
 1

D4M 2.0 Schema: A General Purpose High
Performance Schema for the Accumulo Database

Jeremy Kepner, Christian Anderson, William Arcand, David Bestor, Bill Bergeron, Chansup Byun, Matthew Hubbell,
Peter Michaleas, Julie Mullen, David O’Gwynn, Andrew Prout, Albert Reuther, Antonio Rosa, Charles Yee

MIT Lincoln Laboratory, Lexington, MA, U.S.A.

Abstract— Non-traditional, relaxed consistency, triple store
databases are the backbone of many web companies (e.g., Google
Big Table, Amazon Dynamo, and Facebook Cassandra). The
Apache Accumulo database is a high performance open source
relaxed consistency database that is widely used for government
applications. Obtaining the full benefits of Accumulo requires
using novel schemas. The Dynamic Distributed Dimensional
Data Model (D4M)[http://www.mit.edu/~kepner/D4M] provides a
uniform mathematical framework based on associative arrays
that encompasses both traditional (i.e., SQL) and non-traditional
databases. For non-traditional databases D4M naturally leads to
a general purpose schema that can be used to fully index and
rapidly query every unique string in a dataset. The D4M 2.0
Schema has been applied with little or no customization to cyber,
bioinformatics, scientific citation, free text, and social media data.
The D4M 2.0 Schema is simple, requires minimal parsing, and
achieves the highest published Accumulo ingest rates. The
benefits of the D4M 2.0 Schema are independent of the D4M
interface. Any interface to Accumulo can achieve these benefits
by using the D4M 2.0 Schema.

Keywords-component; D4M; NoSQL; Accumulo; database
schema; Hadoop; Big Data

I. INTRODUCTION
Non-traditional, relaxed consistency, triple store databases

provide high performance on commodity computing hardware
to I/O intensive data mining applications with low data
modification requirements. These databases are the backbone
of many web companies (e.g., Google Big Table [1], Amazon
Dynamo [2,3], Facebook Cassandra [4,5], and Apache HBase
[6]). The Google Big Table architecture has spawned the
development of a wide variety of open source “NoSQL”
database implementations [7]. Many of these implementations
are built on top of the Apache Hadoop [8,9] distributed
computing infrastructure that provides distributed data storage
and replication services to these databases. A key element of
these databases is relaxed consistency. Traditional databases
provide a high level of ACID (atomicity, consistency, isolation,
durability). High ACID databases guarantee that separate
queries of the same data at the same time will give the same
answer. Relaxed consistency databases provide BASE (Basic
Availability, Soft-state, Eventual consistency), and guarantee
that queries will provide the same answers eventually. In
exchange, relaxed consistency databases can be built simply
and provide high performance on commodity computing
hardware.

The Apache Accumulo [10] database is the highest
performance open source relaxed consistency database
currently available and is widely used for government
applications [11]. Accumulo is based on the Google Big Table
architecture and formally sits on top of the Apache Hadoop
distribute file system. Accumulo does not directly use the
Apache Hadoop MapReduce parallel programming model.
Accumulo was developed by the National Security Agency and
was released to the open source community in 2011.

Obtaining the full benefits of Accumulo (and other non-
traditional databases) requires using novel schemas.
Traditional schema design begins with a data model and a set
of target queries. The schema turns the data model into an
ontology of relationships among tables with a variety of indices
designed to accelerate the queries. The strengths of this
approach can also cause challenges in certain applications. A
data model requires a priori knowledge of the data and requires
ingest processes that fully parse and normalize the data to the
data model. Query optimization requires a priori knowledge of
the queries so they may be captured in the table structure.
Non-traditional databases allow data to be ingested and indexed
with very little a priori knowledge. This allows new classes of
data and queries to be added to the existing tables without
modifying the schema of the database.

The Dynamic Distributed Dimensional Data Model (D4M)
[12,13] provides a uniform framework based on the
mathematics of associative arrays [14] that encompasses both
traditional (i.e., SQL) and non-traditional databases. For non-
traditional databases D4M naturally leads to a general purpose
Accumulo schema that can be used to fully index and rapidly
query every unique string in a dataset. The D4M 2.0 Schema
builds on the D4M 1.0 schema [15] that helped inspire the
widely used NuWave schema that is used across the Accumulo
community. The D4M 2.0 Schema has been applied with no
modification to cyber, bioinformatics, scientific citation, free
text, and social media data. The D4M 2.0 Schema is simple,
allows data to be ingested with minimal parsing, and the
highest published Accumulo ingest rates have been achieved
using this Schema [11]. The benefits of the D4M 2.0 Schema
can easily be obtained using the D4M interface to Accumulo.
These benefits are independent of the interface and any
interface to Accumulo can achieve these benefits by using the
D4M 2.0 Schema.

This work is sponsored by the Department of the Air Force under Air Force contract FA8721-05-C-0002. Opinions, interpretations, conclusions and
recommendations are those of the author and are not necessarily endorsed by the United States Government.

Ka
Typewritten Text
978-1-4799-1365-7/13/$31.00 ©2013 IEEE

 2

The organization of the rest of this paper is as follows.
Section II introduces the concept of the associative array that
forms the mathematical basis of the D4M 2.0 Schema. Section
III presents the organization and structure of the D4M 2.0
Schema in the context of a social media example (Twitter).
Section IV describes how the D4M 2.0 Schema fits into an
overall data analysis pipeline. Section V shows the
performance results using Graph500 benchmark data. Section
VI summarizes the results.

II. ASSOCIATIVE ARRAYS
Spreadsheets are used by nearly 100M people every day

and may be the most commonly used analytical structure on
Earth. Likewise triple stores (e.g., Big Table, Dynamo,
Cassandra, and HBase) store a large fraction of the analyzed
data in the world. Both spreadsheets and big tables can hold
diverse data (e.g., strings, dates, integers, and reals) and lend
themselves to diverse representations (e.g., matrices, functions,
hash tables, and databases). Despite their common usage, there
have been no formal mathematics developed that can be used
to describe and manipulate these data structures algebraically.

Associations between multidimensional entities (tuples)
using number/string keys and number/string values can be
stored in data structures called associative arrays. For example,
in two dimensions, a D4M associative array entry might be

A('alice ', 'bob ') = 'cited '
or A('alice ', 'bob ') = 47.0

The above tuples have a 1-to-1 correspondence with their triple
store representations

('alice ','bob ','cited ')
or ('alice ','bob ',47.0)

Associative arrays can represent complex relationships in
either a sparse matrix or a graph form (see Figure 1). Thus,
associative arrays are a natural data structure for performing
both matrix and graph algorithms. Such algorithms are the
foundation of many complex database operations across a wide
range of fields [16].

Constructing complex composable query operations can be
expressed using simple array indexing of the associative array
keys and values, which themselves return associative arrays:

A('alice ',:) alice row
A('alice bob ',:) alice and bob rows
A('al* ',:) rows beginning with al
A('alice : bob ',:) rows alice to bob
A(1:2,:) first two rows
A == 47.0 subarray with values 47.0

The composability of associative arrays stems from the
ability to define fundamental mathematical operations whose
results are also associative arrays. Given two associative arrays
A and B, the results of all the following operations will also be
associative arrays

A + B A - B A & B A|B A*B

Figure 1. A graph describing the relationship between alice, bob,
and carl (left). A sparse associative array A captures the same
relationships (right). The fundamental operation of graphs is finding
neighbors from a vertex (breadth first search). The fundamental
operation of linear algebra is vector matrix multiply. D4M associative
arrays make these two operations identical. Thus, algorithm
developers can simultaneously use both graph theory and linear
algebra to exploit complex data.

Associative array composability can be further grounded in the
mathematical closure of semirings (i.e., linear algebraic “like”
operations) on multidimensional functions of infinite, strict,
totally ordered sets (i.e., sorted strings). Associative arrays
when combined with fuzzy algebra [17,18,19] allows linear
algebra to be extended beyond real numbers to include words
and strings. For example, in standard linear algebra,
multiplying the vector x = ('alice bob ') by the vector y =
('carl bob ') is undefined. In fuzzy algebra we can replace
the traditional plus (+) operation with a function like “max”
and the traditional multiply operation with an operation like
“min” resulting in

 x yT = ('alice bob ') ('carl bob ')T

= max(min('alice carl '),min('bob bob '))

= max('alice bob ')

= 'bob '

where T denotes the transpose of the vector. Using fuzzy
algebra allows D4M to apply much of the extensive
mathematics of linear algebra to an entirely new domain of data
consisting of words and strings (e.g., documents, network logs,
social media, and DNA sequences). Measurements using D4M
indicate these algorithms can be implemented with a tenfold
decrease in coding effort when compared to standard
approaches [20,21].

III. D4M 2.0 SCHEMA
The D4M 2.0 Schema is best explained in the context of a

specific example. Twitter is a micro-blog that allows its users
to globally post 140 character entries or “tweets.” Twitter has
over 100M users who produce 500M tweets per day. Each
tweet consists of a message payload and metadata. To
facilitate social media research the NIST Tweets2011 corpus
[22,23] was assembled consisting of 16M tweets over a two-
week period in early 2011. At the time of our harvesting this
corpus it consisted 161M distinct data entries from 5.3M
unique users. The entire Tweets2011 corpus was ingested into
the D4M 2.0 schema running on a single node Accumulo
instance in about 20 minutes, corresponding to an ingest rate of
>200K entries/second.

x! ATx!AT!

!

alice!

bob!

alice!

carl!

bob!

carl!
cited!

cited!

 3

Figure 2. The D4M 2.0 Schema as it is applied to Twitter data consists of four tables. The raw tweet text is stored in one column in the
TedgeTxt table. All the meta data (stat|, user|, time|) and the parsed text (word|) are stored in Tedge such that each column|value pair is
a unique column. Storing the transpose of the metadata in TedgeT creates an index to every unique string in the dataset and allows it to be
looked up in a few milliseconds. The sums of the unique column|value pairs are stored using an accumulator column labeled Degree in the
TedgeDeg table. The sum table enables efficient query planning by allowing queries to estimate the size of their results prior to executing
queries. The row keys are stored in big-endian format to allow for efficient load balancing as the table grows and is split across multiple servers.

The simplest way to view Accumulo is as a triple store of
strings consisting of a row key, a column key, and a value that
correspond to the entries of a sparse matrix. In Accumulo
terminology these are the row, column qualifier, and value
(Accumulo has additional row properties that will be discussed
shortly). In the case of twitter, a triple might be

(31963172416000001,user|getuki,1)

The above triple denotes that the big endian tweet id
31963172416000001 was from the user getuki. As is often
the case in the D4M 2.0 Schema the value of 1 is used to
simply denote the existence of the relationship and the value
itself has no additional meaning.

Figure 2 shows the D4M 2.0 Schema applied to the
Tweets2011 data resulting in four distinct tables. The raw
tweet text is stored in one column in the TedgeTxt table. All
the meta data (stat|, user|, time|) and the parsed text
(word|) are stored in Tedge such that each column|value pair
is a unique column. Storing the transpose of the metadata in
TedgeT indices every unique string the dataset allows it to be
looked up in a few milliseconds. The sums of the unique
column|value pairs are stored using an accumulator column
labeled Degree in the TedgeDeg table. The sum table enables
efficient query planning by allowing queries to estimate the
size of results prior to executing queries. The row keys are
stored in big-endian format to allow for efficient load balancing
as the table grows and is split (or sharded) across multiple
servers.

The specific features of Accumulo and how they are
exploited by the D4M 2.0 Schema are as follows.

A. Row Store
Accumulo is a row store so any row key (e.g., the tweet ID

31963172416000001) can be looked up in constant time.
However, looking up a column (e.g., user|getuki) or value (e.g.,
1) requires a complete scan of the table. The D4M 2.0 Schema
addresses this limitation by storing both the table (Tedge) and
its transpose (TedgeT), allowing any row or column to be
looked up in constant time.

B. Sparse
Accumulo storage is sparse. Only non-empty columns are

stored in a row. This is critical since many of the data sets that
Accumulo are used on are naturally represented as extremely
sparse tables. In the Tweet2011 data 99.99997% of the 16M x
30M sparse matrix is empty.

C. Unlimited Columns
Accumulo can add new columns with no penalty. This is a

key capability of Accumulo that is heavily exploited by the
D4M 2.0 Schema. It is often the case that there will be more
unique columns than rows. Tweet2011 has 16M unique rows
and 30M unique columns.

D. Arbitrary Text
Accumulo rows, columns, and values can be arbitrary byte

strings. This is very useful for storing numeric data (e.g.,
counts) or multi-lingual data (e.g., unicode). For example,
consider the following Twitter entry
TweetID stat time user text
10000061427136913 200 2011-01-31 06:33:08 getuki バスなう

In a traditional database, the above entry would be represented
by one row in a four column table. In the Accumulo D4M 2.0

08805831972220092

75683042703220092

08822929613220092

…

Degree 108
642
73

286
150
7

836
327

825
822 6 7 7 454

596
8 6 7 3 3 454

603
9

16 102
23

162
4

08805831972220092 @mi_pegadejeito Tipo. Você fazer uma plaquinha pra mim, com o nome do FC pra você tirar uma foto, pode fazer isso?

75683042703220092 Wait :)

08822929613220092 null

…

st
at

|2
00

st

at
|3

01

st
at

|3
02

tim
e|

20
11

-

st
at

|4
03

wor
d|

@
m

i..
.

wor
d|

Ti
po

.

us
er

|M
ic

h.
..

us
er

|b
im

o.
..

us
er

|P
en

...

us
er

|…

wor
d|

Vo
cê

 Accumulo Tables:
Tedge/TedgeT!

tim
e|

20
11

-
tim

e|
20

11
-

tim
e|

nu
ll

Colum Key

R
ow

 K
ey

 wor
d|

nu
ll

wor
d|

W
ai

t

TedgeDegT! Row Key

text

R
ow

 K
ey

TedgeTxt!

 4

Scheme this entry is represented in the Tedge table by the
following four triples with big endian row keys

(31963172416000001,stat|200,1)
(31963172416000001,time|2011-01-31 06:33:08,1)
(31963172416000001,user|getuki,1)
(31963172416000001,word|バスなう,1)

Note: since this tweet has only one word the text field is
parsed into just one word. The raw entry for this tweet would
likewise be stored in the TedgeTxt table as

(31963172416000001,text,バスなう)

This raw table allows all data to be preserved in case the
original context of the tweet is desired (as is often the case).

E. Collective Updates
Accumulo performs collective updates to tables called

“mutations” that can update many triples at the same time. It is
often optimal to have thousands of triples in a single mutation.
In the Tweets2011 data, inserts were performed in batches of
10,000 tweets to achieve optimal performance.

F. Accumulators
Accumulo can modify values at insert time. For example,

if the following triple were inserted into the TedgeDeg table

(word|バスなう,Degree,1)

and the table entry already had a value of

(word|バスなう,Degree,16)

then Accumulo can be instructed that any such collision on the
column Degree should be handled by converting the strings 16
and 1 to numeric values, adding them, and then converting
them back to a string to be stored as

(word|バスなう,Degree,17)

An accumulator column is used to create the TedgeDeg
column sum table in the D4M 2.0 Schema. The TedgeDeg
sum table provides several benefits. First, the sum table allows
tally queries like “how many tweets have a specific word” to be
answered trivially. Second, the sum tables provides effective
query planning. For example, to find all tweets containing two
words, one first queries to the sum table to select the word that
is the least popular before proceeding to query the transpose
table (TedgeT).

Note: Directly inserting all triples into the sum table can create
a bottleneck. During large ingests into Accumulo it is vital to
pre-sum the columns in each batch prior to ingesting into the
sum table. Pre-summing can reduce the traffic into the sum
table by 10x or more. In the D4M API pre-summing can be
achieved by constructing an associative array A of all the triples
in the batch and then simply inserting the result of sum(A,2)
into TedgeDeg.

G. Parallel
Accumulo is highly parallel. At any given time it is

possible to have many processes inserting and querying the
database. Even on a single node, the optimal ingest
performance for the Tweets2011 data was achieved using 4
ingest processes on the same node.

H. Distributed
Accumulo uses distributed storage. As Accumulo tables

become large they are broken up into pieces called tablets that
can be stored on different tablets.

I. Partitions
Accumulo tables are partitioned (or sharded) into different

tablets at specific row keys that are called splits. As a table
increases in size Accumulo will automatically pick splits that
keep the pieces approximately equal. If the row key has a time
like element to it (as does the tweet ID), then it is important to
convert it to big-endian format so the most rapidly changing
digits are first. This will cause inserts to be spread across all
the tablets. If the row key is sequential in time, all the inserts
will be performed on only one tablet and then slowly migrated
to the other tablets. Avoiding this “burning candle” effect is
critical to achieve high performance in Accumulo.

Because the size at which Accumulo starts splitting tables is
quite large, it is often necessary to pre-split the table to achieve
optimal performance. Pre-splitting is even important on single
node databases (see Figure 5).

J. Hadoop without MapReduce
Accumulo lives on top of the Apache Hadoop Distributed

File System (HDFS) [9]. Apache Hadoop also provides an
interface to the simple and very popular MapReduce parallel
programming model. Unfortunately, many applications require
more sophisticated programming models to achieve high
performance [24]. Accumulo does not use the Hadoop
MapReduce parallel Java API for any of its internal operations.
The highest performance Accumulo applications typically do
not use Hadoop MapReduce to execute their ingest and query
programs. In this paper the results were obtained using either
the pMatlab [25,26,27] parallel programming environment that
uses a distributed arrays parallel programming model or the
LLGrid_MapReduce interface that leverages the GridEngine
parallel computing scheduler [11].

K. Accumulo Advanced Features
Accumulo has a number of additional features. For most

applications, viewing Accumulo entries as triples is sufficient.
In reality, an Accumulo entry is not a 3-tuple (row, column,
value) but a 6-tuple (row, column family, column qualifier,
visibility label, timestamp, value). The D4M 2.0 Schema
chooses to view Accumulo entries as triples because it
simplifies table design, takes full advantage of Accumulo’s
core features (high performance and unlimited columns), and is
compatible with the 2D tabular view found in nearly every
database. The D4M 2.0 Schema views the other parts of the
Accumulo entry (column family, visibility label, timestamp) as
additional metadata on the triples that can used when needed.

Every Accumulo entry is coded with a timestamp that
allows an entry to hold its entire history of values. The most
common use of the timestamp is in Accumulo’s internal
automated data role-off that cleanses the system of older
values. Role-off is the most common way data is truly deleted
from the Accumulo system. Until role-off, data is typically
only marked for deletion and still remains on the system. The
specific role-off policy is application dependent and is typically

 5

set by the database administrator. Actual time data is best held
in a column (e.g., time|2011-01-31 06:33:08). A time
column can be queried and manipulated like any other data.

Accumulo visibility labels provide a sophisticated Boolean
algebra for each entry to determine who can see each piece of
data. In some systems visibility labels are essential, in other
systems visibility labels are unused. Visibility policy is usually
application dependent and is typically set by the database
administrator.

Accumulo column families provide an additional hierarchy
to the Accumulo columns for accelerating certain operations.
Columns families can be kept together on the same table split,
which can increase the performance of certain queries that
always have data together. In addition, Accumulo iterators
have been written that allow joining data more efficiently. The
D4M 2.0 Schema provides these benefits through the use of the
sum table TedgeDeg. It is tempting to use the Accumulo
column family to convey one additional level of semantic
hierarchy, but this can have unintended performance
implications. The D4M 2.0 Schema embeds arbitrary levels of
semantic of hierarchy directly into the column (e.g., stat|200
and user|getuki). This column format has the added
advantage of being easily represented as a row in the transpose
table TedgeT.

A final Accumulo advanced feature is bulk ingest. Bulk
ingest stages data in the internal Accumulo format and adds it
to the database as part of its internal bookkeeping processes. In
certain instances bulk ingest may provide higher performance
at the cost of delaying when the data is available for query.
The highest published ingest rates [11] use Accumulo’s
standard ingest mechanism with batched mutations that make
the data immediately available for query.

IV. PIPELINE
Accumulo databases do not run in isolation and are usually

a part of a data analysis pipeline. The D4M 2.0 Schema
typically has a four-step pipeline consisting of parse, ingest,
query/scan, and analyze. The parse step converts the raw data
(e.g., CSV, TSV, or JSON format) to simple triples. In
addition, each batch of triples is also saved as a D4M
associative array.

Figure 3. D4M 2.0 Schema pipeline consists of parse, ingest,
query/scan, and analyze steps.

The ingest step reads the triple files and ingests them into the
Tedge, TedgeT, and TedgeTxt tables. In addition, the
associative array files are read in, summed and the results
added to the sum table TedgeDeg. Extraction of data for
analysis is done either by querying the data directly or by
scanning the associative array files. If the amount of data
required for the analysis is small then querying the database
will be fastest. If the amount of data required is a large fraction

of the entire database (>10%) then it is often faster to run the
analysis in parallel over the associative array files.

V. PERFORMANCE RESUTLS
The ingest performance of the D4M 2.0 Schema on an 8-

node (192 core) system is taken from [11] and shown in Figure
4. The best published performance results we were able to find
for Cassandra [28] and HBase [29] are also shown. Figure 4 is
consistent with the claim that Accumulo is the highest
performance and most scalable open source triple store
database currently available. Likewise, Figure 4 is also
consistent with the claim that the D4M 2.0 Schema is currently
the highest performance Accumulo schema.

Figure 4. Ingest performance vs. number of ingest processors of
Accumulo using the D4M 2.0 Schema [11], Cassandra [28], and
HBase [29].

Figure 5. D4M 2.0 Schema performance on a 1-node (32 core) Accumulo
system ingesting Graph500 data [31,32]. Using pre-splitting a single ingestor
is able to achieve sustained performance of 70K inserts/sec. Likewise using
multiple ingestors and pre-splits it is possible achieve nearly 350K inserts/sec.

Accumulo
Database

Raw
Data
Files

Triple
Files,
Assoc
Files

Assoc
Arrays

1. Parse 2. Ingest 3a. Query 4. Analyze

3b. Scan

4,000,000
entries/
second

60,000
entries/second 35,000

entries/second

Ingest (Entries/s) Scan (Entries/s)

Ingest (MB/s) Scan (MB/s)

Load Average Scan Sessions

Minor Compactions Major Compactions

18:00 18:30
0

20000

40000

60000

80000

18:00 18:30
0

5

10

15

20

25

18:00 18:30
0.0

1.0

2.0

3.0

4.0

18:00 18:30
-1.0

-0.5

0.0

0.5

1.0

18:00 18:30
0

1

2

3

4

18:00 18:30
0.0

1.0

2.0

3.0

4.0

2 of 3

Ingest (Entries/s) Scan (Entries/s)

Ingest (MB/s) Scan (MB/s)

Load Average Scan Sessions

Minor Compactions Major Compactions

20:30 21:00
0

20000

40000

60000

80000

20:30 21:00
0

5

10

15

20:30 21:00
0.0

1.0

2.0

3.0

4.0

20:30 21:00
-1.0

-0.5

0.0

0.5

1.0

20:30 21:00
0.0

1.0

2.0

3.0

4.0

20:30 21:00
0.0

0.5

1.0

1.5

2 of 3

1 local ingestor
0 table splits

1 local ingestor
3 table splits

collisions

no collisions

Ingest (Entries/s) Scan (Entries/s)

Ingest (MB/s) Scan (MB/s)

Load Average Scan Sessions

Minor Compactions Major Compactions

19:00 19:30
0

50000

100000

150000

200000

250000

19:00 19:30
0

10

20

30

40

19:00 19:30
0.0

2.5

5.0

7.5

10.0

19:00 19:30
-1.0

-0.5

0.0

0.5

1.0

19:00 19:30
0

2

4

6

8

19:00 19:30
0

5

10

15

20

2 of 3

3 table splits

3
local

ingestors

2
local

ingestors

Ingest (Entries/s) Scan (Entries/s)

Ingest (MB/s) Scan (MB/s)

Load Average Scan Sessions

Minor Compactions Major Compactions

00:00 00:30
0

100000

200000

300000

400000

00:00 00:30
0

20

40

60

00:00 00:30
0

5

10

15

20

00:00 00:30
0.0000

0.0025

0.0050

0.0075

0.0100

0.0125

00:00 00:30
0

2

4

6

8

00:00 00:30
0

20

40

60

80

2 of 3

11 table splits

ingestors: 12
local

8
remote

10
remote

12
remote

 6

Figure 5 is a more detailed analysis of the performance of
the D4M 2.0 Schema on a 1-node (32 core) system using
Graph500 data [30,31]. Figure 5 (bottom) is the ingest
performance of a single ingestor with no pre-splitting. A drop
occurs halfway thru the ingest due to collisions. Even though
only one ingestor is used, a very high performance D4M
ingestor can post mutations to Accumulo faster than it can
retire them. Figure 5 (bottom middle) shows that by adding
splits a sustained performance of 70K (entries/sec) can be
achieved by a single ingestor. Figure 5 (top middle) shows the
sustained performance for 2 ingestors (140K entries/sec) and 3
ingestors (190K entries/sec). Figure 5 (top) shows the single
node performance peaking a ~350K entries/sec)

VI. SUMMARY
The D4M 2.0 Schema is simple and requires minimal

parsing. The highest published Accumulo ingest rates have
been achieved using this schema. The benefits of the schema
have been illustrated using the 16M record Tweets2011 corpus
which was fully parsed, ingested, and indexed in <1 hour with
<1 day of programmer effort. Additional performance results
are shown using the Graph500 benchmark that achieved an
insert rate ~350K entries/sec on a single node database while
preserving constant (subsecond) access time to any entry. The
benefits of the D4M 2.0 Schema are independent of the D4M
interface and any interface to Accumulo can achieve these
benefits by using the D4M 2.0 Schema.

REFERENCES
[1] F. Chang, J. Dean, S. Ghemawat, W. Hsieh, D. Wallach, M. Burrows, T.

Chandra, A. Fikes, & R. Gruber, “Bigtable: A Distributed Storage
System for Structured Data,” ACM Transactions on Computer Systems,
Volume 26 Issue 2, June 2008

[2] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman,
Alex Pilchin, S. Sivasubramanian, P. Vosshall, & W Vogels, “Dynamo:
amazon’s highly available key-value store,” Symposium on Operation
Systems Principals (SOSP), 2007

[3] Amazon Dynamo http://aws.amazon.com/dynamodb
[4] A. Lakshman & Prashant Malik, “Cassandra: a decentralized structured

storage system,” ACM SIGOPS Operating Systems Review, Volume 44
Issue 2, April 2010

[5] Apache Cassandra http://cassandra.apache.org
[6] Apache HBase http://hbase.apache.org
[7] M. Stonebraker, “SQL databases v. NoSQL databases,”

Communications of the ACM, Volume 53 Issue 4, April 2010
[8] K. Shvachko, H. Kuang, S. Radia, and R. Chansler, “The Hadoop

Distributed File System,” in 26th IEEE Symposium on Mass Storage
Systems and Technologies, 3-7 May, 2010

[9] Apache Hadoop http://hadoop.apache.org
[10] Apache Accumulo http://accumulo.apache.org

[11] C. Byun, W. Arcand, D. Bestor, B. Bergeron, M. Hubbell, J. Kepner, A.
McCabe, P. Michaleas, J. Mullen, D. O'Gwynn, A. Prout, A. Reuther, A.
Rosa & C. Yee, “Driving Big Data With Big Compute,” IEEE High
Performance Extreme Computing (HPEC), Sep 10-12, 2012

[12] J. Kepner et al., “Dynamic distributed dimensional data model (D4M)
database and computation system,” 37th IEEE International Conference
on Acoustics, Speech, and Signal Processing (ICASSP), Kyoto, Japan,
Mar 2012

[13] D4M http://www.mit.edu/~kepner/D4M
[14] J. Kepner, “Spreadsheets, Big Tables, and the Algebra of Associatve

Arrays,” MAA & AMS Joint Mathematics Meeting, Jan 4-7, 2012
[15] J. Kepner, W. Arcand, W. Bergeron, C. Byun, M. Hubbell, B. Landon,

A. McCabe, P. Michaleas, A. Prout, T. Rosa, D. Sherrill, A. Reuther &
C. Yee, “Massive Database Analysis on the Cloud with D4M,” HPEC,
Sep 21-22, 2011

[16] J. Kepner and J. Gilbert (editors), Graph Algorithms in the Language of
Linear Algebra, SIAM Press, Philadelphia, 2011.

[17] J. Plavka, “Linear Independences in Bottleneck Algebra and their
Coherences with Matroids,” Acta Math. Univ. Comenianae, vol. LXIV,
no. 2, pp. 265–271, 1995

[18] P. Butkovic, “Strong Regularity of Matrices - a Survey of Results,”
Discrete Applied Mathematics, vol. 48, pp. 45-68, 1994

[19] M. Gavalec & J. Plavka, “Simple Image Set of Linear Mappings in a
Max–Min Algebra,” Discrete Applied Mathematics, vol. 155, pp. 611 –
622, 2007

[20] B.A. Miller, N. Arcolano, M.S. Beard, N.T. Bliss, J. Kepner, M.C.
Schmidt, and P.J. Wolfe, “A Scalable Signal Processing Architecture for
Massive Graph Analysis,” 37th IEEE International Conference on
Acoustics, Speech, and Signal Processing (ICASSP), Kyoto, Japan, Mar
2012

[21] J. Kepner, D. Ricke, & D. Hutchinson, “Taming Biological Big Data
with D4M,” Lincoln Laboratory Journal, Vol 20, No 1, 2013

[22] McCreadie et al, “On building a reusable Twitter corpus,” ACM SIGIR
2012

[23] Tweets2011 http://trec.nist.gov/data/tweets/
[24] M. Stonebraker & J. Kepner, “Possible Hadoop Trajectories,”

Communications of the ACM, Blog, May 2, 2012
[25] J. Kepner and S. Ahalt, “MatlabMPI,” Journal of Parallel and

Distributed Computing, vol. 64, issue 8, August, 2004
[26] N. Bliss and J. Kepner, “pMatlab parallel Matlab library,” International

Journal of High Performance Computing Applications: Special Issue on
High Level Programming Languages and Models, J. Kepner and H.
Zima (editors), Winter 2006 (November)

[27] J. Kepner, Parallel Matlab for Multicore and Multinode Computers,
SIAM Press, Philadelphia, 2009

[28] J. Ellis, “What’s New in Cassandra Performance,”
http://www.datastax.com/dev/blog/whats-new-in-cassandra-1-0-
performance, Oct 14, 2011

[29] A. Dragomir, “HBase Performance Testing,” http://hstack.org/hbase-
performance-testing, April 26, 2010

[30] D. Bader, K. Madduri, J. Gilbert, V. Shah, J.y Kepner, T. Meuse, and A.
Krishnamurthy, “Designing Scalable Synthetic Compact Applications
for Benchmarking High Productivity Computing Systems,” CT Watch,
Vol 2, Number 4A, November, 2006.

[31] Graph500 http://www.graph500.org

