
SIMD Acceleration of Modular Arithmetic on

Contemporary Embedded Platforms

Krishna Chaitanya Pabbuleti, Deepak Hanamant Mane, Avinash Desai, Curt Albert and Patrick Schaumont

Department of Electrical and Computer Engineering

Virginia Polytechnic and State University

Blacksburg, VA 24060

Email: {kriscp4, mdeepak, aviraj, falbert9, schaum}@vt.edu

Abstract—Elliptic curve cryptography (ECC) is a public key
crypto system popular for embedded implementations because
of its shorter key sizes. ECC computations are complex; they
involve point additions and doublings on elliptic curves over
finite fields. The execution time of ECC is completely dominated
by modular multiplications in these fields. In this contribution,
we propose vector processing techniques to accelerate modular
multiplications in prime fields. We demonstrate implementations
for the Venom (NEON) coprocessor in Qualcomm’s Scorpion
(ARM) CPU, as well as for the SSE2 instruction-set extensions
in Intel’s Atom CPU. Our implementations, which use NIST-
standard prime-field curves, run more than two times faster than
the OpenSSL versions of the same ECC operations on the same
processor.

I. INTRODUCTION

Handheld computing is an emerging market with increas-
ingly complex and powerful processors to provide wide range
of services to the end user. Current processors targeted at the
handheld market contain several coprocessors and accelerators
which can perform specialized functions, such as signal pro-
cessing and video acceleration, without burdening the main
processor. Information security is a common requirement for
those platforms as well. Public key cryptographic algorithms
like RSA, DSA and elliptic curve cryptography (ECC) are
needed to support key exchange and signature protocols. ECC
in particular is popular in embedded context because of the
smaller key sizes compared to other public key cryptographic
systems. For example, at 128-bit equivalent security, we need
3072-bit public key in RSA, whereas ECC requires only a
256-bit public key.

Our work focuses on efficient implementation of modular
arithmetic which forms the basis for ECC, by exploiting the ca-
pabilities of SIMD coprocessors in Intel Atom and Qualcomm
Snapdragon processors. High-performance implementations
are important, also for handheld computing platforms. Indeed,
faster cryptography enables higher levels of equivalent security,
or higher availability of handheld computing resources for
other tasks. Furthermore, new applications such as e-cash and
privacy-friendly attributes make extensive use of public-key
primitives.

ECC was independently proposed by Neal Koblitz and
Victor S. Miller and is based on point algebra of elliptic curves
over a finite field. The security of ECC is based on the Elliptic
Curve Discrete Logarithm Problem which states that given
two points P and Q on the curve such that Q = k.P , it is
very hard to find k. This operation is the basis for secure

Algorithm 1 Right-to-left binary method for point multiplica-
tion [8]

INPUT: k = (kt−1, ..., k1, k0)2, P ∈ E(Fq).
OUTPUT: kP.
1. Q←∞.
2. For i from 0 to t-1 do

2.1 If ki = 1 then Q← Q+ P .
2.2 P ← 2P .

3. Return(Q).

protocols for signing and key exchange: the private key k is
a very long integer chosen at random and the public key is
derived by scalar multiplication of point P with k. The scalar
multiplication thus forms the basis of ECC. All points on an
elliptic curve form a group. One can either add two different
points, or one can double a point (add it to itself). Using point
adding and point doubling, a very basic implementation of
k.P is shown in Algorithm 1. Each point operation (adding or
doubling) requires multiple modular-arithmetic operations in
the underlying field. For example, for a Weierstrass curve with
Jacobian coordinates (a common choice for NIST curves), one
may find 7 modular multiplications and 3 squaring operations
for each point doubling, and 12 modular multiplications and
2 modular squarings for point adding [8]. It’s easy to see that
computing k.P is dominated by modular multiplications. If
we assume a 192-bit random k, we may expect to see about
190 point-double and 85 point-add operations, leading to 1362
modular multiplications and 740 modular squarings for each
k.P .

We propose efficient implementation techniques for mod-
ular multiplication using advanced architectural features (and
SIMD in particular) on modern SoCs. Yan and others showed
that DSP processors are efficient in accelerating modular
arithmetic [15], [16]. Morozov later demonstrated how em-
bedded DSP cores in SoC could be used to accelerate modular
arithmetic [13]. Similarly, the SSE extension on x86 processors
enables efficient big number multiplication [11]. Bernstein et
al showed that significant performance gain can be achieved
by using NEON SIMD extension [3]. However, his demon-
stration used a specialized curve called curve25519. In
this work, we target NIST recommended curves over prime
fields. NIST primes are special primes which are of the form
2m ± 2n − − 1. Reduction is very easy in these
fields because of the structure of the prime number. The five
5 NIST primes (P192, P224, P256, P384, P512) are used

1

Ka
Typewritten Text
978-1-4799-1365-7/13/$31.00 ©2013 IEEE

TABLE I
COMPARISON BETWEEN INTEL AND SNAPDRAGON HARDWARE

PLATFORMS

Specification Intel Atom N2800
Qualcomm
Snapdragon
APQ8060

Processor Speed 1.86 GHz 1 GHz

Number of Cores 2 2

Instruction Set x86-64 ARMv7

Instruction Set Exten-
sions

SSE2
Thumb2, Neon,
VFPv3

Number of Registers

16 32-bit Registers in
32-bit mode, 16 64-
bit Registers in 64-bit
mode

16 32 -bit registers
(r0-r15)

Number of vector reg-
isters

16 128-bit registers
(XMM0-XMM15)

16 128-bit registers
(q0-q15)

L1 Cache Size
56 KB (24 KB data and
32 KB Instruction) with
2 cycle latency

16 KB data cache
and 16 KB instruction
cache

L2 Cache Size
1 MB (512 KB per
core) with 15 cycle la-
tency

512 KB

for standard curves called nistp192, nistp224, ..., which
require modular operations using 192-bit, 224-bit, ... prime
field numbers. Recent work by Kasper demonstrated portable
(non-SIMD), 64-bit optimized versions of nistp224 [17];
our work explores the opportunities offered by SIMD processor
extensions.

We implement high performance modular arithmetic on
two different hardware platforms supporting SIMD instructions
and we compare their performance. We evaluate our imple-
mentation on Qualcomm Scorpion and on Intel Atom proces-
sor. The Scorpion processor is one of the seven processors
integrated in Qualcomm’s Snapdragon platform; we will refer
to the more common term Snapdragon for the remainder of
this paper. We evaluate the performance of nistp192 and
nistp224 elliptic curves on both the platforms. The same
concept could be extended to other standard curves as well.

The major contributions of this work are:

• Implementation of efficient modular multiplication on
SIMD architecture for NIST primes.

• Apples-to-apples performance comparison of vector-
ized modular arithmetic on contemporary embedded
platforms, including cycle count performance and
analysis of the instruction set.

The remainder of the paper is organized as follows. In the
next section we describe the SIMD features of the Qualcomm
Snapdragon and the Intel Atom. Section 3 explains different
implementation techniques for modular multiplication and
optimization for both hardware platforms. Section 4 shows
implementation results, including measured performance for
P192 and P224 and Section 5 concludes the paper.

II. HARDWARE PLATFORM

We compare the performance of modular arithmetic on two
different hardware platforms namely, Qualcomm Snapdragon
APQ8060 and Intel Atom N2800. The Snapdragon features a
dual CPU (Scorpion) architecture, running up to 1.7 GHz each,

D0 D1

D2 D3

D0 D0

128 bit

64 bit 64 bit

D30 D31

Q0

Q1

Q2

Q15

Fig. 1. Registers in NEON

0153147637995111127

316395127

Packed Bytes

16/128 bits

Packed Words

8/128 bits

Packed DoubleWords

4/128 bits

Packed QuadWords

8/128 bits

XMM0

XMM15

128 bit

Fig. 2. Fundamental 128-Bit packed SIMD data types in SSE2 [6]

two VeNum (NEON) 128-bit SIMD multimedia coprocessors
and combined 512 KByte L2 cache. The Scorpion processor
is designed in-house but has many architectural similarities
with the ARM Cortex-A8 and ARM Cortex-A9 CPUs. Func-
tionally, Scorpion is an intermediary step between Cortex-A8
and Cortex-A9, supporting some but not all of Cortex-A9’s
out-of-order instruction execution capabilities. Scorpion-based
Snapdragon SOCs implement Cortex-A8 and A9-compliant
floating-point and NEON SIMD engines. We specifically target
NEON coprocessor for our SIMD optimizations.

The NEON architecture has sixteen 128-bit vector registers,
q0 through q15 as shown in Figure 1. It also includes thirty-
two 64-bit vector registers, d0 through d31, but these registers
share physical space with the 128-bit vector registers: q0 is
the concatenation of d0 and d1, q1 is the concatenation of
d2 and d3, and so on. The basic ARM architecture has only
sixteen 32-bit registers, r0 through r15. Register r13 is the
stack pointer and register r15 is the program counter, leaving
only fourteen 32-bit registers for general use. An obvious
benefit of NEON for cryptography is that it provides much
more space in registers, reducing the number of loads and
stores from memory. The 128-bit arithmetic unit can perform
four 32-bit operations in each cycle. The Cortex A8 NEON
microarchitecture has one 128-bit arithmetic unit and one 128-
bit NEON load/store unit that runs in parallel with the NEON
arithmetic unit.

The second processor we use is the Intel Atom N2800 Pro-

2

Fig. 3. Modular Multiplication with Reduction

cessor. The Atom platform aims at the power performance of
a RISC architecture while still maintaining the x86 instruction
set. The Intel Atom N2800 (formerly known as Cedar Trail)
contains a dual core 1.86 GHz processor with support for the
SSE2 instruction set. The SSE2 instruction set adds sixteen
128-bit SIMD registers to the general purpose x86-64 register
set.

The SSE2 instruction set adds support for SIMD instruc-
tions through the addition of sixteen 128-bit registers, XMM0
through XMM15. Eight of these were introduced with the
original SSE instruction set and eight more were added in the
Intel 64 architecture. In the Intel architecture, unlike MIPS, a
word is of 16 bits. Figure 2 shows the SIMD data types in
SSE2.

III. IMPLEMENTATION

NIST primes are chosen to have a simple structure in terms
of powers of two, so that the modulo-operation (also called
reduction) is easy. In a field based on a prime P = 2n±2m±1,
reduction is based on the relation that 2n = ∓2m∓1(modP).

A. Modular Multiplication in P192

The smallest prime among NIST primes is P192 = 2192−
264 - 1. Any number larger than this prime can be reduced by
using the relation 2192 = 264+1(modP192). We describe two
methods to perform modular multiplication in this field. The
first method is a variant of schoolbook multiplication, where
each of the partial products is reduced as they are computed.
The second method involves reducing one of the multiplicands
before computing each of the partial product rows.

1) Schoolbook multiplication with intermediate reduction:
First, the number is represented in a polynomial form in radix
32 as below:
f = f0.20 + f1.232 + f2.264 + f3.296 + f4.2128...+ f5.2160

g = g0.20 + g1.232 + g2.264 + g3.296 + g4.2128...+ g5.2160

The basis for this approach is schoolbook multiplication as
shown in Figure 3. Each row of the partial products is reduced
as they are calculated. The partial products whose coefficients
are greater than 2192 are added back into 264 and 20. This

h0 = f0g0 + f1g5 + f2g4 + f3g3 + f4g2 + f5g1+ f5g5
h1 = f0g1+ f1g0 + f2g5 + f3g4 + f4g3 + f5g2
h2 = f0g2 + f1g1+ f1g5 + f2g0 + f2g4 + f3g3 + f3g5 + f4g2 + f4g4 + f5g1

+ f5g3 + f5g5
h3 = f0g3 + f1g2 + f2g1+ f2g5 + f3g0 + f3g4 + f4g3 + f4g5 + f5g2 + f5g4
h4 = f0g4 + f1g3 + f2g2 + f3g1+ f3g5 + f4g0 + f4g4 + f5g3 + f5g5
h5 = f0g5 + f1g4 + f2g3 + f3g2 + f4g1+ f4g5 + f5g0 + f5g4

Listing 1. Expressions for terms in polynomial form of the product

is possible because of the relation 2192 = 264 + 1 in P192
prime field. This gives us expressions for terms in polynomial
form of the product shown in Listing 1. f and g represent the
multiplicands and h represents the reduced product.

It can be seen in the expressions of Listing 1 that we are
adding multiple 64-bit values, which may result in overflow.
In order to avoid this overflow, operands are represented using
a redundant representation. These redundant representations
have some slack at the MSB side, so that the carry does not
overflow. For example, we have chosen radix-24 to represent
a number. So, the partial products are of size 48 bits. Thus
there are 16 bits of slack to accommodate the overflow. Each
number is represented in polynomial form in radix-24 as in
Listing 2.

f = f0.20 + f1.224 + f2.248 + f3.272 + f4.296 + f5.2120 + f6.2144

+ f7.2168

g = g0.20 + g1.224 + g2.248 + g3.272 + g4.296 + g5.2120 + g6.2144

+ g7.2168

Listing 2. Polynomial Form

We now multiply f and g term by term in the same fashion
as we do above using schoolbook multiplication, and reduce
the partial products. The powers greater than 2192 are added
back into 264 and 20, reduced and arranged in terms of their
power as shown in Listing 3.

2
0 : f0g0 + f1g7 + f2g6 + f3g5 + f4g4 + f5g3 + f6g2 + f7g1

2
16 : f7g7

2
24 : f0g1 + f1g0 + f2g7 + f3g6 + f4g5 + f5g4 + f6g3 + f7g2

2
48 : f0g2 + f1g1 + f2g0 + f3g7 + f4g6 + f5g5 + f6g4 + f7g3

2
64 : f1g7 + f2g6 + f3g5 + f4g4 + f5g3 + f6g2 + f7g1

2
72 : f0g3 + f1g2 + f2g1 + f3g0 + f4g7 + f5g6 + f6g5 + f7g4

.

.

Listing 3. Reduction of Partial Products

It can be observed that there are powers which are not
present as terms in the original polynomial. For example, 216

and 264 are not present in the original polynomial, but are
present in the result. So, these have to be split and added
into the nearest powers. For example, the lower 8 bits of 216

are shifted 16 places and added into 20 and the upper 16 bits
are added in 224. After eliminating all the non-aligned powers,
carries are propagated and final reduced result is produced. The
partial products f0g0, f0g1, ..., f7g7 are computed on SIMD
coprocessor, two at a time. The accumulation, shifting and
carry propagation are all carried on the main processor. SIMD
coprocessor is very efficient in performing multiplications,
but performs poorly for other operations like shifting and
carry propagation. So, partial products are computed on SIMD
coprocessor, whereas the subsequent operations are carried out
on main processor.

3

f7 f6 f5 f4 f3 f2 f1 f0

g7 g6 g5 g4 g3 g2 g1 g0

02324474871729596119120143144167168191

f7 . g0 f6 . g0 f5 . g0 f4 . g0 f3 . g0 f2 . g0 f1 . g0 f0 . g0

f7 . g7 f6 . g7 f5 . g7 f4 . g7 f3 . g7 f2 . g7 f1 . g7 f0 . g7

h7 h6 h5 h4 h3 h2 h1 h0

647172 87

24

24

2416

24 24

8

Fig. 4. P192 Implementation

f7 f6 f5 f4 f3 f2 f1 f0

g7 g6 g5 g4 g3 g2 g1 g0

0272855568384111112139140167168195196223

f7 . g0 f6 . g0 f5 . g0 f4 . g0 f3 . g0 f2 . g0 f1 . g0 f0 . g0

f7 . g7 f6 . g7 f5 . g7 f4 . g7 f3 . g7 f2 . g7 f1 . g7 f0 . g7

h7 h6 h5 h4 h3 h2 h1 h0

96111112123

x-1

0xffffff 0xffffff 0x100000028

if !=0

28

12 16

28 28

Fig. 5. P224 Implementation

2) Multiplicand reduction method: Instead of the shifting
and reducing the partial products, one of the multiplicands
is reduced after calculating one row of partial product. Mane
discusses an FPGA implementation of modular multiplication
in which one of the operands is reduced as the multiplication
progresses [12]. We have adapted this technique on SIMD
platforms by reducing the number of reduction stages. We
have also eliminated intermediate carry propagation by using
redundant representation of operands. The operands f and g
are represented in redundant representation in radix-24 in the
same way as discussed in the previous method. First row of
partial products are obtained by multiplying f with g0. Now, f
is shifted left by 24 bits, the 24 bits beyond 2192 are added to
20 and 264, which produces reduced multiplicand. This shifting
and adding back is based on the relation 2192 = 264 + 1 in
P192 prime field, which produces the reduced result. It should
be noted that, because of the redundant representation, lower
8 bits of 264 are in f2 and remaining 16 bits are present in
f3. So, lower 8 bits of f7 are added in upper 8 bits of f2
and upper 16 bits of f7 are added in lower 16 bits of f3.
We do not need to worry about carry because of the slack
present due to redundant representation. Now, the second row
of partial products is calculated by multiplying reduced f with
g1 and added to the previous partial products. Similarly, all
partial product rows are computed by shifting f and reducing

it, followed by a multiplication with g. In the end, carries are
propagated and any trailing bits beyond 2192 are again reduced
by adding them to 20 and 264.

B. Modular Multiplication in P224

The next bigger prime in NIST primes is P224 = 2224 −
296+1. Any number larger than this prime can be reduced by
using the relation 2224 = 296−1(modP192). Results of P192
indicate that the multiplicand reduction method is significantly
faster than the schoolbook multiplication with intermediate
reduction method. Therefore, we have implemented only mul-
tiplicand reduction method for P224.

1) Multiplicand reduction method: In the same way as
above, one of the multiplicands is shifted and reduced after
calculating one row of partial product. The numbers f and g
are represented in redundant representation in radix-28 as in
Listing 4

f = f0.20 + f1.228 + f2.256 + f3.284 + f4.2112 + f5.2140 + f6.2168

+ f7.2196

g = g0.20 + g1.228 + g2.256 + g3.284 + g4.2112 + g5.2140 + g6.2168

+ g7.2196

Listing 4. Redundant representation in Radix-28

4

First row of partial products are obtained by multiplying f
with g0. Now, f is shifted left by 28 bits, the 28 bits beyond
2224 are added to 296 and subtracted from 20, which produces
the reduced result. In the same way as above, because of the
redundant representation, the lower 16 bits of 296 are in f3
and the remaining 12 bits are present in f4. The lower 16 bits
of f7 are added in upper 16 bits of f3 and the upper 12 bits
of f7 are added in lower 12 bits of f4. When f is shifted left,
f0 is zero and we need to subtract f7 from f0. We need to get
borrow from neighbor, but the neighbor is not guaranteed to
be a non-zero number. The borrow is taken from f7 which is
being added to f3 and f4. Because we have taken the borrow
from non-neighbor, we have to add 0xfffffff to the members
between f3 and f0, i.e., f1 and f2. This is best illustrated in
the Figure 5.

C. Platform Specific Optimization

This section explains specific implementation details for
NEON and SSE2 vector coprocessors. NEON can do two
multiplications or two multiply and accumulate operations at
a time. Moreover, we can take advantage of multiply and
accumulate instruction. As shown in Figures 4 and 5, we first
multiply f0 and f1 with g0 in one cycle and obtain partial
products f0g0 and f1g0. In the next cycle, we multiply f2
and f3 with g0 and obtain f2g0 and f3g0 and so on. After
multiplying all the limbs of f with g0, f is shifted left by 24-bits
and reduced. It should be noted that this reduction is performed
on main processor because it is more efficient in handling
these operations compared to Neon coprocessor. In the next
step, f0 and f1 are multiplied with g1 and the results are
added to previously calculated f0g0 and f1g0, using multiply
accumulate instruction. This gives additions for free and also
saves registers, as there is no need to save the intermediate
partial products. In the end, the partial products are moved to
main processor, carry propagation is done and final product is
calculated.

In SSE2, the modular multiplication is implemented as
follows. We use PMULUDQ to perform two multiplication ope-
rations simultaneously. PMULUDQ can perform multiplication
operation on two of the four 32-bit values read from memory.
We can use PSHUFD to rearrange the 32-bit values to allow
us to use all of the data read in from memory before writing it
back or reading in new data. PADDQ is used to accumulate the
64-bit partial products produced in the multiplicand reduction
algorithm. PSHUFD instruction is used to order the result so
that it can be properly written back to memory, 128 bits at
a time. The downside of the SSE2 instructions is that they
overwrite one of the operands. When you call an instruction on
two operands, it calculates the result and stores it in one of the
operand registers overwriting the operand. In order to preserve
the operand, we have store it in a different register beforehand
which adds overhead. Moreover, SSE2 doesn’t have multiply
and accumulate instruction, so the intermediate results have
to be saved and added to the partial product, adding further
overhead.

IV. RESULTS

Table II shows the performance for the two proposed
approaches on the Qualcomm Snapdragon and Intel Atom for
prime field P192. The code is compiled using gcc version

TABLE II
CYCLES FOR MODULAR MULTIPLICATION FOR P192

Algorithm Snapdragon Snapdragon Atom Atom

+NEON +SSE2

Intermediate Re-
duction Method

1116 858 1282 842

Multiplicand Re-
duction Method

574 404 864 685

GMP 1786 - 2122 -

TABLE III
CYCLES FOR MODULAR MULTIPLICATION FOR P224

Algorithm Snapdragon Snapdragon Atom Atom

+NEON +SSE2

Multiplicand Re-
duction Method

685 405 1083 836

GMP 1858 - 2286 -

4.4.5 on ARM and gcc version 4.6.3 on Intel Atom. As our
modular multiplication is coded in assembly, we expect that
the difference in compiler versions has minimal impact. Clock
cycles are measured by reading counter registers from Per-
formance Monitoring Unit inside CP15 coprocessor of ARM.
On Intel, clock cycles are measured using RDTSC instruction.
Schoolbook multiplication is significantly slower than the
multiplicand reduction method, because the former method
involves several shifts and adds which adds a lot of overhead.
Atom takes more cycles than ARM in all the cases. Similar
trend can be noticed in the numbers obtained from eBACS
benchmark in Table IV [4]. Vectorising the multiplications
increases the performance by almost 30% in all the cases.
Both our methods are faster than the modular multiplication
using GMP multiprecision library. Table III shows clock
cycles comparison for multiplicand reduction method on the
ARM and Atom for prime field P224. We did not implement
schoolbook multiplication for P224 because results from P192
show that multiplicand reduction is already faster. Vectorising
the modular multiplication gives a 40% improvement in the
performance on ARM whereas gives only 22% improvement
on Intel Atom. This may be attributed to overheads present in
SSE2 like non-availability of multiply-accumulate instruction
and result replacing one of the operands.

Table IV shows the comparison of point multiplication
on various embedded platforms against point multiplication
using our modular multiplication techniques. The point mul-
tiplication is performed in projective coordinate system in all
the implementations given in the table. Our implementation
is faster than the other generic implementations of compa-
rable security level. However, specialized implementations
like curve25519 on Snapdragon by Bernstein [3] performs
better than our implementation. As expected, Atom takes
more number of cycles than Snapdragon because the modular
multiplication on Atom takes more number of cycles. A similar
trend is found in the cycle counts obtained from the eBACS
benchmark suite, where Atom takes 1.5 to 1.7 times more
number of cycles than Snapdragon.

Figure 6 shows the data from Table IV in a manner to
appreciate the merit of SIMD vectorization. The figure shows
the number of Point Multiplications completed per million
cycles of the target architecture, for different curve sizes and
different architectures. The vectorized implementations (SSE2

5

TABLE IV
SCALAR MULTIPLICATION PERFORMANCE FOR VARIOUS EMBEDDED PLATFORMS

Platform Curve and Implementation Cycles

TI OMAP 3530(ARM A8 + C64x + DSP) [13] secp160r1 1,054K

TI OMAP 3530(ARM A8 + C64x + DSP) [13] secp224r1 2,175K

Qualcomm Snapdragon Ed25519 [4] 3,295K

Intel N280 Ed25519 [4] 5,774K

Qualcomm Snapdragon P192 ebacs OpenSSL 3,143K

Qualcomm Snapdragon P224 ebacs OpenSSL 3,996K

Intel N280 P192 ebacs OpenSSL 4,973K

Intel N280 P224 ebacs OpenSSL 6,349K

Qualcomm Snapdragon with NEON Curve25519 [3] 511K

Qualcomm Snapdragon P192 with Multiplicand Reduction 1,591K

Qualcomm Snapdragon with NEON P192 with Multiplicand Reduction 1,243K

Intel N280 P192 with Multiplicand Reduction 2,390K

Intel N280 with SSE2 P192 with Multiplicand Reduction 2,115K

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

150 170 190 210 230 250 270

TI AtomSSL SnapSSL Neon SSE

This paper

nistp192
nistp224

secp224
secp160r1 curve25519

E
C

 P
M

 p
e
r

M
c
y
c
le

s

Fig. 6. Number of Point Mult per million Cycles

on Atom, NEON on Snapdragon, DSP64x on OMAP) are
shown as solid symbols; the default ones are shown as open
symbols.

V. CONCLUSION

In this paper we demonstrated how SIMD extensions could
be exploited to accelerate the underlying modular arithmetic.
We implemented and compared the modular multiplication on
two different embedded computing platforms. A generalized
modular multiplication for NIST primes and its implemen-
tation on SIMD platforms is presented. Our results show
that accelerating basic cryptographic operations on mobile
platforms can have large impact on the performance of secure
mobile applications. Our future work includes the system
integration of elliptic curve cryptography based protocols on
mobile platforms. Since Intel N2800 runs at higher frequency,
time taken for scalar multiplication on both platforms is
almost same. But it might be interesting to study the power
consumption for modular multiplication on both platforms.

ACKNOWLEDGEMENTS

This work was supported in part through a NIST grant
60NANB10D004 and NSF grant 0855095.

REFERENCES

[1] D. F. Aranha and C. P. L. Gouvêa, “RELIC an Efficient LIbrary for Cryp-
tography”, available online at http://code.google.com/p/relic-toolkit/

[2] ARM Limited, “Cortex-A8 technical reference manual”, revision r3p2,
2010. available online at http://infocenter.arm.com/help/index.jsp?topic=
/com.arm.doc.ddi0344k/index.html

[3] D. J. Bernstein and P. Schwabe, “NEON crypto,” in Proceedings of the

14th international conference on Cryptographic Hardware and Embed-

ded Systems CHES’12, 2012, pp. 320-339.

[4] D. J. Bernstein and T. Lange, “eBACS: ECRYPT Benchmarking of
Cryptographic Systems”, http://bench.cr.yp.to.

[5] D. J. Bernstein, “Curve25519: new Diffie-Hellman speed records.” in 9th

international conference on theory and practice in public-key cryptogra-

phy, PKC 2006, New York, NY, USA, 2006, pp. 207-228.

[6] Dan Garcia, “Great Ideas in Computer Architecture SIMD II,” Oct.
2012. available online at http://www-inst.eecs.berkeley.edu/∼cs61c/fa12/
lectures/18LecFa12DLPII.pdf

[7] GNU Multiprecision Library available online at http://gmplib.org/

[8] D. Hankerson, A. Menezes, S. Vanstone, “Guide to Elliptic Curve
Cryptography”, Springer 2004.

[9] Intel,“Evaluation Platforms”, available online at http://www.intel.com/
p/en US/embedded/designcenter/tools/seed-board-program?iid=1032#
expired

[10] Intel, “Intel Atom Processor N2800”, available online at http://ark.
intel.com/products/58917/Intel-Atom-Processor-N2800-(1M-Cache-1
86GHz)#infosectionpackagespecifications

[11] Intel, Using Streaming SIMD Extensions (SSE2) to perform Big Multi-
plications, available online at http://software.intel.com/sites/default/files/
m/c/c/7/4/8/24960-40809 w big mul.pdf

[12] S. Mane, L. Judge and P. Schaumont, “An Integrated Prime-Field
ECDLP Hardware Accelerator with High-Performance Modular Arith-
metic Units,” in 2011 International Conference on Reconfigurable Com-

puting and FPGAs (ReConFig), 2011, pp.198-203.

[13] S. Morozov, C. Tergino and P. Schaumont, “System integration of
Elliptic Curve Cryptography on an OMAP platform,” in Proceedings of

the 9th IEEE Symposium on Application Specific Processors SASP’11,
2011, pp. 52-57.

[14] NSA, Mathematical routines for the NIST prime elliptic curves, avail-

able online at http://www.nsa.gov/ia/ files/nist-routines.pdf

[15] C. Tergino, “Efficient binary field multiplication on a VLIW DSP”,
2009, Master’s Thesis Virginia Tech - 06222009-150103.

[16] H. Yan, Z. J. Shi and Y. Fei, “Efficient implementation of elliptic curve
cryptography on DSP for underwater sensor networks”, in Proceedings

of the 7th Workshop on Optimizations for DSP and Embedded Systems

(ODES-7), 2009.

[17] E. Kasper, “Fast Elliptic Curve Cryptography in OpenSSL”, in Financial

Cryptography and Data Security: FC 2011 Workshops, RLCPS and

WECSR, 2011.

6

