is

implemented using software on specialized multi-core CPU

or GPU architectures. A compelling alternative is FPGA-

based implementation, using floating point single precision

implementation. This paper examines implementation of one

such algorithm, the QR decomposition and back substitution,

a common for solution of non-square over-determined

systems of equations. This has been implemented using a

mid-sized 28nm FPGA. Performance (GFLOPs), throughput,

Fmax and power consumption are measured. The algorithm

is implemented as a parameterizable core, which can be

easily configured for all the matrix sizes benchmarked herein.

II. FPGA Design Entry Methodology

FPGA vendors have long offered floating point operator

libraries such as multiply and add/subtract which have similar

areas, performance levels, and latencies. The combination of

multiple arithmetic operators into higher level functions such

a vector dot product operator are inefficient, and suffer from

significantly reduced Fmax. Typical latencies for both

multipliers and adders are in the range of 10 clock cycles; a

dot product operator with a few tens of inputs may therefore

exceed a latency of 100. Routing congestion and data path

latencies are have been critical restrictions on floating point

implementation on FPGA architectures. Parallelism is a key

advantage of a hardware solution like FPGAs, but it is often

not applied to floating point signal processing because the

long latencies make the data dependencies in algorithms such

as matrix decomposition difficult to manage. Therefore, the

resultant systems offered poor performance levels,

uncompetitive to other platforms such as GPU or multi-core

CPU architectures.

An alternative FPGA design flow can overcome these issues.

Rather than building up a data path from individual operators,

the entire data path can be considered as a single function,

with inter-operator redundancy factored out. Mantissa

representation can be converted to hardware-friendly twos

complement, and mantissa widths extended to reduce the

frequency of normalizations. This approach, when combined

with the Altera’s new 28nm Variable Precision DSP block

architecture, offers extremely high data processing

capabilities, in excess of one Teraflop on a single FPGA die.

High order math functions and basic operations are

supported. Of interest in this application are the square root,

and inverse square root functions. These can be implemented

for little cost – usually 3-4 times the logic resources of a

floating point adder or multiplier, and produce one result per

clock cycle. This is in contrast to CPUs or GPUs , where

various math.h functions can require up to 100 times more

resources, in term of cycles.

This design flow, DSP Builder Advanced Blockset (DSPBA)

facilitates these types of designs with several important

features:

 Leverages Mathworks design environment, allowing

the MATLAB/Simulink simulation to act as the test

bench and design environment

 Fixed and floating point data type support, with

automatic data-type propagation. The upstream

source determines the data-type downstream unless

it is purposely constrained or converted.

 The DSPBA takes advantage of Simulink’s vector

processing capability and most components support

vector input/output and processing. It also has a

“complex” data type, allowing easy use in DSP

applications.

 The DSPBA performs registering and pipelining

during its high level synthesis based upon the

requested Fmax. It automatically balances and

schedules all parallel paths. As a result, the design

entry is behavioral in nature. The design is better

described as an zero latency algorithmic block

diagram, where the hardware specific elements such

as pipeline registers, which you find in typical

hardware oriented design schematics, are abstracted

away during the design entry stage, and will be

automatically inserted later during the compilation

stage. Only registers or delays which are a functional

part of the algorithm are entered by the designer.

 Required processing latency in iterative loops is

automatically computed by the tool. The designer

merely places a FIFO or memory in the feedback

path to model the cumulative pipeline latencies in

the forward path. The depth of the FIFO is updated

by the tool after simulation analysis.

 DSPBA toolflow supports variable mantissa floating

point implementation. In addition to the common

single (23 bit mantissa) and double precision (52 bit

mantissa) formats, the design can also choose single

reduced (16 bit mantissa) for reduced logic, or single

extended (32 bit mantissa) for extra precision to

stabilize certain linear algebra implementations.

III. QR Decomposition

Linear equation system is defined in matrix form using Ax = b

where A is a [m x n] matrix , x and b are n and m size vectors

respectively. There many ways to solve this algebra problem

and to find the unknown vector x. The direct method is using

inverse A matrix to calculate x vector. However direct method

suffers from mathematical complexity to find A inverse

matrix and solution stability issues. On the other hand there

are techniques to decompose A matrix to other simpler to

solve matrices that simplify the linear equation system

solution. QR Decomposition is one of these techniques.

Defining A = Q · R where Q is [m x n] orthogonal matrix and

R is a [m x n] upper triangular matrix.

The new form of linear problem is given by: bxRQ 

Since Q matrix is orthogonal, meaning IQQT  and
TQQ 1

Thus dbQxR T 

Once we find d by multiplying [matrix x vector] bQT  , we

can easily solve the system by doing back substitution

operation since the R matrix is upper triangular matrix.

As defined above A is decomposed to Q orthogonal matrix

and R upper triangular. For QR Decomposition, a number of

algorithms exist, including Gram Schmidt and modified Gram

Schmidt, Householder transformations and Givens rotations.

Gram-Schmidt has implementation advantages: It largely

consists of multiplications and additions, which are efficient to

implement in FPGAs, in both fixed and floating point format.

A variation referred to as “modified Gram-Schmidt” is similar

in implementation cost and offers greater numerical stability.

Givens rotations require more complex operations, such as

arctan, cos, sin and square roots. Due to higher latency

required, this is undesirable in the implementation of highly

iterative algorithms. Householder transformations need to

process in columns and rows. This is difficult in high speed

applications, where parallel access across memory locations is

required, since memory cannot easily be organized to provide

easy access to both rows and columns at the same time.

IV. Gram Schmidt

Define the projection:

 e
ee

ae
aproje

,

,


 Where
wv,

is inner product that satisfies
wvwv  *,

for complex numbers. According to Gram-Schmidt algorithm

Uk is orthogonal set and Ek is corresponding orthonormal set

after being normalized:














1

1

3

3
3323133

2

2
22122

1

1
111

,

,

,

,

n

j n

n
nnejnn

ee

e

u

u
eaprojau

u

u
eaprojaprojau

u

u
eaprojau

u

u
eau



After rearranging the equations so Ai on the left side:














1

1

3332313

22212

111

n

j

nnnejn

ee

e

ueaproja

ueaprojaproja

ueaproja

uea



Rewriting the equations using the definition for “proj” and

the fact that denominator
1, ii ee

, as the set of E is

orthonormal.














1

1

332321313

221212

111

,

,,

,

n

j

nnjnjn ueeaea

ueeaeeaea

ueeaea

uea



It can be rewritten in matrix form:

    

   







































































3

2

322

1

31

1

211

21321

3

322

31211

21321

00

1
,0

1
,

1
,

|....||

00

,0

,,

|....||

u

u
auu

u
au

u
auu

eeeaaa

u

aeu

aeaeu

eeeaaa

n

n

A = Q · R

V. Algorithm Implementation using DSPBA

The QR Decomposition can be described in code using the

following looping construction, using Gram-Schmidt method.

for k=1:n

r(k,k) = norm(A(1:m, k));

for j = k+1:n

 r(k,j)=dot(A(1:m,k),A(1:m,j))/r(k,k);

end

q(1:m, k) = A(1:m, k) / r(k,k);

for j = k+1:n

 A(1:m,j)=A(1:m,j)-r(k, j)*q(1:m,k);

end

end

The calculations of the diagonal elements r(k,k) requires n

square root operations and n*m complex multiplications and

additions. The calculation of the other elements of R require

approximately n
2
/2 divides and m*n

2
/2 complex

multiplications and additions. The calculation of Q requires a

further m*n divisions, and the updates to the original matrix A

for further processing needs a further m*n
2
/2 complex

multiplications and additions. In total, n square root

operations, n
2
/2 + m*n divisions and m*(n

2
+n) complex

multiplications and additions need to be performed.

High throughput requires minimizing computational latencies,

as this is an iterative algorithms. The calculation of the

diagonal elements r(k,k) must be completed before subsequent

elements of R or Q can be calculated. The calculation of

q(1:m,k) must finish prior to updating the A matrix for

processing the next column. This can cause large number of

inactive or idle cycles, where no useful computations can be

performed. The number of inactive cycles that is introduced is

k*lr, where lr is the latency, in clock cycles, for calculating

r(k,k), and k* lq, where lq is the latency of the calculation of q.

Therefore, the calculation of the diagonal elements is split into

a dot product, which returns the squared magnitude r2, and the

square root calculation. The calculation of the other elements

of R can be split into a dot product that returns the un-

normalised version rn of element r, and a division by r(k,k) to

compete the normalization. The calculation of A can be

optimized by substituting q(1:m,k) with A(1:m,k/r(k,k), and

r(k,j) can be substituted with rn(k,j)/r(k/k). This allows

reordering the algorithm into two separate loops:

For loop 1:
for k=1:n

r2(k,k) = dot(A(1:m, k), A(1:m,k);

for j = k+1:n

 rn(k,j) = dot(A(1:m, k), A(1:m, j));

end

for j = k+1:n

 A(1:m,j)=A(1:m,j)–(rn(k,j)/r2(k,k))*A(1:m,k);

end

end

For loop 2:
for k=1:n

r(k,k) = sqrt(r2(k,k));

for j = k+1:n

 r(k,j) = rn(k,j)/ r(k,k);

end

q(1:m,k) = A(1:m,k) / r(k,k);

end

These loops are simulated in the MATLAB/Simulink

environment, and then implemented in an optimized fashion

in the FPGA using DSPBA. This different than the timing

optimizations performed by Quartus II or similar FPGA

design tools. For design entry using Verilog or VHDL, the

Quartus II tool is performs place and route the design to

minimize delays on critical paths in the design. Design

optimization is not possible, only placement/routing. DSPBA

will change the design itself to the optimize critical paths,

performing the designer from the timing closure process.

Additional benefits are design reuse, as the tool free the

designer from needing to take advantage of features particular

to a particular FPGA architecture. In this way, DSPBA also

“future-proofs” designs, allowing a given design to be easily

ported to future FPGA families with new features or higher

levels of performance in an automated fashion.

The output of the DSPBA tool is a VHDL file optimized for

the FPGA device specified by the designer. This is then input

to the Quartus project, and can be integrated into any other

circuit blocks in the FPGA, with ports for I/O, memory

mapped register access, or any necessary external DDR

memory access.

Figure 1: QRD Block Diagram

The implementation can the thought of as building a vector

processing engine, with separate blocks for the vector

processor, control circuits and the memory. Control circuitry

for the processing engine is automatically generated by the

tool. One useful control block is a nested “for-while” looping

block, which allows for easy implementation of complex

looping and address structures. The width of the vector

engine is referred to as the vector size, and is a design

parameter. This controls the degree of parallelism of the

design. The matrix width is frequently a multiple of the

vector size. In this way a trade-off between FPGA resources

and matrix throughput can be achieved.

Figure 2: R Matrix and Q’*b sample calculation order

An advantage of this transformation is that the calculations of

Q can be need not be stored, as Q
T
 each row is used as

generated to calculate each value for the vector d. Since

internal memory is limited, efficient use is required. With

QR Decomposition, we need to continuously read and write

from a large memory, which stores the entire matrix. One

write port is sufficient, but it would be desirable to have two

read ports for the calculations of the new A values and the rn

values, as they both require the k
th

vector A(1:m,k) which is

combined with the remaining vectors A(1:m,j) . Instead of

using a separate read port on the large A memory, an

additional memory is introduced that just stores the l
th

 vector.

This memory is loaded during the r(k,k) calculation, when

A(1:m,k) is read from the A memory, and stored for re-use

for the other operations.

Latency modeling is also required in feedback loops. This

must be accounted for in the design, as it will be determined

by the algorithmic and circuit pipeline delays present in

algorithm datapath. In this case, all the latency is placed into

a single memory or FIFO in the feedback path, and the

DSPBuilder tool will distribute this delay throughout the

design as needed to assure optimal performance. The tool will

indicate and update the design with the minimum amount of

delay required in the feedback memory.

 Figure 3: Top level design file in Simulink

The QR Decomposition plus back substitution are packaged

hierarchically into a parameterizable core, where the user can

specify the vector engine width and maximum matrix size at

compile time, and the desired matrix size at run time.

This level of automated optimization is far more than the

timing optimizations performed by Quartus II or similar

FPGA design tools. For design entry using Verilog or VHDL,

the Quartus II tool is limited to trying to place and route the

design to minimize delays on critical paths in the design. It

cannot optimize the actual design itself. In contrast,

DSPBuilder is able to change the design itself to optimize

critical paths, relieving the designer from the timing closure

process. Additional benefits are allowing easy design updates,

such as parameterizing the number of channels, FIR filter

lengths, vector sizes and many other aspects of the design.

DSPBuilder also “future-proofs” designs, allowing a given

design to be easily ported to different FPGA families,

including future FPGA families in an automated fashion.

VI. GFLOPs, Performance and Resource Usage

QR Decomposition Backward SubstitutionInterface MatchingStimulus

11

go

10

x_data

9

x_valid

8

bw_sub_done
7

q_mult_i_indx

6

q_mult_i_v

5

q_mult_i

4

r_col

3

r_row

2

r_valid

1

r_data

v alid

ch_in

start

restart

wr_new_col

we

dout

addr

go

ch_out

v alid_out

qrd_stimulus

sources_dspb

we

din

addr

go

ch_in

v alid_in

ch_out

r_v alid

r_data

r_data_mod

r_row

r_col

q_mult_i

q_mult_i_v

q_mult_i_indx

done

a_matrix_col_ready

qrd

v alid

ch_in

r_v alid

r_data_mod

r_row

r_col

q_mult_i

q_mult_i_v

go

v alid_out

ch_out

Lij_v

y _v

Lij_y

ColumnIdx

RowIdx

FwDone

BsInLowerTri

BsProcLower

decom_bwsub_intr

1

z 25

col_ready_delay

Stratix V

Stratix V GX

AUTO

Device

1

0

0

n-1

1

0

Lij_v

y _v

Lij_y

ChIdx

ColumnIdx

RowIdx

FwDone

MatSizeRT_mn1

NumMatRT_mn1

BsInLowerTri

BsProcLower

xv

xc

xd

x_f irstcolumn

xBwSubDone

xBsFif oErr

Config_SubSys

BwSub

1

start

uint8

boolean

single (c)

uint8

uint8

single (c)

uf ix1

uint8

uf ix1

uint8

uf ix1

single (c)

boolean

boolean

boolean

uf ix1

single (c)

uint8

uf ix10

uf ix1

uint8

uf ix1

boolean

uint8

boolean

boolean

single (c)

uint8

boolean

boolean

uf ix1

boolean

boolean

single (c) (100)

uf ix10

boolean

uint8

boolean

uf ix1

uint8

uf ix1

The FLOPs of the QRD algorithm is defined as follows,

where n and m are matrix rows and columns respectively.

This is for complex matrices, although the number of floating

point operations is specified in real or scalar operations.

Algorithm Step Number of Real FLOP

QR

Decomposition

233.5 mn

bQT  nmn 28 

Backward

Substitution

24n

Total: 22 42833.5 nnmnmn 

Table 1: QRD Solver Real Flops

The performance and resource usage of the QR

Decomposition core is shown for several matrix and vector

size combinations. Since these are user defined parameters,

any reasonable size can be easily generated by the QRD core.

All results are using single precision floating point, with

complex input and output data.

The FPGA used to compile the QRD core is a mid-sized

Stratix V FPGA, specifically the 5SGSD5 in –C2 speed

grade. The Fmax figure shown is actually exceeded in most

compile results. In some cases, faster performance can also be

achieved using the Quartus II DSE feature.

The level of resources used indicates that multiple QRD cores

may be built in the same device depending upon the

matrix/vector size. This is particularly true if a larger Stratix

V FPGA device is used.

By examining Table 1, it is evident that the GFLOPS, logic

and multiplier resources are approximately proportional to the

vector size chosen. The memory resources are approximately

proportional to matrix size chosen.

Input

Matrix

Size

Vect

or

Size

ALUTs /

Memory

blocks /

27x27s

Latency

@

Operatin

g

frequenc

y

Throug

h-put

(Matrix

per

second)

GFLOPS

per core

(complex

single

precision)

50x100 50 105K

230 M20K

227 mults

45 us @

 250 MHz

31,681 43.8

100x200 50 106K

304 M20K

228 mults

213 us @

 250 MHz

5,920 64.3

100x200 100 202K

504 M20K

428 mults

173 us @

 200 MHz

8,467 91.9

250x400 100 200K 1586 us
@

789 106

858 M20K

428 mults

 200 MHz

400x400 100 203K

1566 M20K

428 mults

4029 us

@

 200 MHz

310 106

450x450 75 157K

1985 M20K

328 mults

7121 us

 @ 200

MHz

165 80

Table 2: QRD performance using Stratix V 5SGSD5 FPGA

The throughput is a number of matrices processed per second,

includes both the QR decomposition and back substitution.

The latency is the time from the load in of the last input data

sample to the reading out of the last output sample.

Power consumption and GFLOPS per watt measurements are

also presented. The reader should keep in mind that these are

actual measured GFLOPS/W on a complex algorithm (QRD),

and should not to be compared to other published figures

showing theoretical GFLOPS/W, often using a trivial

implementation which is just exercising multipliers. This

approach can result in “marketing” figures an order of

magnitude higher, but are not realistic in what an actual

application will experience.

Input

Matrix

Size

Vect

or

Size

Throug

h-put

(Matrix

per

second)

GFLOPS

per core

(complex

single

precision)

Core power

consumptio

n as

measured

using Altera

5SGSD5

eval board

GFLOP

s/Watt

50x100 50 31,681 43.8 10.77 W 4.07

100x200 50 5,920 64.3 13.9 W 4.63

100x200 100 8,467 91.9 20.97 W 4.38

400x400 100 310 106 25.20 W 4.21

450x450 75 165 80 20.25 3.95

Table 3: QRD GFLOPs/Watt using Stratix V 5SGSD5 FPGA

VII. Numerical Accuracy Concerns

These results are achieved using an FPGA based parallel

processing architecture. Therefore, the results will not

precisely match the same algorithm implemented serially

with a microprocessor architecture (the same situation exists

for most GPU implementations). To address this concern,

care has been taken to assure that the hardware based results

are equally or better accurate than those achieved by

IEEE754 compliant CPU architectures. This is accomplished

by using a larger then required mantissa width. For example,

Stratix V FPGAs employ thousands of native 27x27 size

hardened multipliers, which is larger than the 23x23 size

multiplier required to implement single precision floating

point IEEE754.

The numerical precision is evaluated by first computing

results in MATLAB using double precision. These results are

compared to both single precision results using MATLAB on

an IEEE754 compliant PC, and the single precision results

computed in the FPGA. Both the maximum error and

normalized error are shown. The normalized error is found

using the Frobenius norm determined by:


 


n

i

n

j
F ij

E e
1 1

2

The resultant errors are tabulated for a sample collection of

matrix and vector sizes. The parallelized FPGA based signal

processing produces normalized errors that are smaller than

that computed the CPU architecture, employing an IEEE754

based serial architecture. The maximum error found is also

slightly smaller on FPGA, compared to IEEE754.

Matrix /

Vector Size

MATLAB using

computer

Norm/Max

DSPBA

generated

RTL

Norm/Max

50x100 / 50 5.01e-005 / 6.42e-

006

4.87e-005 /

6.02e-006

100x200 / 100 2.3e-5 / 1.24e-6 1.68e-5 /

9.97e-7

400x400 / 100 8.8e-5 / 4.81e-6 7.07e-5 /

4.03e-6

Table 4: QRD floating point error comparison

Several matrix and vector are presented to show the

performance attainable in reasonable large matrix processing

core. All possible permutations and options cannot be

explored within this example design. However, due to the

ability to design and quickly develop within the Mathworks

environment, many design options can be investigated

quickly, without resorting to Quartus II FPGA compiles,

which is in contrast to HDL design methodology. Floating

point designs of this complexity and performance are not

feasible using traditional HDL design techniques.

VIII. Summary

Production released FPGAs and tools are available to build

high throughput, low latency floating point linear algebra and

other functions, which exceed the capabilities of CPUs and

DSPs, and rival that of latest GPUs. In addition, the native

connectivity, streaming capabilities, and power consumption

advantages of FPGAs can provide a significant advantage

over GPU based solutions. The resultant FPGA designs may

also be used as hardware accelerators to off-load CPUs,

allowing much of the existing code base to be preserved on

current processors while still allowing a dramatic increase in

system throughput or inclusion of higher computation rate

algorithms to meet requirements.

Using the DSPBA design flow, similar results have been

achieved using FPGAs on other designs, such as floating

point FFTs, matrix multiplies, Cholesky decomposition, LU

decomposition, and other functions.

A vendor independent benchmarking effort has been

completed by Berkeley Design Technology Inc (BDTi) using

QR and Cholesky decomposition cores on 28nm Stratix V

and Arria V FPGAs. This report is available at www.bdti.com

References
[1] Michael Parker and Colman Cheung, “Hardware Based

Floating Point Processing” Proceedings of the 2011 HPEC

conference, September 2011, 2009

[2] Michael Parker and Volker Mauer, “Floating Point STAP

Implementation on FPGAs,” Proceedings of the 2011 RadarCon

Conference, May 2011, 2009

[3] Mark Jervis, “Advances in DSP Design Tool Flows for FPGAs,

MILCOM 2010

[4] Suleyman S. Demirsoy and Martin Langhammer, “Fused

Datapath Floating Point Implementation of Cholesky

Decomposition,” Proceedings of the ACM/SIGDA International

Symposium on Field Programmable Gate Arrays, February, 2009

[5] M. Langhammer, "High performance matrix multiply using

fused datapath operators," in 2008 42nd Asilomar Conference on

Signals, Systems and Computers. IEEE, October 2008, pp. 153-

159

[6] M.A. Richard – Fundamentals of Radar Signal Processing

http://www.bdti.com/

