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Abstract— In the current scenario of grid computing, 

heterogeneous resources are distributed across different 
administrative domains and geographical boundaries. Every 
node in a cluster consists of multiple core CPUs wherein the 
distributed memory across nodes and shared memory co-exists, 
thereby paving way for hybrid architectures. The hybrid 
programming approach combines MPI and OpenMP libraries to 
exploit this hierarchical multicore architecture. The clear 
requirements of such hybrid application and knowledge of the 
system architecture will help to boost the application 
performance. Scheduling these hybrid applications on the grid 
becomes a critical task for obtaining better performance. In this 
paper, we outline the attempt made in improving the scheduling 
mechanism for the hybrid applications based on the 
requirements of the application. 

Index Terms— Grid Computing, Parallel Computing, Hybrid 
job scheduling 

I. INTRODUCTION  
         Most HPC systems comprise of clusters (1) with shared 
memory (2) nodes. These shared memory nodes usually contain 
multiple sockets with multiple cores per socket. Traditional 
parallel programming models such as MPI (3) and OpenMP (4), 
quite often run into limitations regarding performance and 
scalability. Hybrid programming combines the distributed 
programming paradigms on the node and shared memory 
programming paradigms within each node. The hybrid 
programming approach, which combines MPI and OpenMP 
programming models, seems to be a good approach. However, 
the scheduler must possess considerable knowledge of system 
architecture and the clear requirements of the application to 
enforce better scheduling decisions for hybrid applications 
thereby enhancing its performance (5). 
 
       Grid (6) computing provides the ability to access, utilize, 
and control a variety of underutilized heterogeneous resources 
distributed across multiple administrative domains.  
 

Grid Meta scheduler and grid middleware are incorporated 
to manage and negotiate with these distributed resources to 
identify the suitable resource for job submission. Grid Meta 
scheduler neither considers total cores available per cluster nor 

the requirement of application. We develop a model for 
evaluating the requirement of hybrid applications along with an 
effective scheduling mechanism for resource allocation. 

II. OVERVIEW OF GARUDA GRID 
GARUDA Grid (7) is India’s national grid computing initiative, 
funded by the Department of Information Technology (DIT), 
Government of India, binds together heterogeneous 
computational resources, mass storage and scientific 
instruments. GARUDA aims to provide the technological 
advances required to enable data and compute intensive 
science for the 21st century, connecting 28 cities across the 
nation. 

 

 
Fig. 1.  GARUDA Grid Architecture 

 
 
The GARUDA network is a Layer 2/3 MPLS Virtual Private 
Network [VPN] connecting selected institutions at 2.43 Gbps 
with stringent quality and Service Level Agreements. National 
Knowledge Network (NKN) (8) has undertaken the 
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implementation of GARUDA network across research, higher 
education and scientific institutions through ultra high-speed 
backbone/data-network communication highway, encouraging 
sharing of knowledge, specialized resources and collaborative 
research. 
 The major components of GARUDA are the 
computing resources, high-speed communication fabric, 
middleware & security mechanisms, job scheduler, tools to 
support program development, collaborative environments, 
data management and grid monitoring & management, as 
shown in Figure 1. 
   GARUDA has adopted a pragmatic approach for 
using existing Grid infrastructure (9) and Web Services 
technologies. The deployment of grid tools and services for 
GARUDA will be based on a judicious mix of in-house 
developed components, the Globus Toolkit (GT) (10), industry 
grade & open source components. The resource management 
and scheduling in GARUDA is based on a deployment of 
industry grade schedulers in a hierarchical architecture. At the 
cluster level, job scheduling is achieved through Torque (11). 
Gridway (12) is deployed at GARUDA as the meta-scheduler, 
which is responsible for scheduling jobs at grid level. 
 

III. CURRENT SCENARIO OF HYBRID MPI-OPENMP 
APPLICATIONS IN GRID 

In a computational grid, each high performance cluster has 
number of nodes with cores, as depicted in the Figure 2. These 
nodes are configured with grid middleware, grid meta-
scheduler and Local Resource Manager (LRM) to create a 
parallel processing environment. The meta-scheduler takes the 
responsibility of job submission on the grid. 
 

 
Fig. 2.  Cluster Architecture 

 

  Prior to job submission onto grid, the meta-scheduler 
checks for application requirements and selects the suitable 
resource to schedule the job on the appropriate cluster. 
Resource broker lists the candidate resources as per the job 
requirements. Grid meta-scheduler takes complete control of a 

job from its submission, execution and its output available to 
the user.   
 Generally, grid meta-schedulers schedule jobs based 
on the availability of the resources at any given instance.  
Gridway is the meta-scheduler used in GARUDA grid. Using 
Gridway, the user cannot specify the total cores required for 
their hybrid applications, as it does not take into account the 
multicore feature of clusters. 
 

IV. NEED FOR HYBRID MPI-OPENMP APPLICATION 
SUPPORT IN GRID 

In addition to MPI, OpenMP is a specification for compiler 
directives, library routines (the OpenMP API) and 
environmental variables used in Fortran and C programs to 
utilize shared memory and distributed shared memory 
architectures. The primary advantage of using OpenMP 
directives lies in the ability of multi processors to access the 
same memory pool, without the costly communication 
overheads and network transit times found in message 
passing. The clusters of compute nodes with shared-memory 
multiprocessors provide a good platform for parallel 
applications. The concept of using MPI between cluster nodes 
and OpenMP within a node results in less overhead in the 
shared memory environment. This leads to the emergence of 
hybrid MPI-OpenMP programming (13). 
 

The requirement of MPI application is the number of 
processors, whereas the OpenMP applications require the 
number of hardware threads in the node, as the input 
parameter. Therefore, the job submission of hybrid MPI-
OpenMP application requires two input parameters – the 
number of nodes and number of hardware threads in the node.    
. 
 

The job submission on grid therefore necessitates meta-
scheduler to filter resources based on application's 
requirement. This underscores the importance of providing a 
new improved scheduling mechanism based on hybrid 
application demand in a grid computing environment. While 
executing an MPI application, each node runs only one MPI 
process no matter how many cores it has. The MPI process 
then forks OpenMP threads on the node, which in turn 
complete execution in parallel. The effective scheduling of 
hybrid applications depends on the application requirements 
and total number of cores in the cluster node. 

 

V. MAJOR COMPONENTS OF A GRID  
Figure 3 represents the components of a Grid. Grid Meta-

scheduler plays a major role in selecting the right resource 
based on the application requirement and is responsible for 
judiciously scheduling jobs on to the grid. It provides the 
interface for users/applications/portals (14) for submitting jobs 
onto grid. The local resource manager, the lowest layer entity, 
is responsible for getting the jobs run on a cluster system.  
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Fig. 3.  Components of Grid 

 
Another major entity, Grid middleware and the bridge 

system co-ordinates and accomplishes the filtering activity for 
resources. This component is responsible for integrating both 
Meta scheduler and Local resource manager for the smooth 
running of hybrid applications. 

VI. IMPLEMENTATION 
In the current scenario, Gridway is deployed as the Grid 

Meta scheduler on GARUDA.  The figure 4 (15) depicts the 
components of Gridway, which consists of Gridway Core, 
Scheduler, Information manager, Execution manager and 
Transfer manager.  

 
 

Fig. 4.  Components of Gridway 

 
Gridway accepts the number of nodes for the parallel 

applications as its input parameter. However, the hybrid MPI-
OpenMP application need to specify the number of cores 
required along with node requirements for its job execution. 
Gridway is customized to accept additional input parameter, 

understand and implement this requirement at different layers 
of Grid, in turn helping to improve application performance. 

 
The development has been made at three different layers of 

a grid as shown in the Figure 5. 
 

 
 

Fig. 5.  Different layers in Grid 

As shown in the figure 5, Grid comprises of three layers, 
namely Grid Middleware, Grid Meta-scheduler and 
Application layer. The grid middleware layer aids in enabling 
a high performance computing cluster by providing necessary 
security, information, job and data management facilities 
between different resources in grid. The local resource 
management layer is actually responsible for spawning the 
different processes of a parallel application across the 
computing nodes of the cluster. The middle layer, grid meta-
scheduler layer, takes care of job allocation to the high 
performance clusters. The Application layer provides an 
interface to users for job submission.  
 
Figure 6 depicts the modification that has been introduced in 
the meta-scheduler level to provide the support for hybrid 
application requirements from user. 
 

 
 
 
Fig. 6.  Gridway modification for Hybrid MPI-OpenMP application Support 
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The Grid meta-scheduler, Gridway has been customized 
to support hybrid applications. In order to support number of 
cores required for the hybrid application, the Job Description 
Language (JDL) (16) of Gridway has been extended. A new 
parameter, NUM_THREADS is introduced either to describe 
the number of threads application creates or the number of 
cores in the node required by the hybrid application.  
 

The extended Gridway uses the parameter 
NUM_THREADS to filter the resources as per the 
requirement of hybrid application. The meta-scheduler Job 
Description Language (JDL) processing mechanism has been 
modified to accept and interpret NUM_THREADS for 
indicating the number of threads spawned by the application. 
The minimum number of threads to run on each core decides 
the performance of their application. The extended Gridway 
ensures to enhance the application performance by selecting 
appropriate resources for job scheduling. 
   

Gridway provides the command “gwhost” to list the 
availability of resources. The knowledge of number of cores 
available in the cluster node would help user to specify the 
parameter NUM_THREADS, thereby enhancing their 
application performance. The better performance can be 
achieved with considerable knowledge of system architecture 
and the requirements of the application. Therefore, the 
Gridway resource monitoring command has been modified to 
include the additional information, i.e. the cluster's multicore 
property.  
 

The role of meta-scheduler, Gridway, for job 
submission includes identifying appropriate resource as per 
application requirement, scheduling jobs on those resources, 
stage-in input(s), and stage-out output(s) in the selected 
cluster. Then the task of job execution passes on to grid 
middleware, Globus. The Gridway Job Description Language 
(JDL) provides necessary information to grid middleware 
deployed in the identified cluster, for job execution. The grid 
middleware has to be modified to implement the additional 
feature of the extended Gridway, thereby supporting hybrid 
applications. 
 

The Globus 4 based on Web Service Resource 
Framework (WSRF), the de facto standard for the Grid 
middleware, supports web service based jobs as well. The 
Globus middleware consists of four components, namely, 
Security Management, Information Management, Job 
Management and Data Management. 
 

The Security Management in a Globus middleware is 
handled by Grid Security Infrastructure (GSI). The 
Information Management in Globus is accomplished through 
the Monitoring and Discovery System (MDS) (17) for providing 
information about the available resources on the Grid and their 
status. The Monitoring and Discovery System (MDS) is a 
suite of Web Services (WS) to monitor and discover  
resources and services on Grids.  

 
The Data Management component of Globus takes 

care of both data transfers and replication as required by the 
grid application for staging-in their inputs and staging-out 
their outputs, along with necessary data replication based on 
the proximity of simulation run. These data movement 
activities are accomplished through the GridFTP protocol. 
GridFTP is the grid enabled version of the FTP protocol, for 
providing the secure, robust, fast and efficient transfer of huge 
data. The Reliable File Transfer (RFT) service aids data 
transfer through web service interface. The data replication is 
accomplished through the Replica Location Service (RLS), a 
tool that provides the ability to keep track of one or more 
replicas of files in a Grid environment. This is very helpful for 
users or applications that need to find where existing files are 
located in the Grid. 
 

 
Fig. 7.  Resource Filter 

 
The Job Management component of Globus is responsible 

for submitting the application to the computing resources, by 
co-coordinating with other Globus components. The job 
management in Globus enabled grid is primarily under the 
control of Globus Resource Allocation Manager (GRAM).   
  

The Globus Resource Allocation Manager (GRAM) 
integrates new module to include application's core 
requirement, as specified in (Gridway) JDL. The 
understanding of new parameter by LRMS facilitates the 
actual job execution in the identified cluster nodes as per 
application requirement.  
 

Even though the integration of new modules with the 
GRAM component of Globus is carried out, it will be 
completed only if the core requirement, which has been 
selected by the user through the job descriptions specified to 
the grid meta-scheduler, is integrated with the Local Resource 
Manager System (LRMS). LRMS is primarily responsible for 
actual job submission on the high performance computing 
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cluster. The necessary integration modules are added to 
facilitate this activity. Hence, a user can submit their hybrid 
MPI-OpenMP applications by specifying the required number 
of nodes and cores in node, ensuring the resource allocation as 
per application requirement and eventually improving the 
application performance. 
 

VII. CASE STUDY 
 

To demonstrate the effectiveness of the approach followed 
in our paper, we have conducted extensive study and 
experiments by submitting hybrid MPI-OpenMP applications 
on to the test bed to analyze the application performance. We 
have identified some HPC resources which are part of 
GARUDA computational grid infrastructure distributed across 
the nation. The test bed deploys Gridway as Grid meta-
scheduler, Globus as Grid middleware and Torque as LRM. 
 

To analyze the improvement in performance, we identified 
Stream benchmark (18) (19), a hybrid application, to be executed 
on the selected resources with and without the customization 
to support hybrid applications. The application requires two 
processors for execution. The clusters have 4, 8, 16 and 24 
cores each. We conducted the same experiment twice by 
varying the parameter NUM_THREADS.  
 

Experiment1: application spawning 8 threads 
 

Case 1.1: Without implementing the proposed mechanism 
 

In the first case, our application creates 2 processes 
spawning 8 threads each and results are noted for 8 different 
runs.  Table 1 records the application execution time for 8 
runs, without implementing the proposed mechanism.  
 

 
 

TABLE 1.  EXECUTION TIME FOR CASE 1.1 

 
The graph is plotted accordingly as shown in Figure 8. The x-
axis depicts the execution time in seconds and y-axis shows 
values for 8 different runs.  
 

 
 

Fig. 8.  Graph for case 1.1 

Case 1.2: With the proposed mechanism setup 
 

For the second case, we execute the application on the test 
bed implementing the proposed mechanism for improving 
application performance. The execution time is tabulated in 
Table 2, for 8 runs and the graph for the same is plotted in 
Figure 9. The mean execution time is evaluated for both the 
scenario. 
 

 

TABLE 2. : EXECUTION TIME FOR CASE 1.2 

 
 

A-Cluster   
(4 cores)

B-Cluster   
(8 cores)

C-Cluster  
(16 cores)

D-Cluster  
(24 cores)

Run 1 9.19
Run 2 18.23
Run 3 17.56
Run 4 9.56
Run 5 9.49
Run 6 9.84
Run 7 10.45
Run 8 9.45
Mean 17.895 9.34 10.145 9.505

Mean execution time for the grid 
11.72125

A-Cluster   
(4 cores)

B-Cluster   
(8 cores)

C-Cluster  
(16 cores)

D-Cluster  
(24 cores)

Run 1 10.24
Run 2 9.48
Run 3 9.67
Run 4 9.34
Run 5 9.45
Run 6 9.29
Run 7 9.32
Run 8 9.61
Mean 0 9.476667 9.845 9.42666667

Mean execution time for the grid 
9.582777778
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Fig. 9.  Graph for Case 1.2 

 
By analyzing both the cases, we notice that irrespective of 

the application requirement, the application is scheduled for 
execution on all the resources, in case 1.1. The execution time 
varies significantly for each run, with mean execution time of 
11.27 seconds.  
 

In case 1.2, the application is not scheduled on resources 
which do not fulfill the application requirement, thereby 
reducing the average execution time for hybrid application. 
The execution time for each run remains nearly constant. We 
can observe that the mean execution time is reduced 
considerably while implementing the proposed mechanism.  

 

Experiment 2: Application spawning 16 threads 
 

Case 2.1: Without implementing the proposed mechanism 
 

In the first case, our application creates 2 processes 
spawning 16 threads each. Table 3 lists the application 
execution time for 8 runs, without implementing the proposed 
mechanism. The graph is plotted accordingly as shown in 
Figure 10. 
 

     

TABLE 3. EXECUTION TIME FOR CASE 2.1 

 

 
Fig. 10.  Graph for Case 2.1 

 
Case 2.2: With the proposed mechanism setup 

 
In the second case, we execute the application on the test 

bed implementing the proposed mechanism for improving 
application performance. The execution time is tabulated in 
Table 4, for 8 runs and the graph for the same is plotted in 
Figure 11. The mean execution time is evaluated for both the 
scenario. 
 

 

TABLE 4. EXECUTION TIME FOR CASE 2.2 

 

 
Fig. 11.  Graph for Case 2.2 

 

A-Cluster   
(4 cores)

B-Cluster   
(8 cores)

C-Cluster  
(16 cores)

D-Cluster  
(24 cores)

Run 1 40.32
Run 2 12.24
Run 3 12.74
Run 4 22.34
Run 5 13.01
Run 6 21.69
Run 7 12.89
Run 8 41.51
Mean 40.915 22.015 12.95 12.49

Mean execution time for the grid 
22.0925

A-Cluster   
(4 cores)

B-Cluster   
(8 cores)

C-Cluster  
(16 cores)

D-Cluster  
(24 cores)

Run 1 12.62
Run 2 12.93
Run 3 12.94
Run 4 13.38
Run 5 12.45
Run 6 12.54
Run 7 13.31
Run 8 12.86
Mean 0 0 12.93 12.8275

Mean execution time for the grid 
12.87875
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When both the cases are analyzed, we notice that 
irrespective of the application requirement, the application is 
scheduled for execution on all the resources. The mean 
execution time in both the cases varies greatly, i.e 22.09 
seconds and 12.87 seconds for case 2.1 and case 2.2 
respectively.  
 

Figure 12 plots a bar graph representing the mean 
execution time for both the cases.  

 

 
Fig. 12.  Execution time comparison 

 
The cases with and without the proposed mechanism for 

case 1 and 2 respectively are plotted on the x-axis. The y-axis 
represents execution time in seconds. We observe that if jobs 
are scheduled at appropriate clusters, there is a noticeable 
difference in the mean execution time for both the cases.  
 

 
Fig. 13.  Result Analysis 

 
The figure 13 can be plotted as a line chart to effectively 

highlight the impact of proposed mechanism.  
With figure 13, we can understand that as the number of 
threads spawned by an application increases, the difference in 
mean execution time is greatly increased.  

 

VIII. SIMILAR WORK  
 

The proposed mechanism for improving the performance of 
hybrid MPI-OpenMP applications proves to be a very useful 
feature in a heavily used grid computing environment. There 
has been no remarkable attempt facilitating support for hybrid 
applications in current grid scenario.  The proposed system is 
implemented in GARUDA grid. Most of the works carried out 
earlier either concentrate on effective scheduling of MPI jobs 
or core level scheduling of Multi-threaded applications. 
However an attempt to unify these strategies, to harness the 
optimal utilization of the resources, has not been carried out 
effectively. 

IX.  FUTURE WORK 
Hardware accelerators on HPC resources are becoming the 

key factors influencing the application performance. We are 
researching on developing new scheduling approaches for 
hybrid applications with GP-GPU (20), and MIC (21) program 
modules, in a distributed computing scenario, specifically with 
respect to Grid. This would pave a path for discovering the 
optimized resources for running hybrid applications in a 
heterogeneous Grid environment. 

 

X. CONCLUSION 
The emergence of hybrid applications presents the need for 

their enablement in Grid environment. The implemented 
mechanism allows user to specify the requirement of hybrid 
applications and schedule the jobs accordingly. The selection 
of right cluster for submitting hybrid application becomes very 
critical, in terms of performance improvement.  
 

So the implementation must address the resource 
identification and allocation based on the requirement of 
hybrid applications. Grid middleware, grid meta-scheduler and 
Local Resource Managers must align themselves to support 
hybrid applications. The existing grid meta-scheduler is tuned 
to understand hybrid application parameters to identify the 
appropriate cluster and resource allocation for the job 
submission. The grid middleware and Local Resource 
Managers are modified and configured to understand and 
implement the core requirement to facilitate the execution of 
hybrid applications. The case study on GARUDA grid 
testbeds indicates the usefulness of the proposed mechanism. 
The experiments conducted revealed the enhanced 
performance for hybrid application execution.  
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