
Big Data Analysis using Distributed Actors
Framework

Sanjeev Mohindra, Daniel Hook, Andrew Prout, Ai-Hoa Sanh, An Tran, and Charles Yee
MIT Lincoln Laboratory,

244 Wood Street,
Lexington, MA 01810

Abstract—The amount of data generated by sensors, machines,
and individuals is increasing exponentially. The increasing vol-
ume, velocity, and variety of data places a demand not only on the
storage and compute resources, but also on the analysts entrusted
with the task of exploiting big data. Machine analytics can be
used to ease the burdens on the analyst. The analysts often need
to compose these machine analytics into workflows to process
big data. Different parts of the workflow may need to be run in
different geographical locations depending of the availability of
data and compute resources. This paper presents a framework for
composing and executing big data analytics in batch, streaming,
or interactive workflows across the enterprise.

I. INTRODUCTION

The amount of data generated by sensors, machines, and
individuals is increasing exponentially. Intelligence, Surveil-
lance, and Reconnaissance (ISR) platforms are moving towards
higher resolution sensors and persistence surveillance. This has
lead to the enormous volume of data being collected. Similarly,
enterprises are collecting large amounts of operational data
from Information Technology (IT) systems with the goal of
improving operations and cyber security. Finally, the data
being generated by people, especially in the context of social
media is exploding. With this flow of multi-source data comes
the opportunity to extract information in real time that is
immediately relevant to users.

Fig. 1. Goal: Timely, actionable intelligence from big data

II. COMPUTATIONAL WORKFLOWS

Computational workflows consist of big data analytics
working together to produce final data products, not unlike an
assembly line producing cars. The logistics for the conversion
of raw data to finished data products is governed by the need

This work is sponsored by the Department of the Air Force under Air
Force contract FA8721-05-C-0002. Opinions, interpretations, conclusions and
recommendations are those of the author and are not necessarily endorsed by
the United States Government.

to most efficiently produce the data products using distributed
resources. Just like a manufacturing enterprise, not all data
processing happens in one location. And, as in a manufacturing
enterprise, it is important to have agile processes so that work
can be dynamically shifted from one location to the other.
The dynamic routing of work between the various locations
provides for a more resilient data enterprise.

Distributed processes can work together to produce and
consume data products only if a set of data specifications
is agreed upon between the producers and consumers. In
addition, automatically generating the input/output libraries for
this data from the specification greatly reduces the chances of
data incompatibility and decreases time spent on integration.

As shown in Figure 2, both the data and processing capa-
bilities are distributed. The other parallel to the manufacturing
enterprise is that the data consumers are also distributed. So a
good data communication and distribution model is needed to
get the data to the users.

Fig. 2. Challenge: Distributed Data, Computation, and Communication

A. Data Ponds and Data Streams

Every enterprise has several data ponds at different geo-
graphic locations, and several sources of data streams. For big
data analytics, it is useful to run analytics close to the data and
move only the results of the analytics to another location for
further analysis. This notion of “computing close to the data”
gives rise to distributed workflows. Sometimes, moving data

Ka
Typewritten Text
978-1-4799-1365-7/13/$31.00 ©2013 IEEE

from one location to another is unavoidable. If data movement
is not done by planes, trains, and trucks, it is useful to run
a “quick-look” streaming analytic on the in-flight data stream
to provide a heads-up summary of the data. Streaming data
analysis is most important for data streams, such as those from
sensors and social media where data is naturally generated as
a stream and needs to be analyzed in a streaming or online
fashion in real-time.

1) Data ponds and data enrichment: The data pond
analytics usually operate in an enrichment mode. They take
the raw data products from the data store, operate on them
to produce other data products, and store these data products
back in the data store. These analytics processes are often
called Extract, Transform, and Load (ETL) processes. These
processes may also keep a history and audit trail of changes
for provenance.

2) Data streams and computational pipelines: Streaming
data is often processed by analytics in a pipeline. The flow
of data through the analytics can be represented as a directed
acyclic graph of computational tasks. Each analytic has a well
defined set of input data products and output data products. The
output streams are buffered using in-memory data structures
or persistent data stores.

B. Workflows

Processing of data ponds and streams can result in batch,
streaming, and on-demand workflows. Batch workflows are
typically used for ETL of large data warehouses. Streaming
workflows are typically used for real-time data analysis. On-
demand or interactive workflows arise typically when the
analyst is querying for data and the query results in analytics
being run to produce the data products needed. It provides an
interactive model of computing that is often necessary for cued
data analysis and data exploration.

C. Workflow Parallelism: Task and data parallel computing

Efficient execution of these workflows presents challenges
in both processing and storage. Figure 3 shows an informal
architecture diagram at each of the data centers. A single
workflow can span several data centers across geographical
locations. Previous work [1] has focused on task and data
parallelism in a data center to efficiently process computational
workflows. In this work, we extend the task parallelism to span
across geographical locations.

The data processing and storage infrastructure is typically
heterogeneous being composed of parallel and distributed
filesystems; SQL and NOSQL databases; virtual machines,
GPU clusters, HPC resources, and Hadoop clusters. Not every
data center will have support for all of these technologies, but
the big data framework should be flexible enough to support
any technology in the bottom layer.

The user interface layer can range from graphical user
interfaces, interactive Read-Eval-Print-Loop (REPL) environ-
ments, GIS environments, etc. The middle layer must deal
with heterogeneity of the top and bottom layer. In this paper
we mainly focus on the middle layer which involves efficient
execution of computational workflows and associated data
movement.

Fig. 3. Notional big-data architecture

III. CHALLENGE PROBLEM

To guide the development of the big data framework, we
used the challenge problem as shown in Figure 4. The chal-
lenge is to analyze motion imagery, detect moving vehicles,
construct tracks, and finally form a graph where the nodes
represent locations. Nodes in the graph are joined by an edge if
there is a vehicle that travels from one location to the other. The
image data is collected at a rate ranging from 100 gigabytes
per minute to about 1 terabyte per minute. This processing
chain involves image processing, machine learning, and graph
analytics making it a good challenge problem for any big data
framework. Figure 4 also shows the workflow. Even though
the figure depicts the analytics as a linear workflow, the real
workflow is a directed acyclic graph.

Fig. 4. WAMI challenge problem and workflow

In the following sections, we present the Data Analysis
using Distributed Actors (DADA) framework for dealing with
big data. The DADA framework is composed of a data
architecture and a data processing architecture. The data ar-
chitecture helps us deal with the data variety and data location
challenges, whereas the data processing architecture deals with
the challenges of dealing with big data volume, and high data
rates on heterogeneous architectures. We start the discussion
of the DADA framework with the data architecture, and then
move to the processing architecture.

IV. DADA FRAMEWORK: DATA ARCHITECTURE

The challenge on the data side is driven by the volume,
velocity, and variety of data. The data may be stored locally,

remotely, or on a distributed file system. The first challenge is
to enable analytics to access the data from anywhere. DADA
data architecture relies heavily on data services to make this a
reality. Data-as-a-Service (DaaS) has two key benefits:

• It provides a universal way to access data through
services. For DADA, we rely exclusively on RESTful
web services. Using RESTful web services makes it
easy to enable a simple polyglot programming model
– different analytics in the workflow can be written
in different languages. As long as the language allows
RESTful web service calls, the analytic can read and
write to the data store.

• It allows the analytics to use a simple put/get model
to store the domain objects. The actual details of the
storage are abstracted away, and may be changed over
time without needing a rewrite of the analytics.

The other data challenge stems from the variety of data.
There can be variety of data inputs to the workflow. Moreover,
a variety of intermediate data products are produced by the
various analytics in the workflow. To be able to compose
analytics, the output of one analytic, must be readable by its
successor in the tool chain. Making this challenge even harder
is the fact that the analytics may be written in different pro-
gramming languages. Furthermore, preference must be given to
data formats that are less verbose and minimize network traffic.
To solve this problem, we turned to Google Protocol Buffers
[2]. Protocol Buffers (protobufs) provide an efficient method
for serializing data. The user defines the specifications for the
data, and the protobuf compiler generates the code necessary
to serialize and deserialize the data in C++, Java, or Python.
It allows backward compatibility – the data specification can
be modified without breaking existing programs. The key
benefit to using protobufs is compilable data specifications.
This guarantees interoperability between analytics.

Figure 5 shows the key elements of the data architecture.

Fig. 5. Data Architecture

In the DADA framework:

• Every data-type persisted on the system has a repos-
itory Uniform Resource Identifier (URI) e.g. a direc-
tory name or a service name

• Every data persisted on the system has a unique
resourceID (for example, a filename)

Taken together, each piece of data stored in the system
has a unique URL. The {URL : data} pair provides the

Key/Value model for data. This permits the analytics to store
and retrieve domain objects as opposed to worrying about
database schemas, etc. Furthermore, this permits separation of
data and data identities enabling us to broadcast lightweight
data objects consisting of data identifiers and other metadata
as messages in the system. The receiving party can retrieve
the entire data object from the system, if the data object is of
interest. We provide two ways of transmitting data between
the analytics — using the control plane or the data plane. The
data plane is service-oriented DaaS, which provides a simple
and robust way of accessing data. For event-driven data flows,
we provide a control plane.

Depending on application needs, it is possible to use only
the control plane for moving all data. However, several use
cases require a more persistent, albeit lower performance, data
flows and those needs can be met by a combination of data
flows on the control plane as well as the data plane. Figure 6
shows the various data flows. In some applications, it is useful
to mix-and-match and have lightweight metadata flow through
the control plane, and the heavier data objects flow through
the data plane.

Fig. 6. Data Architecture: Control plane and the Data plane

V. DADA FRAMEWORK: PROCESSING ARCHITECTURE

The key element of any big data processing architecture is
that it must have support for both task and data parallelism. For
our particular problem domain, the tasks must be able to span
several data centers across different geographic locations. We
limit our data parallel computing to a single data center, mainly
because the fine-grain parallelism of data parallel computations
does not lend itself very well to long distance communications.

For task parallelism, we needed a framework that provided
a unified local and distributed programming model – from
threads to processes to data centers. Increasingly, we need to
support heterogeneous platforms (multi-cores, GPUs, function
accelerators, etc.) and multiple languages. It is important to
have address space isolation guarantees for tasks. Finally, the
scalability imperative mandates a framework that can scale
resiliently and tolerate faults.

The actor model of concurrent computation satisfied these
constraints. It was first proposed by Hewitt in 1973 [3] and is
detailed by Agha [4]. It forms the basis of concurrency and

parallelism in Erlang and Scala, and there has been a renewed
interest because of rise of multi-core architectures [5].

A. Actor Model

The Actor model consists of independent communicating
computational agents that share nothing and respond to mes-
sages by:

1) Generating more messages
2) Modifying their behavior
3) Creating other actors

Actors communicate with each other using asynchronous
communication. Actors are stateful, and modify their behavior
in response to messages. The creation of actors on-the-fly
is a key element in supporting dynamic scalability and fault
tolerance.

B. Extending the actors model for big data analytics

Actors provide a mathematical framework for compu-
tational agents. In the DADA framework, they provide a
mechanism for incorporating heterogeneous task parallelism.
However, actors do not provide a good way of dealing with
data parallelism. To exploit data parallelism, DADA provides
support for established non-actor software stacks such as MPI
and Map/Reduce. The data processing framework is composed
of the following components:

1) System Actors: System level actors for managing
startup, and monitoring health and status of the
system

2) User-defined analytic actors: The processes that per-
form the data processing work

3) Data-Parallel actors: For managing data-parallel com-
putational systems such as MPI and Map/Reduce, or
simply command line shell applications.

4) Job Scheduler: Used by system actors for job schedul-
ing and job management

5) Messaging system(s): Move messages between actors
6) Configuration, Naming, and Synchronization ser-

vices: For managing configuration, and coordinating
distributed actors.

For DADA, we chose to adapt existing technologies for our
needs. Rapidly evolving actor frameworks such as Akka [5]
will provide us most of what we need to craft task parallelism
when they mature. “Akka is a toolkit and runtime for building
highly-concurrent, distributed, and fault tolerant event-driven
applications on the JVM” [5]. Currently, we are not using
Akka, but will migrate to using it once it stabilizes and
matures. For now we have chosen to shoehorn our actors into
bolts in the Storm framework. Storm is a free and open source
distributed realtime computation system that makes it easy
to reliably process unbounded streams of data [6]. However,
Storm suffers from the weakness that workflows, or topologies
as they are called, are static. A marriage of Storm and the actor
framework, has the potential for providing support for more
dynamic workflows with automatic load balancing.

The following sub-sections provide more details on these
components.

C. System Actors

System actors are responsible for defining and starting a
workflow, including support for data provenance. The system
actors are also responsible for monitoring the health and status.
The DADA framework treats health and status messages like
other messages in the system, and they can either be sent on
the control plane, or be persisted using the data plane.

D. Analytic actors

These actors respond to messages, and perform the work.
The actors can communicate using the control plane or the
data plane.

E. Data-parallel actors

Data-parallel actors provide the bridge to data-parallel
computational systems such as MPI and Map/Reduce. The
legacy actors themselves live on the control plane and can
pass messages to the data plane. These actors launch MPI
and Map/Reduce jobs using the job schedulers. The MPI
data-parallel jobs do not have direct access to the control
plane messages. They can only access and create data plane
messages, in addition to their native messaging capability. It
is the job of the data parallel actors to bridge the divide.

F. Job Scheduler

The creation of actors on-the-fly is a key element in
supporting dynamic scalability and fault tolerance. Creation of
new actors involves a) library primitives to spawn jobs and b)
job schedulers to satisfy the spawn request. There are a number
of schedulers on the market. DADA uses the Grid Engine for
job scheduling [7]. The Grid Engine job scheduler is used for
launching and scheduling all the MPI, Map/Reduce, and other
jobs.

G. Messaging system(s)

The DADA framework provides messaging support for
tasks or actors. Systems such as MPI provide support for
an orthogonal communication system for point to point or
broadcast communications. The DADA framework does not
interfere with these data-parallel data flows.

In terms of messaging, actors can deal with input and
output of messages in one of two ways: Push-in/ Push-out or
Pull-in/Push-out. The push-in / push-out model is efficient way
of communication and uses routers to accomplish messaging.
Some of the common router topologies are:

• Random router: Route incoming messages randomly
to downstream actors

• Round-robin router: Route incoming messages to
downstream actors in a round-robin manner

• Broadcast router: Broadcast incoming messages to all
downstream actors

• Priority router: Prioritize the incoming messages for
delivery

• Filtered router: Filter the incoming messages for de-
livery

Another method of communication is for the actors and
computational agents to push the message to a buffered queue;
and for the receiving actor to pull it off the queue. Some of
the common queue topologies are:

• Point-to-point: Single-producer, single-consumer
queue

• Work queues: Single-producer, multiple-consumer
queue

• Publish/Subscribe: Multiple-publisher, multiple-
subscriber

• Priority queues: Priority queue for messages

The DADA framework provides support for both these
models of communication so that the users of the framework
can select how to do their messaging based on their needs.
Typically, the control plane messaging is done using the Push-
in/Push-out model because it provides a low latency messaging
system. Similarly, the Push-in/Pull-out mode of communica-
tion is typically easier to use and can be implemented using
message queues. The Push-in/Pull-out model may even be
implemented using simple data services for batch workflows,
or if the ordering of messages is unimportant.

H. Configuration, Naming, and Synchronization services

For very simple workflows, it is sufficient to have a
centralized filesystem-based configuration and coordination
system. However, as complexity grows, it is essential to
provide a more robust set of capabilities. Like many other
distributed processes, DADA uses Apache ZooKeeper [8] to
allow distributed actors and processes to coordinate with each
other.

VI. CONCLUSION

The DADA framework allows enterprises to deal with their
data ponds and data streams by composing batch, streaming,
or interactive workflows. A single workflow can span several
geographical locations. The DADA framework is well suited
to heterogeneous infrastructures for computing and storage;
and is comprised of a data architecture and a data processing
architecture. The data architecture addresses the data variety
and data location challenges, whereas the data processing
architecture addresses the challenges of dealing with big data
volume and high data rates on heterogeneous architectures.

To ensure composability of analytics, the DADA frame-
work uses Google protocol buffers (protobufs) to serial-
ize/deserialize data. The protobuf compiler generates the in-
frastructure necessary to serialize/deserialize the data in many
different languages and this provides us with compilable
data specifications, which guarantee interoperability between
analytics. Every piece of data persisted on the system has a
unique URL, and this provides a simple model for analytics
to deal with data.

The DADA framework provides two ways of transmitting
data between the analytics — using the control plane or the
data plane. The data plane is service-oriented DaaS, which
provides a simple and robust way of accessing data. For event-
driven data flows, we provide a control plane. Depending on
application needs, it is possible to use only the control plane
for moving all the data.

DADA provides support for both task and data parallelism.
The actor model provides DADA with a solid theoretical
framework for unified local and distributed programming –
from threads to processes to data centers. The ability to provide
support for MPI-style data parallelism sets DADA apart from
some of the other frameworks which are essentially only task
parallel approaches to big data.

We have implemented the framework, using a real chal-
lenge problem involving image processing, machine learning,
and graph analytics as a forcing function. The framework has
been developed by adapting open-source technologies, and we
plan to release our work as open source as well.

ACKNOWLEDGMENT

The authors would like to thank the ASD R&E, OSD, and
ONR for their support of this effort under the Data to Decisions
program. We would also like to thank our partners on this
program from AFRL, ARL, and SPAWAR SSC.

REFERENCES

[1] Sanjeev Mohindra et. al. Task and conduit framework for multicore
systems, DoD HPCMP Users Group Conference, 2008. pp. 506–513.

[2] Protocol Buffers
http://code.google.com/p/protobuf

[3] Carl Hewitt, Peter Bishop, and Richard Steiger. A universal modular
actor formalism for artificial intelligence. In Proceedings of the 3rd
international joint conference on Artificial intelligence, pages 235–245,
San Francisco, CA, USA, 1973. Morgan Kaufmann Publishers Inc.

[4] Gul Agha. Actors: a model of concurrent computation in distributed
systems. MIT Press, Cambridge, MA, USA, 1986.

[5] Akka
http://akka.io/

[6] Storm
http://storm-project.net/

[7] GridEngine
http://www.sun.com/grid/.

[8] Hunt, P. and Konar, M. and Junqueira, F.P. and Reed, B., ZooKeeper:
Wait-free coordination for Internet-scale systems, Proceedings of the
2010 USENIX conference on USENIX annual technical conference,
2010

