
1

A mechanism to improve the performance of
Hybrid MPI-OpenMP applications in Grid

Shikha Mehrotra, Shamjith KV, Prachi Pandey, Asvija B, R Sridharan

C-DAC Knowledge Park,
#1, Old Madras Road,

 Bangalore-560038

Abstract— In the current scenario of grid computing,

heterogeneous resources are distributed across different
administrative domains and geographical boundaries. Every
node in a cluster consists of multiple core CPUs wherein the
distributed memory across nodes and shared memory co-exists,
thereby paving way for hybrid architectures. The hybrid
programming approach combines MPI and OpenMP libraries to
exploit this hierarchical multicore architecture. The clear
requirements of such hybrid application and knowledge of the
system architecture will help to boost the application
performance. Scheduling these hybrid applications on the grid
becomes a critical task for obtaining better performance. In this
paper, we outline the attempt made in improving the scheduling
mechanism for the hybrid applications based on the
requirements of the application.

Index Terms— Grid Computing, Parallel Computing, Hybrid
job scheduling

I. INTRODUCTION
 Most HPC systems comprise of clusters (1) with shared
memory (2) nodes. These shared memory nodes usually contain
multiple sockets with multiple cores per socket. Traditional
parallel programming models such as MPI (3) and OpenMP (4),
quite often run into limitations regarding performance and
scalability. Hybrid programming combines the distributed
programming paradigms on the node and shared memory
programming paradigms within each node. The hybrid
programming approach, which combines MPI and OpenMP
programming models, seems to be a good approach. However,
the scheduler must possess considerable knowledge of system
architecture and the clear requirements of the application to
enforce better scheduling decisions for hybrid applications
thereby enhancing its performance (5).

 Grid (6) computing provides the ability to access, utilize,
and control a variety of underutilized heterogeneous resources
distributed across multiple administrative domains.

Grid Meta scheduler and grid middleware are incorporated
to manage and negotiate with these distributed resources to
identify the suitable resource for job submission. Grid Meta
scheduler neither considers total cores available per cluster nor

the requirement of application. We develop a model for
evaluating the requirement of hybrid applications along with an
effective scheduling mechanism for resource allocation.

II. OVERVIEW OF GARUDA GRID
GARUDA Grid (7) is India’s national grid computing initiative,
funded by the Department of Information Technology (DIT),
Government of India, binds together heterogeneous
computational resources, mass storage and scientific
instruments. GARUDA aims to provide the technological
advances required to enable data and compute intensive
science for the 21st century, connecting 28 cities across the
nation.

Fig. 1. GARUDA Grid Architecture

The GARUDA network is a Layer 2/3 MPLS Virtual Private
Network [VPN] connecting selected institutions at 2.43 Gbps
with stringent quality and Service Level Agreements. National
Knowledge Network (NKN) (8) has undertaken the

2

implementation of GARUDA network across research, higher
education and scientific institutions through ultra high-speed
backbone/data-network communication highway, encouraging
sharing of knowledge, specialized resources and collaborative
research.
 The major components of GARUDA are the
computing resources, high-speed communication fabric,
middleware & security mechanisms, job scheduler, tools to
support program development, collaborative environments,
data management and grid monitoring & management, as
shown in Figure 1.
 GARUDA has adopted a pragmatic approach for
using existing Grid infrastructure (9) and Web Services
technologies. The deployment of grid tools and services for
GARUDA will be based on a judicious mix of in-house
developed components, the Globus Toolkit (GT) (10), industry
grade & open source components. The resource management
and scheduling in GARUDA is based on a deployment of
industry grade schedulers in a hierarchical architecture. At the
cluster level, job scheduling is achieved through Torque (11).
Gridway (12) is deployed at GARUDA as the meta-scheduler,
which is responsible for scheduling jobs at grid level.

III. CURRENT SCENARIO OF HYBRID MPI-OPENMP
APPLICATIONS IN GRID

In a computational grid, each high performance cluster has
number of nodes with cores, as depicted in the Figure 2. These
nodes are configured with grid middleware, grid meta-
scheduler and Local Resource Manager (LRM) to create a
parallel processing environment. The meta-scheduler takes the
responsibility of job submission on the grid.

Fig. 2. Cluster Architecture

 Prior to job submission onto grid, the meta-scheduler
checks for application requirements and selects the suitable
resource to schedule the job on the appropriate cluster.
Resource broker lists the candidate resources as per the job
requirements. Grid meta-scheduler takes complete control of a

job from its submission, execution and its output available to
the user.
 Generally, grid meta-schedulers schedule jobs based
on the availability of the resources at any given instance.
Gridway is the meta-scheduler used in GARUDA grid. Using
Gridway, the user cannot specify the total cores required for
their hybrid applications, as it does not take into account the
multicore feature of clusters.

IV. NEED FOR HYBRID MPI-OPENMP APPLICATION
SUPPORT IN GRID

In addition to MPI, OpenMP is a specification for compiler
directives, library routines (the OpenMP API) and
environmental variables used in Fortran and C programs to
utilize shared memory and distributed shared memory
architectures. The primary advantage of using OpenMP
directives lies in the ability of multi processors to access the
same memory pool, without the costly communication
overheads and network transit times found in message
passing. The clusters of compute nodes with shared-memory
multiprocessors provide a good platform for parallel
applications. The concept of using MPI between cluster nodes
and OpenMP within a node results in less overhead in the
shared memory environment. This leads to the emergence of
hybrid MPI-OpenMP programming (13).

The requirement of MPI application is the number of
processors, whereas the OpenMP applications require the
number of hardware threads in the node, as the input
parameter. Therefore, the job submission of hybrid MPI-
OpenMP application requires two input parameters – the
number of nodes and number of hardware threads in the node.
.

The job submission on grid therefore necessitates meta-
scheduler to filter resources based on application's
requirement. This underscores the importance of providing a
new improved scheduling mechanism based on hybrid
application demand in a grid computing environment. While
executing an MPI application, each node runs only one MPI
process no matter how many cores it has. The MPI process
then forks OpenMP threads on the node, which in turn
complete execution in parallel. The effective scheduling of
hybrid applications depends on the application requirements
and total number of cores in the cluster node.

V. MAJOR COMPONENTS OF A GRID
Figure 3 represents the components of a Grid. Grid Meta-

scheduler plays a major role in selecting the right resource
based on the application requirement and is responsible for
judiciously scheduling jobs on to the grid. It provides the
interface for users/applications/portals (14) for submitting jobs
onto grid. The local resource manager, the lowest layer entity,
is responsible for getting the jobs run on a cluster system.

3

Fig. 3. Components of Grid

Another major entity, Grid middleware and the bridge

system co-ordinates and accomplishes the filtering activity for
resources. This component is responsible for integrating both
Meta scheduler and Local resource manager for the smooth
running of hybrid applications.

VI. IMPLEMENTATION
In the current scenario, Gridway is deployed as the Grid

Meta scheduler on GARUDA. The figure 4 (15) depicts the
components of Gridway, which consists of Gridway Core,
Scheduler, Information manager, Execution manager and
Transfer manager.

Fig. 4. Components of Gridway

Gridway accepts the number of nodes for the parallel

applications as its input parameter. However, the hybrid MPI-
OpenMP application need to specify the number of cores
required along with node requirements for its job execution.
Gridway is customized to accept additional input parameter,

understand and implement this requirement at different layers
of Grid, in turn helping to improve application performance.

The development has been made at three different layers of

a grid as shown in the Figure 5.

Fig. 5. Different layers in Grid

As shown in the figure 5, Grid comprises of three layers,
namely Grid Middleware, Grid Meta-scheduler and
Application layer. The grid middleware layer aids in enabling
a high performance computing cluster by providing necessary
security, information, job and data management facilities
between different resources in grid. The local resource
management layer is actually responsible for spawning the
different processes of a parallel application across the
computing nodes of the cluster. The middle layer, grid meta-
scheduler layer, takes care of job allocation to the high
performance clusters. The Application layer provides an
interface to users for job submission.

Figure 6 depicts the modification that has been introduced in
the meta-scheduler level to provide the support for hybrid
application requirements from user.

Fig. 6. Gridway modification for Hybrid MPI-OpenMP application Support

4

The Grid meta-scheduler, Gridway has been customized
to support hybrid applications. In order to support number of
cores required for the hybrid application, the Job Description
Language (JDL) (16) of Gridway has been extended. A new
parameter, NUM_THREADS is introduced either to describe
the number of threads application creates or the number of
cores in the node required by the hybrid application.

The extended Gridway uses the parameter
NUM_THREADS to filter the resources as per the
requirement of hybrid application. The meta-scheduler Job
Description Language (JDL) processing mechanism has been
modified to accept and interpret NUM_THREADS for
indicating the number of threads spawned by the application.
The minimum number of threads to run on each core decides
the performance of their application. The extended Gridway
ensures to enhance the application performance by selecting
appropriate resources for job scheduling.

Gridway provides the command “gwhost” to list the
availability of resources. The knowledge of number of cores
available in the cluster node would help user to specify the
parameter NUM_THREADS, thereby enhancing their
application performance. The better performance can be
achieved with considerable knowledge of system architecture
and the requirements of the application. Therefore, the
Gridway resource monitoring command has been modified to
include the additional information, i.e. the cluster's multicore
property.

The role of meta-scheduler, Gridway, for job
submission includes identifying appropriate resource as per
application requirement, scheduling jobs on those resources,
stage-in input(s), and stage-out output(s) in the selected
cluster. Then the task of job execution passes on to grid
middleware, Globus. The Gridway Job Description Language
(JDL) provides necessary information to grid middleware
deployed in the identified cluster, for job execution. The grid
middleware has to be modified to implement the additional
feature of the extended Gridway, thereby supporting hybrid
applications.

The Globus 4 based on Web Service Resource
Framework (WSRF), the de facto standard for the Grid
middleware, supports web service based jobs as well. The
Globus middleware consists of four components, namely,
Security Management, Information Management, Job
Management and Data Management.

The Security Management in a Globus middleware is
handled by Grid Security Infrastructure (GSI). The
Information Management in Globus is accomplished through
the Monitoring and Discovery System (MDS) (17) for providing
information about the available resources on the Grid and their
status. The Monitoring and Discovery System (MDS) is a
suite of Web Services (WS) to monitor and discover
resources and services on Grids.

The Data Management component of Globus takes

care of both data transfers and replication as required by the
grid application for staging-in their inputs and staging-out
their outputs, along with necessary data replication based on
the proximity of simulation run. These data movement
activities are accomplished through the GridFTP protocol.
GridFTP is the grid enabled version of the FTP protocol, for
providing the secure, robust, fast and efficient transfer of huge
data. The Reliable File Transfer (RFT) service aids data
transfer through web service interface. The data replication is
accomplished through the Replica Location Service (RLS), a
tool that provides the ability to keep track of one or more
replicas of files in a Grid environment. This is very helpful for
users or applications that need to find where existing files are
located in the Grid.

Fig. 7. Resource Filter

The Job Management component of Globus is responsible

for submitting the application to the computing resources, by
co-coordinating with other Globus components. The job
management in Globus enabled grid is primarily under the
control of Globus Resource Allocation Manager (GRAM).

The Globus Resource Allocation Manager (GRAM)
integrates new module to include application's core
requirement, as specified in (Gridway) JDL. The
understanding of new parameter by LRMS facilitates the
actual job execution in the identified cluster nodes as per
application requirement.

Even though the integration of new modules with the
GRAM component of Globus is carried out, it will be
completed only if the core requirement, which has been
selected by the user through the job descriptions specified to
the grid meta-scheduler, is integrated with the Local Resource
Manager System (LRMS). LRMS is primarily responsible for
actual job submission on the high performance computing

5

cluster. The necessary integration modules are added to
facilitate this activity. Hence, a user can submit their hybrid
MPI-OpenMP applications by specifying the required number
of nodes and cores in node, ensuring the resource allocation as
per application requirement and eventually improving the
application performance.

VII. CASE STUDY

To demonstrate the effectiveness of the approach followed
in our paper, we have conducted extensive study and
experiments by submitting hybrid MPI-OpenMP applications
on to the test bed to analyze the application performance. We
have identified some HPC resources which are part of
GARUDA computational grid infrastructure distributed across
the nation. The test bed deploys Gridway as Grid meta-
scheduler, Globus as Grid middleware and Torque as LRM.

To analyze the improvement in performance, we identified
Stream benchmark (18) (19), a hybrid application, to be executed
on the selected resources with and without the customization
to support hybrid applications. The application requires two
processors for execution. The clusters have 4, 8, 16 and 24
cores each. We conducted the same experiment twice by
varying the parameter NUM_THREADS.

Experiment1: application spawning 8 threads

Case 1.1: Without implementing the proposed mechanism

In the first case, our application creates 2 processes
spawning 8 threads each and results are noted for 8 different
runs. Table 1 records the application execution time for 8
runs, without implementing the proposed mechanism.

TABLE 1. EXECUTION TIME FOR CASE 1.1

The graph is plotted accordingly as shown in Figure 8. The x-
axis depicts the execution time in seconds and y-axis shows
values for 8 different runs.

Fig. 8. Graph for case 1.1

Case 1.2: With the proposed mechanism setup

For the second case, we execute the application on the test
bed implementing the proposed mechanism for improving
application performance. The execution time is tabulated in
Table 2, for 8 runs and the graph for the same is plotted in
Figure 9. The mean execution time is evaluated for both the
scenario.

TABLE 2. : EXECUTION TIME FOR CASE 1.2

A-Cluster
(4 cores)

B-Cluster
(8 cores)

C-Cluster
(16 cores)

D-Cluster
(24 cores)

Run 1 9.19
Run 2 18.23
Run 3 17.56
Run 4 9.56
Run 5 9.49
Run 6 9.84
Run 7 10.45
Run 8 9.45
Mean 17.895 9.34 10.145 9.505

Mean execution time for the grid
11.72125

A-Cluster
(4 cores)

B-Cluster
(8 cores)

C-Cluster
(16 cores)

D-Cluster
(24 cores)

Run 1 10.24
Run 2 9.48
Run 3 9.67
Run 4 9.34
Run 5 9.45
Run 6 9.29
Run 7 9.32
Run 8 9.61
Mean 0 9.476667 9.845 9.42666667

Mean execution time for the grid
9.582777778

6

Fig. 9. Graph for Case 1.2

By analyzing both the cases, we notice that irrespective of

the application requirement, the application is scheduled for
execution on all the resources, in case 1.1. The execution time
varies significantly for each run, with mean execution time of
11.27 seconds.

In case 1.2, the application is not scheduled on resources
which do not fulfill the application requirement, thereby
reducing the average execution time for hybrid application.
The execution time for each run remains nearly constant. We
can observe that the mean execution time is reduced
considerably while implementing the proposed mechanism.

Experiment 2: Application spawning 16 threads

Case 2.1: Without implementing the proposed mechanism

In the first case, our application creates 2 processes
spawning 16 threads each. Table 3 lists the application
execution time for 8 runs, without implementing the proposed
mechanism. The graph is plotted accordingly as shown in
Figure 10.

TABLE 3. EXECUTION TIME FOR CASE 2.1

Fig. 10. Graph for Case 2.1

Case 2.2: With the proposed mechanism setup

In the second case, we execute the application on the test

bed implementing the proposed mechanism for improving
application performance. The execution time is tabulated in
Table 4, for 8 runs and the graph for the same is plotted in
Figure 11. The mean execution time is evaluated for both the
scenario.

TABLE 4. EXECUTION TIME FOR CASE 2.2

Fig. 11. Graph for Case 2.2

A-Cluster
(4 cores)

B-Cluster
(8 cores)

C-Cluster
(16 cores)

D-Cluster
(24 cores)

Run 1 40.32
Run 2 12.24
Run 3 12.74
Run 4 22.34
Run 5 13.01
Run 6 21.69
Run 7 12.89
Run 8 41.51
Mean 40.915 22.015 12.95 12.49

Mean execution time for the grid
22.0925

A-Cluster
(4 cores)

B-Cluster
(8 cores)

C-Cluster
(16 cores)

D-Cluster
(24 cores)

Run 1 12.62
Run 2 12.93
Run 3 12.94
Run 4 13.38
Run 5 12.45
Run 6 12.54
Run 7 13.31
Run 8 12.86
Mean 0 0 12.93 12.8275

Mean execution time for the grid
12.87875

7

When both the cases are analyzed, we notice that
irrespective of the application requirement, the application is
scheduled for execution on all the resources. The mean
execution time in both the cases varies greatly, i.e 22.09
seconds and 12.87 seconds for case 2.1 and case 2.2
respectively.

Figure 12 plots a bar graph representing the mean
execution time for both the cases.

Fig. 12. Execution time comparison

The cases with and without the proposed mechanism for

case 1 and 2 respectively are plotted on the x-axis. The y-axis
represents execution time in seconds. We observe that if jobs
are scheduled at appropriate clusters, there is a noticeable
difference in the mean execution time for both the cases.

Fig. 13. Result Analysis

The figure 13 can be plotted as a line chart to effectively

highlight the impact of proposed mechanism.
With figure 13, we can understand that as the number of
threads spawned by an application increases, the difference in
mean execution time is greatly increased.

VIII. SIMILAR WORK

The proposed mechanism for improving the performance of
hybrid MPI-OpenMP applications proves to be a very useful
feature in a heavily used grid computing environment. There
has been no remarkable attempt facilitating support for hybrid
applications in current grid scenario. The proposed system is
implemented in GARUDA grid. Most of the works carried out
earlier either concentrate on effective scheduling of MPI jobs
or core level scheduling of Multi-threaded applications.
However an attempt to unify these strategies, to harness the
optimal utilization of the resources, has not been carried out
effectively.

IX. FUTURE WORK
Hardware accelerators on HPC resources are becoming the

key factors influencing the application performance. We are
researching on developing new scheduling approaches for
hybrid applications with GP-GPU (20), and MIC (21) program
modules, in a distributed computing scenario, specifically with
respect to Grid. This would pave a path for discovering the
optimized resources for running hybrid applications in a
heterogeneous Grid environment.

X. CONCLUSION
The emergence of hybrid applications presents the need for

their enablement in Grid environment. The implemented
mechanism allows user to specify the requirement of hybrid
applications and schedule the jobs accordingly. The selection
of right cluster for submitting hybrid application becomes very
critical, in terms of performance improvement.

So the implementation must address the resource
identification and allocation based on the requirement of
hybrid applications. Grid middleware, grid meta-scheduler and
Local Resource Managers must align themselves to support
hybrid applications. The existing grid meta-scheduler is tuned
to understand hybrid application parameters to identify the
appropriate cluster and resource allocation for the job
submission. The grid middleware and Local Resource
Managers are modified and configured to understand and
implement the core requirement to facilitate the execution of
hybrid applications. The case study on GARUDA grid
testbeds indicates the usefulness of the proposed mechanism.
The experiments conducted revealed the enhanced
performance for hybrid application execution.

XI. REFERENCES

1. Computer cluster. Wikipedia. [Online]

http://en.wikipedia.org/wiki/Computer_cluster.

2. Shared Memory. Wikipedia. [Online]

http://en.wikipedia.org/wiki/Shared_memory.

8

3. Barney, Blaise. Message Passing Interface (MPI).

https://computing.llnl.gov/tutorials/mpi/. s.l. : Lawrence

Livermore National Laboratory.

4. OpenMP: an industry standard API for shared-memory

programming. Dagum, L. 1, Jan-Mar 1998, Computational

Science & Engineering, IEEE, Vol. 5, pp. 46- 55 .

5. Hysom, E. Chow and D. Assessing Performance of Hybrid

MPI/OpenMP Programs on SMP Clusters. Livermore CA :

Lawrence Livermore National Laboratory, 2001. UCRL-JC-

143957.

6. What is the Grid? A Three Point Checklist. Foster, Ian.

s.l. : GRIDToday, 2002.

7. e-Infrastructures in IT: A case study on Indian national grid

computing initiative – GARUDA. B. B. Prahlada Rao, S.

Ramakrishnan, M. R. Raja Gopalan, C. Subrata,N.

Mangala, and R. Sridharan. 3-4, s.l. : Springer-Verlag, June

2009, Computer Science- Research and Development, Vol.

23, pp. 283 - 290.

8. National Knowledge Network. [Online] http://www.nkn.in/.

9. Ian Foster, Carl Kesselman. The grid: blueprint for a new

computing infrastructure. s.l. : Morgan Kaufmann Publisher,

1999.

10. Globus Toolkit Version 4: Software for Service-Oriented

Systems. Foster, I. s.l. : IFIP International Conference on

Network and Parallel Computing, 2006. pp. 2-13. LNCS 3779.

11. Torque. [Online]

http://www.adaptivecomputing.com/products/torque.php.

12. The GridWay Framework for Adaptive Scheduling and

Execution on Grids. Eduardo Huedo, Rubén S. Montero,

Ignacio Martín Llorente. 3, s.l. : Scalable

Computing:Practice and Experience, 2005, Vol. 6, pp. 1-8.

ISSN 1895-1767.

13. Hybrid MPI/OpenMP Parallel Programming on Clusters

of Multi-Core SMP Nodes. Rolf Rabenseifner, Georg

Hager,Gabriele Jost. s.l. : Parallel, Distributed and Network-

based Processing, 2009.

14. An access mechanism for Garuda Grid. Arackal, V.S.,

Arunachalam, B., Bijoy, M.B., Prahlada Rao,

B.B.,Kalasagar, B., Sridharan, R., Chattopadhyay, S.

Bangalore : Internet Multimedia Services Architecture and

Applications (IMSAA), 2009 IEEE International Conference,

2009.

15. Internal Architecture of Gridway. www.gridway.org.

[Online]

http://gridway.org/doku.php?id=documentation:release_5.14:i

a.

16. The Grid[Way] Job Template Manager, a tool for

parameter sweeping. A. Lorca, E. Huedo, I.M. Llorente.

s.l. : Computational Physics Communications, 2011. 1047-

1060.

17. A Performance Study of Monitoring and Information

Services for Distributed Systems. X. Zhang, J. Freschl, and

J. Schopf. s.l. : HPDC, August 2003.

18. The STREAM Benchmark: Computer Memory

Bandwidth. [Online] [Cited: April 30, 2013.]

http://www.streambench.org/.

19. STREAM: Sustainable Memory Bandwidth in High

Performance Computers. [Online] [Cited: April 30, 2013.]

http://www.cs.virginia.edu/stream/.

