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Abstract—Modular multiplication is the most crucial compo-
nent in RSA cryptosystem. In this paper, we present a new
modular multiplication architecture using the Strassen multi-
plication algorithm and Montgomery reduction. The architec-
ture is different from the interleaved version of Montgomery
multiplication traditionally used in RSA design. By selecting
different bases of 16 or 24 bits, it could perform 8,192-bit or
12,288-bit modular multiplication. The design was synthesized
on the Altera’s Stratix-V FPGA using Quartus II. It performs
one modular multiplication in 2,030 cycles. When operating at
209 MHz, the execution time for an 8K- or 12K-bit modular
multiplication is about 9.7 μs.

Index Terms—RSA, Strassen Multiplication, Montgomery Al-
gorithm, FPGA

I. INTRODUCTION

Information security plays a more crucial role in the com-

puter and communication systems in the age of Internet and

smartphones. Owing to the safety of key distribution, public

key cryptosystem are more popular than traditional secret

key cryptosystem such as the data encryption standard [1].

The Rivest–Shamir–Adelman (RSA) [2] system is one of the

most widely used public key cryptography systems. The RSA

operation is a modular exponentiation and its security level

relies on that there are no effective procedures or algorithms

that can factorize large integers within a short time period

using current computer technology. Now the size of modulus

is at least 1,024 bits to provide a good level of security. As

the Moore law continues driving the computer technology, the

key size of 1,024 bits can be broken. It becomes necessary

to upgrade the key size to 2048, 4096 or even 8192 bits

to provide a higher level security. It is hard to achieve a

good throughput rate without the use of hardware acceleration

because of computing complexity.

RSA cryptosystem recursively performs modular multiplica-

tions to finish one modular exponentiation. The large-number

modular multiplication, which accounts for the most of com-

puting complexity, is a crucial part in the RSA cryptosystem.

As a result, the performance of a RSA system relies on the

throughput rate of the modular multiplication. Traditionally,

the interleaved Montgomery’s multiplication algorithm [3] is

used to speed up the modular multiplication calculation. For

the small size RSA, the interleaved Montgomery modular

multiplication algorithm is a good choice that can achieve

high performance at a low cost of hardware [4] [5]. However,

the interleaved version generates long carry chains, which

impedes the throughout rate of the RSA cryptosystem. Various

approaches to relax the problem of long carry propagation

fall into two categories. In the first approach, the carry-save

addition is used to keep the intermediate results in carry-save

form to avoid carry propagation [6] [7] [8]. However, this

approach needs extra work. For instance, the carry-save form

of an operand needs to be converted back to the binary rep-

resentation at the end of each modular multiplication [6] [7],

resulting in longer computation time. Also the performance

result depends on the operand length. Some work such as

[8] uses 5-to-2 carry-save addition (CSA) and a three-level

adder tree to reduce the operation of format conversion. But

this method increases the critical path delay by applying extra

control logic and multiplexers. The second approach employs

the systolic array to solve the problems mentioned in the

first approach [9] [10] [11]. But it increases the hardware

complexity and latency. A 8192-bit RSA cryptoprocessor is

designed based on systolic array [11]. But it still takes about

130 μs to calculate one modular multiplication when operating

at 252.84 MHz on an FPGA.

In this paper, we take a completely different approach to

speed up the process of modular multiplication by combining

the Strassen algorithm [12] and Montgomery reduction [3].

First, a fast large-number multiplier is designed based on

Strassen’s algorithm. A memory-based in-place architecture

is adopted for 1024-point finite-field fast Fourier transform

(FFT) processor used in the multiplier. A radix-16 butterfly

unit is repeatly used for four times to replace one radix-32

butterfly computation. The radix-16 unit is simplified to only

additions and shift operations by employing a special Solinas

prime. After the two large multiplicands are multiplied by the

large-number multiplier, Montgomery reduction is applied for

modular reduction.

The rest of the paper is organized as follows: Section II

gives a brief introduction of Strassen multiplication algorithm;

Section III presents the Montgomery modular multiplication;

Section IV shows the VLSI architecture of the modular mul-

tiplication; Section V gives the experimental results of FPGA

implementation followed by the conclusions in Section VI.

II. STRASSEN’S MULTIPLICATION AND FINITE FIELD FFT

A. Strassen’s Multiplication

Strassen described a multiplication algorithm based on FFT

in [12]. It breaks each multiplicand into samples with each

Ka
Typewritten Text
978-1-4799-1365-7/13/$31.00 ©2013 IEEE



sample the same number of bits. For example, we can break

the large number into 16-bit samples and β = 216 is referred

as the base. Briefly the Strassen’s FFT algorithm can be

summarized as follows [13]:

1) Decomposition and FFT: Break large numbers A and

B into a series of samples a(n) and b(n) and compute

FFT of the a(n) and b(n);
2) Component-wise Product: Compute the component-

wise product of the FFT results, set C = A � B :
C [i] = FFT (A) [i] ∗ FFT (B) [i].

3) IFFT: Compute the inverse FFT of C [i], set c(n) =
IFFT (C).

4) Resolve the carries: when c [i] ≥ β, set c [i+ 1] =
c [i+ 1] + (c [i] div β), and c [i] = c [i] mod β.

Strassen algorithm could use complex-numbers arithmetic or

modulo arithmetic to perform the calculation. But the algo-

rithm over complex requires rounding operations, which makes

it very difficult to get an accurate result. Also, floating-point

operations consume significantly more hardware resources

and is much slower than fixed-point operations. Instead,

we choose to perform the computation in the finite field

Z/pZ, with prime p. The computation in a finite field re-

quires three operations: modular addition, modular subtraction

and modular multiplication. By selecting a proper prime p
(p =0xFFFFFFFF00000001) [14], the modular multiplication

in the finite field can be computed rapidly. The prime p has

special identities, such as (2192 mod p = 1), (296 mod p = -1)

and (264 mod p = 232 − 1), which makes it support highly

efficient modulo multiplication [14].

In our implementation, we choose the base b to be 16 or

24, so every sample has 16 or 24 bits. For a total of 512

samples, we can perform 8192-bit or 12,288-bit multiplication.

As we know, the multiplication of two numbers is similar to

the cyclic convolution result of two signals each with 512

samples. Typically, cyclic convolution involves “zero padding”

and the result contains approximately twice many samples as

that of the input signal. Thus, a high-speed 1024-point finite-

field FFT processor is proposed in this design.

III. MONTGOMERY MODULAR MULTIPLICATION

The most popular algorithms for modular reduction are

the Montgomery reduction [3] and the Barrett reduction al-

gorithms [15]. For the reason as stated in previous section,

the interleaved Montgomery algorithm generates a long carry

chain. If we use large residue without long carry chains,

the Montgomery reduction has the similar complexity as the

Barrett reduction. Since it is hard to design the control logic

for Barrett algorithm, we choose the Montgomery method in

the hardware design.

We employ the Strassen algorithm for the calculation of

the three large-number multiplications in the Montgomery

multiplication as shown in Algorithm1. Multiplying two

numbers is equivalent to the component-wise product of

the FFT results of two signals in the FFT domain. Thus,

we can precompute the FFTs of M and M ′ to reduce the

computational complexity.

Algorithm 1 Montgomery Multiplication Using Strassen FFT

Algorithm

Procedure Montgomery(X ,Y , M ): c = XY R−1(modM)
Precomputation: n =

⌈
logM2

⌉
, R = 2n,M ′ = −M−1(mod R)

1. T ← IFFT ( FFT (X) � FFT (Y ) );

2. t ← T modR;

3. U ← IFFT ( FFT (t) � FFT (M ′) );
4. u ← U modR;

5. W ← IFFT ( FFT (u) � FFT (M) );
6. C ← T +W ;

7. c ← C/R;

8. If c ≥ M then c ← c−M , end if

end procedure.

IV. VLSI DESIGN OF THE MODULAR MULTIPLICATION

As described in Section II-A, the finite-field FFT/IFFT is a

key component for the FFT-based Strassen’s multiplication al-

gorithm. The memory-based in-place FFT architecture allows

to store the intermediate results into the same memory where

the input data are read from. As a result, it minimizes the

memory usage while still produces high throughput [16]. In

this work, we use the memory-based in-place FFT architecture

and radix-32 butterfly computation. As a result, the 1024-point

FFT is implemented using two stages of 32-point FFT. Using

in-place memory-based design, these two stages are computed

sequentially using the same hardware unit and memory space.

The radix-16 butterfly unit can be recursively used four times

to complete one radix-32 FFT computation. Therefore, we

employ only one radix-16 butterfly unit instead of the much

larger radix-32 unit to further reduce hardware cost.

A. Radix-16 FFT Unit

With the chosen prime p, 64 is a 32th root, 4096 is a 16th

root, 40962 is a 8th root and so on. This means that 32-point,

16-point and 8-point FFTs can be done with shift operations

rather than costly multiplications. The 16-point FFT can be

simplified as (1), since 409616 mod p = 2192 mod p = 1.

For 192-bit operations, any carry-out bit can be simply routed

back as a carry-in bit. This special property is useful for

hardware design. The multiplications in 16-point FFT can

be accomplished by circular shifting operations. Instead of

performing modular operations after each addition, we add

all 16 numbers first and perform the modular reduction only

once to obtain the final result. Since 2192modp = 1, only 192

bits needs to be kept during the additions.

X(k) =

15∑

n=0

x(n)212·nk%192 mod p (1)

x(n) =
1

16

15∑

k=0

X(k)2(192−12nk)%192 mod p (2)

For 192-bit addition, traditional carry-ripple adder would

generate a long carry chain and slow down the clock speed



considerably. So we choose carry-save adders that support

high-speed design. The diagram of a processing element (PE)

in radix-16 unit is shown in Fig. 1. At every cycle, 16 samples

are read into the PE, shifted by the shifter and accumulated by

the carry-save adders. At the end, a reduction unit performs

modulus p operation and converts the 192-bit result back

to 64-bit. Again, the special identities mentioned above are

employed to simplify the calculation as shown in (3), where

a, b, c, d, e and f are 32-bit components of the 192-bit result.

The radix-16 unit has 16 processing elements. At each clock

cycle, the radix-16 unit takes 16 data inputs and outputs the

16-point FFT results after a few cycles of pipeline delay.

z = 2160a+ 2128b+ 296c+ 264d+ 232e+ f (3)

= (232e+ f) + (232d+ a)− (232b+ c)− (232a+ d)

���������	

��	�

���������	

��	�

��������	

��	�

���������	

��	�

��������	

��	�

���������	

��	�

���������	

��	�

���������	

��	�

��������	

��	�

���������	

��	�

��������	

��	�

���������	

��	�

���������	

��	�

���������	

��	�

��������	

��	�

���������	

��	�

��������	

��	�

���������	

��	�

���������	

��	�

���������	

��	�

��������	

��	�

���������	

��	�

��������	

��	�

���������	

��	�

���������	

��	�

���������	

��	�

���������	

��	�

���������	

��	�

��������	

��	�

���������	

��	� 	��
�����	��
���� 
�����
����������	������	�

����

����
����

����
����

����
����

�� �
��!�

��"�
��#�

�����
�����

�����
�����

�����
�����

Figure 1. Diagram of One Processing Element.

B. Resolve the Carries

We take the 8192-bit Strassen’s multiplier as an example

to explain the process of resolving carries. Each 8192-bit

multiplicand is first decomposed into 512 groups of 16-bit

numbers. Then each 16-bit number is then extended to a 64-

bit data sample. The multiplication results are expected to be

1024 groups of 16-bit numbers, or up to 16,384 bits. Following

the Strassen’s algorithm with 1024-point FFT, the IFFT output

are 1024 samples of 64-bit data. The resolve carries unit is to

obtain the actual 16,384 results from the IFFT output data.

Since each data is supposed to be 16-bit, each 64-bit data

from IFFT output are actually overlapped 48-bit with the next

one. For a structural design, we decompose the 64-bit number

into four blocks of 16-bit words. The alignment among the

words are illustrated as in Fig. 2.

Recall that the IFFT module outputs 32 data samples per

clock cycle in operation. A total of 1024 data are output in 32

consecutive cycles. Therefore, we have to resolve the carriers

in time to match the pipeline throughput. Apparently the

traditional carry-ripple adder is too slow to add the numbers in

a column. A hierarchical carry-look-ahead scheme for large-

number addition as proposed in [17] is applied here to add

the the numbers in parallel. For a high-speed design, we use

a four-stage pipeline design for the resolving carries unit.

Overall by using the carry-look-ahead scheme and four stage

pipeline, the resolve carries unit can meet the throughput of

the FFT/IFFT processor at high clock speed.

If we want to do a 12,288-bit multiplication, each multipli-

cand is first decomposed into 512 words each with 24 bits.

Similarly, each 24-bit number is extended to a 64-bit data

sample. After processed by FFT and IFFT, the 64-bits data

samples are extended into 72-bit format as three blocks of 24-

bit numbers. Then we use the similar parallel and hierarchical

carry-look-ahead scheme to add the numbers in each column.
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Figure 2. Two-stage pipeline carry resolving unit.

C. The Architecture for Modular Multiplication

Memory-based in-place scheme is used for the FFT design.

The 1024-point FFT can be decomposed into 2 stages of

32-point FFT. At each stage, a total of 1024 samples are

processed through a radix-32 butterfly unit. The radix-16 unit

can be recursively used four times to complete one radix-

32 butterfly computation. A group of 32 input samples are

read from memory, permutated into a proper order by the

Interchange Unit, fed to the radix-16 unit to process four times

for one radix-32 butterfly computation, modular multiplied

by the twiddle factors stored in ROMs, permutated again by

the Interchange Unit, and written back to the memory. The

memory needs to be partitioned into 32 banks with 32 words

in each bank. An in-place memory addressing scheme can

be derived to ensure there is no memory access conflict in

reference to [16][18]. The data needs to be read from and

written to the memory concurrently, so dual-port SRAMs

shown in Fig. 3 are used to store two multiplicands X and

Y .

One radix-16 unit are used both for FFT and IFFT to

multiply, for instance, X by Y . In the first stage of FFT or

IFFT, the 8 units of 64-bit ModMuls are used to multiply the



processed samples with twiddle factors. In the second stage of

FFT, the same 8 units of 64-bits ModMuls can be reused to

multiply FFT (X) and FFT (Y ) for component-wise product

to calculate the product of X and Y , or multiply FFT (X)
and FFT (X) to obtain X2. After the IFFT, a group of 32

data are fed into the resolve carries unit.

The FFT forms of M ′ and M are precomputed and stored in

the single-port SRAMs to reduce the computation complexity.

The large-number addition unit shown in Fig. 3 uses the same

hierarchical carry-look-ahead scheme as in resolve carries unit.

The large number addition performs the operation of Step6 in

Algorithm1. The comparison in Step 8 is actually a large-

number subtraction. The 2’s complement of M is precomputed

and stored in the SRAMs so the large-number addition unit in

Fig. 3 is reused for the subtraction.
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Figure 3. The Architecture for Modular Multiplication

V. EXPERIMENTAL RESULTS

The hardware implementation is designed and coded in

System Verilog. The design is then synthesized using Altera

Quartus-II synthesize tool. After place and route, the design is

implemented on Altera’s Stratix-V 5SGSMD8N1F45I2 FPGA.

The resource utilized by the modular multiplication are listed

in Table 1.

Table I
TABLE I. SYNTHESIS RESULT AND COMPARISON

Logic Utilization Our Design 8192-bit RSA [11]
Combinational ALU 214,321 32,262

Dedicated Logic Register 86,562 82,023
DSP Blocks 72 —-

Block Memory bits 474,010 —-
Frequency (MHz) 209.12 252.84

Cycles per Modular Mult 2030 32776

Table 1 presents the synthesis results of the 8,192-bit

modular multiplier. The design can also support 12,288-bit

modular multiplication if the base is set to 24 bits. The

FPGA Operation Maximum Frequency (OMF) of the modular

multiplier is 209.12 MHz. It takes 9.7 μs to complete one

modular multiplication when the design operates at 209 MHz.

The proposed modular multiplication is about 13.4 times faster

than the RSA co-processor reported in [11].

VI. CONCLUSIONS

In this paper, a novel and fast modular multiplication

architecture is presented for RSA with large key sizes. Instead

of using the well-known interleaved version of Montgomery

multiplication, we combined the Strassen multiplication and

Montgomery reduction for the modular multiplier design. The

design support both 8K- and 12K-bit modular multiplication.

To the best of our knowledge, it is the first design that can

support 12K-bit modular multiplication for RSA. The design

can complete one 8K- and 12K-bit modular multiplication in

2,030 cycles, which is an order of magnitude faster than the

existing design.
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