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Abstract—Recent projections suggest that applications and
architectures will need to attain 75 GFLOPS/W in order to
support future DoD missions. Meeting this goal requires deeper
understanding of kernel and application performance as a
function of power and architecture. As part of the PAKCK
study, a set of DoD application areas, including signal and image
processing and big data/graph computation, were surveyed to
identify performance critical kernels relevant to DoD missions.
From that survey, we present the characterization of dense
matrix-vector product, two dimensional FFTs, and sparse matrix-
dense vector multiplication on the NVIDIA Fermi and Intel
Sandy Bridge architectures.

We describe the methodology that was developed for charac-
terizing power usage and performance on these architectures
and present power usage and performance per Watt for all
three kernels. Our results indicate that 75 GFLOPS/W is a very
challenging target for these kernels, especially for the sparse
kernels, whose performance was orders of magnitude lower than
dense kernels.

I. INTRODUCTION

As sensor and data collection capabilities continue to im-
prove on embedded systems, the amount of data for exploita-
tion and analysis has continued to increase. Additionally, the
complexity of algorithms necessary to process the data, often
in real-time, has grown. Size, weight, and power (SWaP)
constraints of DoD platforms is driving the need for computer
architectures and processing systems that can support very
high performance per Watt for a range of applications.

A common measure of power performance is the number
of floating point operations computed per second per Watt
or FLOPS/W. Current high-performance architectures, such as
IBM Blue Gene, obtain over 2 GFLOPS/W but future DoD
platforms need embedded systems that can support up to 50
GFLOPS/W for a range of applications. The DARPA Power
Efficiency Revolution For Embedded Computing Technologies
(PERFECT) program Broad Area Announcement addressed
an ambitious power performance goal of 75 GFLOPS/W. To
meet these constraints, revolutionary advances are necessary
in power efficient architectures and applications. The Perfor-
mance and Power Analysis of Key Computational Kernels
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(PAKCK) study was funded by DARPA to gather performance
data necessary to address both requirements.

As part of the PAKCK study, several key computational
kernels from DoD applications were identified and charac-
terized in terms of power usage and performance for sev-
eral architectures. A key contribution of this paper is the
methodology we developed for characterizing power usage
and performance for kernels on the Intel Sandy Bridge and
NVIDIA Fermi architectures. We note that the method is
extensible to additional kernels and mini-applications. An
additional contribution is the power usage and performance
per Watt results for three performance critical kernels.

II. KEY COMPUTATIONAL KERNELS

A. Dense Kernels

Many DoD mission areas, particularly surveillance and
reconnaissance, rely heavily on signal and image processing.
The computational tasks associated with airborne surveillance
focus on ingesting and processing streaming data in real time
to create actionable products (e.g., images or detections). An
analysis of canonical signal processing chains for several aerial
surveillance modes: ground motion target indicator (GMTI),
dismount motion target indicator (DMTI), and synthetic aper-
ture radar (SAR) indicates that the fast Fourier transform
(FFT) is the key computational kernel for this processing.
In fact, FFT centric kernels account for approximately eighty
percent of the processing. Less important to signal processing
than the FFT but ubiquitous in computational science and
engineering, the dense matrix-vector multiplication operation
was the second kernel chosen for inclusion in this paper.

The trend in aerial surveillance is to process ever larger
amounts of data on hardware capable of operating within the
tight SWaP constraints of a small airborne platform such as an
unmanned air vehicle (UAV) where the available power can
be as low as tens of Watts. The particular challenge dense
kernels pose to modern multicore architectures is that they
spend significant time and energy moving data throughout
the memory hierarchy. The 2D FFT, when distributed across
processors requires an all-to-all communication between the
FFT of the first and second dimension to create the contiguous
data blocks necessary for computation. The matrix-vector
kernel, on multiple processors, requires communication of
the partial products prior to the reduction step. Historically,
effort has been spent to optimize the runtime of these kernels,

Ka
Typewritten Text
978-1-4799-1365-7/13/$31.00 ©2013 IEEE



but energy is now equally important and the first step is to
characterize kernel performance for energy and time.

B. Sparse Kernels

Sparse matrices and graphs are used throughout compu-
tational science and engineering fields and are becoming
increasingly important in big graph analytics. This survey of
sparse matrix applications was focused on those with sparse
matrices resulting from graphs, in particular network graphs.
Computations on very large network graphs are becoming an
increasingly important area of interest for the DoD. Related
problems of interest include the detection of threats in a social
network, the detection of intruders in a computer network, and
the identification of anomalous actors from multi-INT data.
It is important to note that this choice of network graphs is
particularly challenging for modern computer architectures.

There are at least three significant challenges for the par-
allel computation on these sparse matrices: irregularity of
communication and computation, a lack of data locality, and
the increased significance of communication latency in the
computation. These parallel challenges also have relevance
to serial computation with communication being generalized
to included memory accesses. These challenges make it very
difficult for modern architectures to realize peak performance,
rendering caches (that enable peak performance for dense
operations) useless.

This paper focuses on sparse matrix-dense vector multipli-
cation (SpMV), a kernel of particular importance to sparse
computation and to graph analytics related to network data.
SpMV is the workhorse kernel of sparse iterative methods
for solving linear systems and eigenvalue problems (e.g., CG,
GMRES, and Krylov-Schur based eigensolvers) and often
dominates the runtime of these methods. SpMV has been an
essential kernel in the Signal Processing for Graphs work
undertaken at MIT Lincoln Laboratory, where the computa-
tion of principal components (obtained through the use of
eigensolvers) is a key step in finding anomalies in network
data [1], [2]. For our experiments with these sparse kernels,
synthetically generated R-MAT matrices [3] are used, which
are typical of many graph applications derived from network
data. R-MAT matrices approximate a power law degree distri-
bution and have the advantage of being easy to scale across a
range of problem sizes.

III. METHODOLOGY

A. Overview

For this study the metric of interest is performance per
Watt, (GFLOPS/W). To characterize the kernels, the time
and power were collected during kernel execution on the test
platforms and the operation count is based on the theoretical
value associated with the algorithmic expression rather than an
actual count of operations performed. To maintain consistent
operation counts across kernels applied to real and complex
data, complex operations were decomposed into real opera-
tions for the purpose of operation count.

A number of performance tuning library tools exist to
measure FLOPS, execution time, total instructions, memory
usage and a variety of similar metrics. Many open source
performance libraries use software estimates and virtually all
open source libraries using hardware counters sit on top of
the Performance API (PAPI) [4], [5]. Vendor specific libraries,
which use hardware counters, are available for some platforms
(e.g., vTune from Intel), but generally do not provide a means
to capture power or energy usage. After reviewing a number
of performance analysis tools, PAPI was chosen because the
library: uses hardware counters to capture performance data,
provides access to traditional performance data (e.g., runtime,
FLOPS), and provides a means of accessing the energy and
power counters for a few platforms.

Initial characterization experiments gathered performance
data (FLOPS) via PAPI’s preset command, PAPI FP OPS.
The results returned from this command were unreliable
and appeared to return a count of floating point instructions
rather than floating point operations. Lacking confidence in
PAPI FP OPS results, the approach was modified to capture
the execution time via PAPI get real nsec and compute per-
formance using the theoretical operation counts for the kernels.

The development of techniques for obtaining accurate power
measurements for computations at the application or kernel
level is an active area of investigation. The tests reported
here used PAPI-5’s low level API to capture power or energy
depending on supported hardware counters. To simplify the
instrumented code, the PAPI initialization commands were
placed in a header file, such as the one in Figure 1 for
accessing NVML on the NVIDIA Fermi. The commands
include the initialization of the library, determination and
initialization of available components, in this case the NVML
component, and creation of the EventSet containing the power
and temperature events. The code in Figure 2 illustrates how
PAPI was used to instrument a CUDA kernel in order to gather
the runtime and power values while running the kernel. The
commands and events are architecture specific and described
in more detail in individual architecture sections.

Fig. 1. PAPI Header Initialization of NVML Component



Fig. 2. PAPI-NVML Instrumentation of Cuda Code

B. NVIDIA Fermi

For our GPU study we chose the NVIDIA Fermi (Tesla
C2075), because the power and temperature values are exposed
through the NVIDIA Management Library (NVML). For this
architecture the PAPI-NVML interface reports instantaneous
power for the entire board, GPU and memory. The counter has
milliwatt resolution and is sampled at approximately 60Hz [6].
This provides a stable, but low fidelity means of gauging power
usage.

The experiments reported here used CUDA-5.0 with nvcc
version 0.2.1221 and the instrumentation was placed around
a call to the kernel as indicated in Figure 2. We note that the
PAPI-5.1.0 library reads NVML power counters approximately
every millisecond, so kernel execution time must be long
enough to insure that the counter is capturing the power
required to execute the kernel rather than reporting ambient
power. We accomplished this by placing each kernel test inside
a loop of five thousand trials to ensure sufficiently long sample
times.

C. Intel Sandy Bridge

We chose the Intel Sandy Bridge as our CPU platform
because in 2010, Intel exposed chip and core level energy
measurements for the architecture via the Running Average
Power Limit (RAPL) package [7]. The RAPL package is a
software power model using hardware counters, temperature
and leakage models to estimate energy use. The measure-
ment values are exposed through Machine Specific Registers
(MSRs) which can be polled, with appropriate software tools,
to determine energy usage for a block of code. Using PAPI’s
low level API, the RAPL MSRs can be accessed and energy
values (in nanoJoules) can be obtained for the [5]

• Package, the on-core energy of entire CPU package
• PP0 Energy, the total combined energy used by all cores
• PP1 Energy, the on-chip GPU (not active on all Sandy-

Bridge chips)
• DRAM, the DRAM interface.

Note that the Package energy is for the chip and the memory,
but not the DRAM memory. The DRAM is off-core and
because the hardware data are not currently accessible via the
low level PAPI API, it is not included in the results presented
here. Based on the work of Rotem, et.al. [8], who validated
the RAPL estimates against measured power data, we have
confidence in the estimates obtained using PAPI and RAPL

to characterize power usage of the kernels. For the purposes
of this study, the energy of the entire on-core CPU package
provided the appropriate level of fidelity.

Characterization of the kernels on the CPU architecture
using PAPI required instrumenting the code as described in the
GPU methods section. The header file (Figure 1) used for the
GPU was modified to search for the RAPL component rather
than the NVML component and the kernel instrumentation
structure was similar to that shown in Figure 2 with some
subtle differences. When the EventSet is started with PAPI,
the RAPL interface reads the hardware counter to get an initial
value of energy, the execution of PAPI Stop results in a second
read of the hardware counter and PAPI stores the amount
of energy used between the start and stop. Once PAPI has
captured the total energy used, power is determined from the
energy (nJ) and time in (nanoseconds).

For all of the kernel experiments, the PAPI timing instru-
mentation was placed directly around the kernel call, inside a
loop iterating over a number of trials. The number of kernel
trials varied with data size ranging from 100 for the smaller
data sizes to one for the largest data size. This difference is
directly connected to the length of time it took to execute the
kernel, smaller array sizes executed so quickly that there was
no time to sample the energy counters while larger kernels
took so long that the energy samples overflowed the buffers.
The PAPI-RAPL energy instrumentation was placed outside
the loop and the reported energy and time results represent the
average over the kernel trials. The architecture was composed
of two eight core nodes and experiments were performed for
Np = 1, 2, 4, 8, 16 cores.

IV. RESULTS

A. Dense Matrix-Vector Multiplication

1) NVIDIA Fermi: The dense matrix-vector multiplication
tests on the GPU used the CUBLAS [9] implementation of the
GEneralized Matrix Vector multiplication kernel and included
single (SGEMV) and double precision (DGEMV) versions.
To approximate a general use case, the instrumented block
included the transfer of the input and result vectors, the GEMV
operation and the return of the result vector to the host CPU.
A comparison of the single and double precision results for
matrix sizes N = 1024 to N = 8192 are presented in Figure 3.

Fig. 3. Performance per Watt (GFLOPS/W) characterization for SGEMV
vs. GEMV on NVIDIA Fermi.



The increase in performance with data size confirms that
the the GPU performs best when it has a large amount of
work relative to the data movement. The DGEMV results
begin to level off at N = 4096 because of the added data
movement caused by the additional blocking required of larger
data sizes. The power usage for the single and double precision
kernel execution is almost identical. What differentiates the
the two kernels is the performance, where the single precision
implementation is roughly 2x faster than the double precision
version.

2) Intel Sandy Bridge: We characterized GEMV on the
CPU with the double precision BLAS kernel DGEMV. Se-
rial experiments used the FORTRAN reference BLAS kernel
called from a C++ wrapper. The parallel experiments used
pDGEMV (pBLAS), which uses both the BLAS and MPI
libraries.

The performance results for all matrix sizes and processor
counts are shown in Figure 4. For the most part, the perfor-
mance increased as we increased the number of processors (at
least up to 8 processors) For most of the parallel experiments,
we see a slight decrease in the performance as the matrix
size is increased. The sharp drops in performance for 8 and
16 processors seems to correspond to the problem no longer
fitting into the L3 cache. The performance per Watt for all
problem sizes and cores counts is shown in Figure 5. As
expected the power increases with number of processors due to
increased utilization of processor cores. There is also a slight
increase in the power as the problem size is increased. From
Figure 5 it is clear that up to a problem size of 8192, the is
increased performance due to increased parallelism more than
compensates for the increase in power usage.

Fig. 4. Performance for DGEMV on Intel Sandy Bridge (GFLOPS). Results
for matrix sizes N = 1024 to N = 8192 on processor counts Np=1 to
Np=16.

A comparison of the DGEMV implementations on the
CPU and GPU shows that while the GPU is not tuned for
double precision calculation, it clearly outperforms all CPU
implementations of the kernel.

B. 2D Fast Fourier Transform

We present the results for the 2D FFT on the NVIDIA Fermi
and Intel Sandy Bridge archictures. For parallel 2D FFTs, it
is important to note that there is a data reorganization step
(“corner turn”) that is particularly challenging for this kernel.

Fig. 5. Performance Per Watt for DGEMV on Intel Sandy Bridge
(GFLOPS/W). Results for matrix sizes N = 1024 to N = 8192 on processor
counts Np=1 to Np=16.

1) NVIDIA Fermi: We chose the 2D FFT in the CUFFT
library (CUDA 5.0) as our reference kernel for the GPU
characterization study. To closely match actual use cases, the
FFT signal data was assumed to be streaming into the FFT
and the results forwarded on to the next stage for further
processing. Thus, the time instrumentation commands were
placed directly around data movement and FFT calls, and
the power instrumentation was outside of a loop of kernel
execution trials. The choice of sizes for the FFT tests ranged
from N = 1024 to N = 8192 and all FFTs were single
precision complex to complex. The number of trials was five
thousand for all tests. The performance results from the GPU
implementation (orange line in Figure 6) indicate a steep rise
in performance per watt as the problem size is increased from
1024 to 2048, followed by a moderate increase in performance
with problem size. This significant increase in performance
suggests that for N > 2048, the cost of moving the FFT signal
data onto and off of the GPU was offset by the increase in
computation required by the larger problem size.

Fig. 6. Performance per Watt comparison between Intel Sandy Bridge and
NVIDIA Fermi for 2D FFT (GFLOPS/W).

2) Intel Sandy Bridge: The 2D FFT tests on the CPU are
based on the FFTW-3.3.2 2D double precision complex to
complex transform. The first step in using FFTW is to create
an FFT plan based on a set of parameters, the key parameters
being, the FFT size and FFT type (e.g., complex to complex,
real to complex). For the serial FFT, the library can use auto
tuning to optimize the plan. For the parallel FFT, auto tuning
is not available and a best plan is estimated based on the FFT
parameters and the number of processors on which the FFT



is computed. The initialization of FFTW and the creation of
the plan were not part of the instrumented code.

In addition to the estimated FFT plan, the parallel exper-
iments used MPI to transfer data between processors in the
corner turn step. The FFT was performed in place, and the
data remapping in the corner turn step destroyed the ability to
execute repeated FFT tests within a loop. While the serial
experiments used multiple trials as described in III-C, for
the parallel tests, the instrumentation was placed around the
execution of the kernel and the reported time is the average
time it took across all processors. The performance per Watt
for all array sizes and processor counts is shown in Figure 7.
Our experiments indicate that for a given core count the power
is roughly constant for a given problem size increasing slightly
for the problem sizes above 4096.

Fig. 7. Performance per Watt for 2D FFT on Intel Sandy Bridge.

We present the comparison of performance per Watt for the
the 2D FFT on the CPU and GPU architectures in Figure 6.
For both platforms the power stays relatively constant for a
given problem size and number of processors. On the CPU
we see performance degradation with with problem size that
is not observed on the GPU yielding significantly higher
performance per watt for the GPU implementations.

C. Sparse Matrix-Dense Vector Multiplication

1) NVIDIA Fermi: For our sparse matrix-dense vector
multiplication (SpMV) numerical experiments on the NVIDIA
Fermi GPU, we used the SpMV implementation found in the
Cusp library [10]. For the sparse matrices, we used R-MAT
matrices (a = 0.5,b = c = 0.125,d = 0.25) with an average
of 8 nonzeros per row. We experimented with 8 different size
matrices with the number of rows being powers of two in the
range of 215 to 222 (scale 15 to 22 R-MAT matrices). We
used a compressed sparse row format for the Cusp matrices,
which is perhaps not well suited for this GPU architecture and
stored the values of the matrix as double precision floating
point numbers.

The green line in Figure 8 shows the power and performance
results for this SpMV kernel for the 8 different problem sizes
on the GPU. It is important to note that each data point is
the average of 20 trials with 20 different R-MAT matrices for
each problem size. This controlled the danger of generating
one particularly poor or well performing R-MAT matrix. As
the size of the problem increases, we see a decrease in the

GFLOPS/W power-performance metric. This is most likely
due to the corresponding decrease in the data locality as
the R-MAT matrix size increases, which results in decreased
effective cache utilization. We theorize that the lack of data
locality and irregularity in the data access patterns for these
R-MAT matrices makes this kernel particularly challenging
for the GPU. Bell and Garland showed that alternative sparse
matrix storage formats to the compressed sparse row format
can result in improved performance [11] for some classes of
matrices (although they did not demonstrate this for R-MAT
matrices). Thus, using an alternative storage format might
improve the GPU results significantly.

Fig. 8. Power and performance characterization results for SpMV on
NVIDIA Fermi and Intel Sandy Bridge architectures. Maximum GFLOPS/W
for scale=15 to scale=22 R-MAT matrices.

2) Intel Sandy Bridge: For our sparse matrix-dense vector
multiplication (SpMV) numerical experiments on the Intel
SandyBridge architecture, we used the SpMV implementa-
tion found in the Epetra package of the Trilinos software
framework [12]. The Epetra implementation of SpMV uses a
distributed memory (MPI based) approach to parallel computa-
tion. It is possible that a shared memory approach would result
is slightly improved performance but for this kernel, we expect
the improvement to be fairly negligible. We used the same R-
MAT matrices as we did on the NVIDIA Fermi architecture.
Epetra matrices use a compressed sparse row format, which
should be well suited for the SpMV computation on this
architecture, and store the values of the matrix as double
precision floating point numbers. For the parallel experiments,
the matrices are distributed in a one-dimensional row based
fashion where each row is assigned to only one processor. The
distribution of the rows is randomized to obtain good load-
balance of the nonzeros across the processors (effectively bal-
ancing the computation). However, it is important to note that
the random distribution of rows does not address the resulting
communication of the SpMV operation. There are methods of
determining distributions to minimize the communication in
the SpMV operations [13] but determining good distributions
for these power-law graph matrices is still an active area of
research.

Figures 9 and 10 show the power and performance results
for this SpMV kernel for the 8 different problem sizes and
different numbers of processors on the Intel Sandy Bridge.
Again, we averaged the results from 20 trials with 20 different
R-MAT matrices for each problem size.
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An increase in parallelism, results in an increase in power.
Figure 10 shows the power-performance (GFLOPS/W) of the
SpMV on the Intel Sandy Bridge architecture. As we increase
the size of the problem, the performance actually decreases.
This is most likely due to the corresponding decrease in the
data locality as the R-MAT matrix size increases, which results
in decreased effective cache utilization. However, we do see
some improvement in the performance as we scale the number
of processors up to 8. We do not see the linear performance
improvement that we desire and the performance gets worse
as we move from 8 to 16 processors, indicating that the
communication costs are becoming increasingly significant
as the number of processors increase. The “sweet spot” in
the power-performance metric seems to be in the two to
eight processor range. Figure 9 and Figure 10 summarize
the power-performance metric, reporting the maximum value
across the different number of processors for each problem
size. Compared to the NVIDIA Fermi architecture, the Intel
Sandy Bridge architecture performs significantly better for this
sparse kernel.

V. CONCLUSIONS

We described a technique for capturing performance
and power data on the Intel Sandy Bridge and NVIDIA
Fermi architectures that is extensible to other kernels, mini-
applications, and full applications. We applied our method-
ology to characterize the power and performance for three
kernels of importance to DoD missions, dense matrix-vector
product, two dimensional FFT and sparse matrix-vector mul-
tiplication.

Our results show the challenge of reaching the 75
GFLOPS/W PERFECT goal in the context of real architec-
tures. The NVIDIA Fermi and Intel Sandy Bridge architectures
failed to come within even 2 orders of magnitude of the 75
GFLOPS/W objective. As was expected, the sparse computa-
tional kernel SpMV is shown to be even more challenging,
performing significantly worse the dense kernels and approx-
imately four orders of magnitude below the 75 GFLOP/W
target. It is clear that significant research breakthroughs need to
be made to address these sparse problems. In the near feature,
too many important DoD problems such as big data analytics
and multi-INT fusion that rely on sparse computation will need
to be solved on SWaP constrained platforms for researchers
to neglect this increasingly important area.

Moving forward, the methodology described here can
be used in conjunction with additional kernels and mini-
applications to further investigate the interplay between ar-
chitecture and application with the goal of improving both.
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