

SIMD Acceleration of Modular Arithmetic on Contemporary Embedded Platforms

Krishna PabbuletiDeepak ManeAvinash DesaiCurt AlbertPatrick Schaumont

Bradley Department of Electrical and Computer Engineering Virginia Tech Blacksburg, VA

- High Performance Crypto in Embedded Systems
- Modular Multiplication in ECC
- Two Methods of SIMD Modular Multiplication
 - Partial Accumulator Method
 - Multiplicand Reduction Method
- Results
- Conclusion

High Performance Crypto in Embedded Systems

- Why crypto in Embedded Systems?
 - Cornerstone for most security features
- Why Public Key Crypto?
 - Necessary for advanced security features
- PKC is also the most performance hungry
- Challenge: How to map efficiently on Embedded Platforms?

Elliptic Curve Crypto

- Why ECC?
 - Shorter key lengths
- What is the computational bottleneck?
 - 90% of ECC is modular multiplications
 - Word lengths ranging from 192 to 512 bits

- Clock arithmetic
 - 5 mod 13 = 5
 - 14 mod 13 = 1
- Modular Multiplication
 - (5 mod 13) * (7 mod 13) = (35 mod 13) = 9 mod 13
- Features of ECC Modular Arithmetic
 - Typical word lengths 192 to 512 bits
 - Primes in ECC are standardized and known beforehand

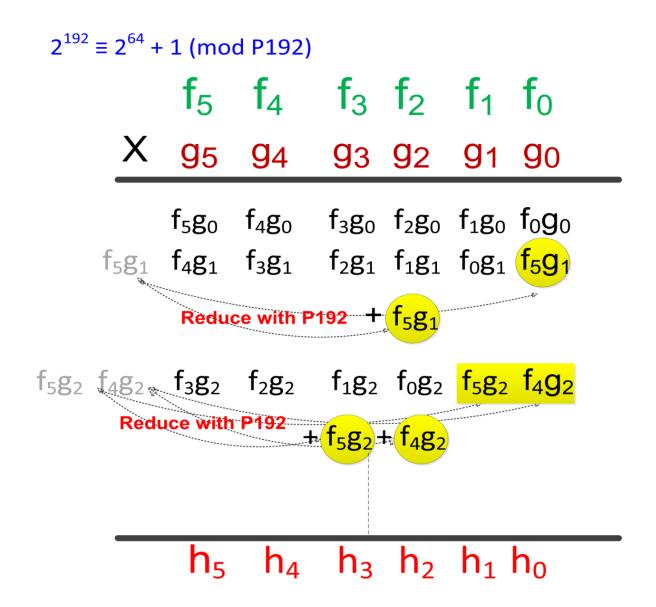
- NIST primes are the primes of the form 2ⁿ±2^m±.....±1.
- The five NIST primes defined are:
 - $P192 = 2^{192} 2^{64} 1$
 - $P224 = 2^{224} 2^{96} + 1$
 - $P256 = 2^{256} 2^{224} + 2^{192} + 2^{96} 1$
 - $P384 = 2^{384} 2^{128} 2^{96} + 2^{32} 1$
 - $P521 = 2^{521} 1$
- NIST Primes allow efficient reduction
 - $2^{192} = 2^{64} + 1 \pmod{P192}$
 - And so on

- Accelerate modular multiplication using SIMD
- SIMD: Vectorized computation
 - Eg: {d1, d0} x {d3, d2} = {d1xd3, d0xd2}
 - ARM has NEON and ATOM has SSE2
 - Both can do 128-bit vector processing
- Two approaches to perform SIMD modular multiplication
 - Partial Accumulator Method
 - Multiplicand Reduction Method

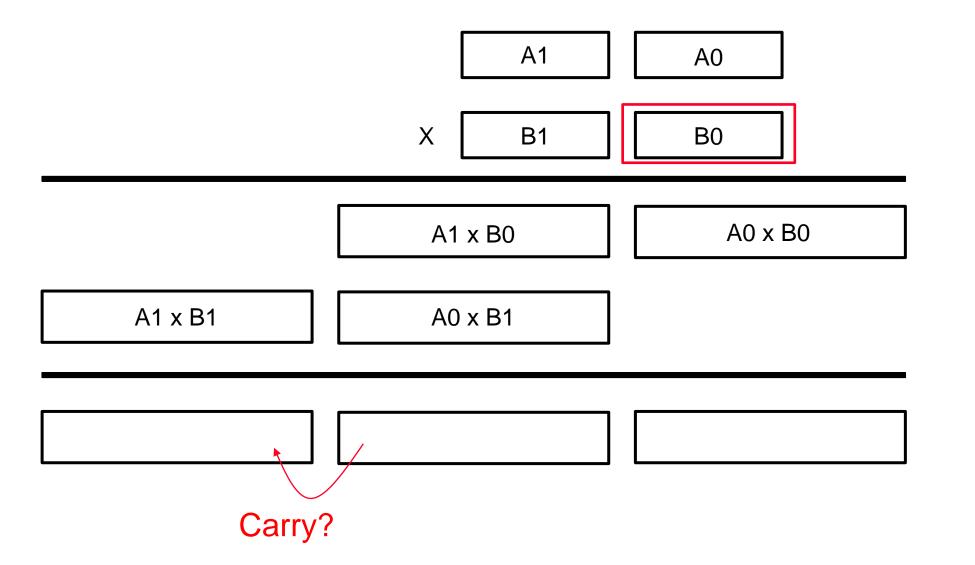
Partial Accumulators Method

- $P192 = 2^{192} 2^{64} 1$
- $2^{192} = (2^{64} + 1) \mod{P192}$
- A 192-bit number is represented in polynomial form $f = f_0.2^0 + f_1.2^{32} + f_2.2^{64} + f_3.2^{96} + f_4.2^{128} + f_5.2^{160}$ $g = g_0.2^0 + g_1.2^{32} + g_2.2^{64} + g_3.2^{96} + g_4.2^{128} + g_5.2^{160}$
- Multiplying f and g term by term

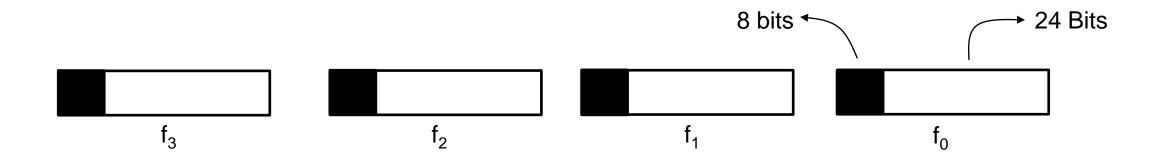
Partial Accumulators Method (Cont.)



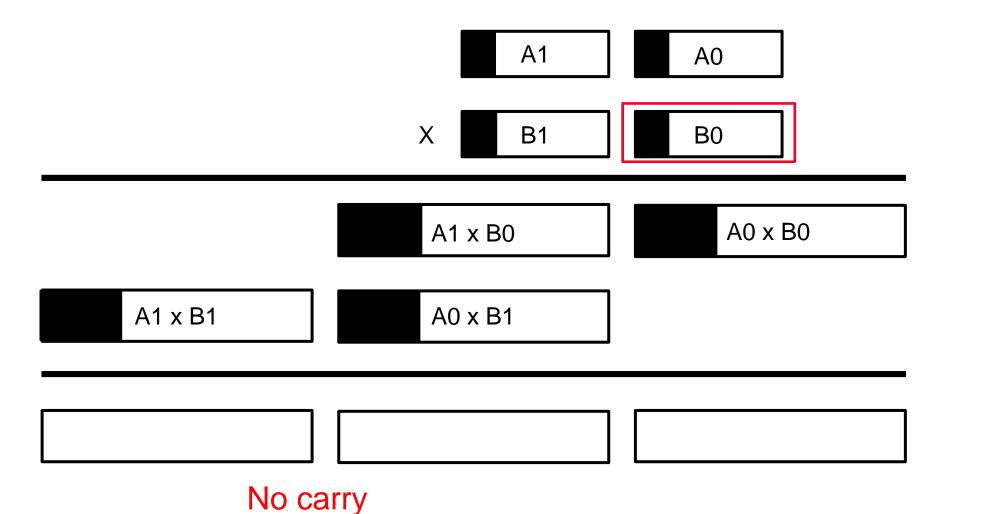
Multi-Precision Multiplication



- Number is represented such that there is enough space for carry bits
- $f = f_0 \cdot 2^0 + f_1 \cdot 2^{24} + f_2 \cdot 2^{48} + f_3 \cdot 2^{72} + f_4 \cdot 2^{96} + f_5 \cdot 2^{120} + f_6 \cdot 2^{144} + f_7 \cdot 2^{168}$



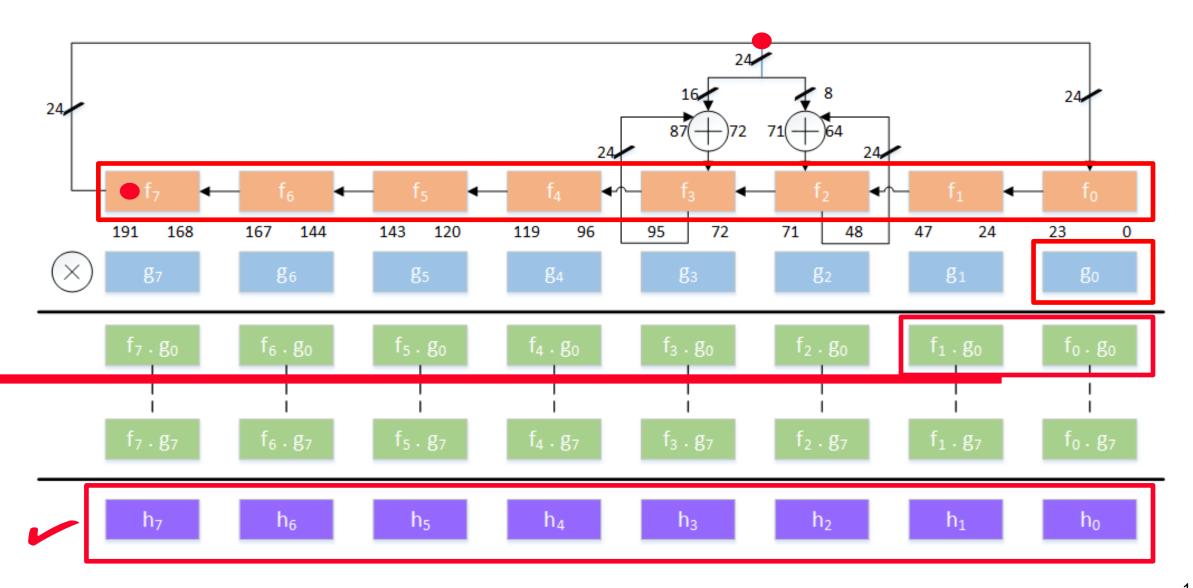
Multi-Precision Multiplication (Cont')



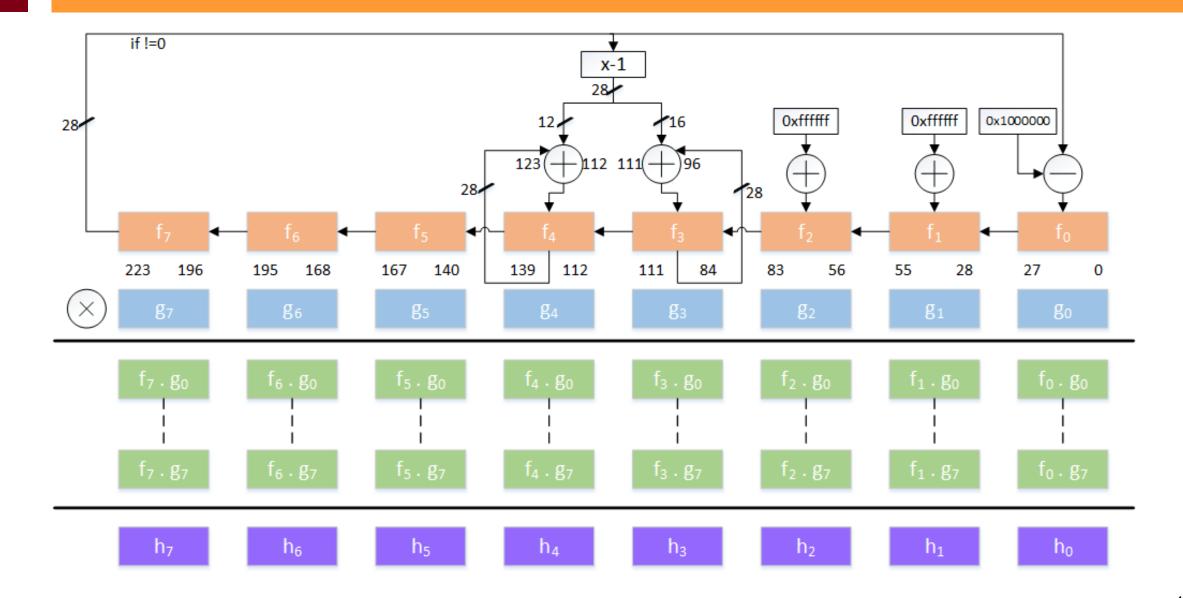
Multiplicand Reduction Method

- Instead of reducing the partial products, reduce the multiplicand at each step
- f and g represented in redundant form

 $P192 = 2^{192} - 2^{64} - 1$

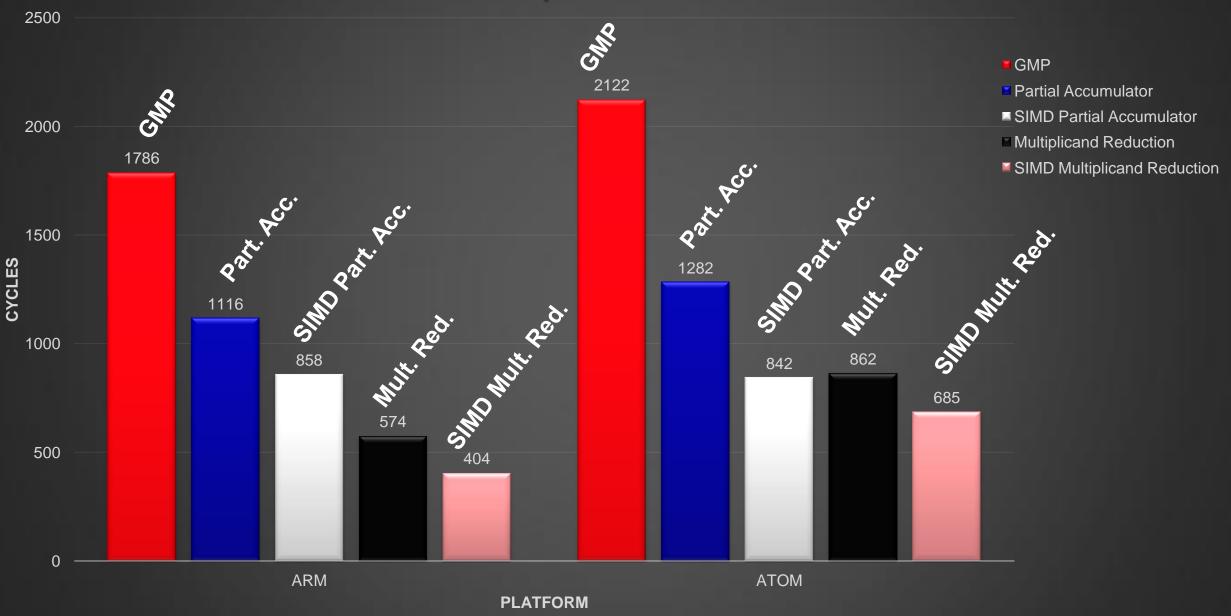


 $P224 = 2^{224} - 2^{96} + 1$



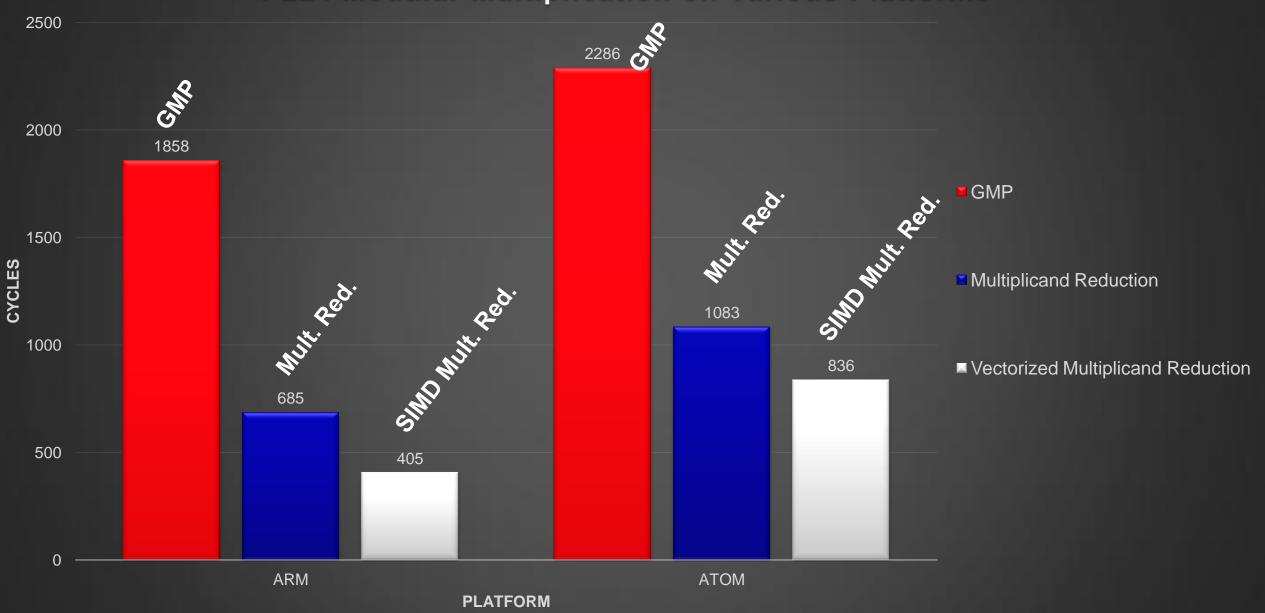
Comparison of Results

P192 Modular Multiplication on Various Platforms



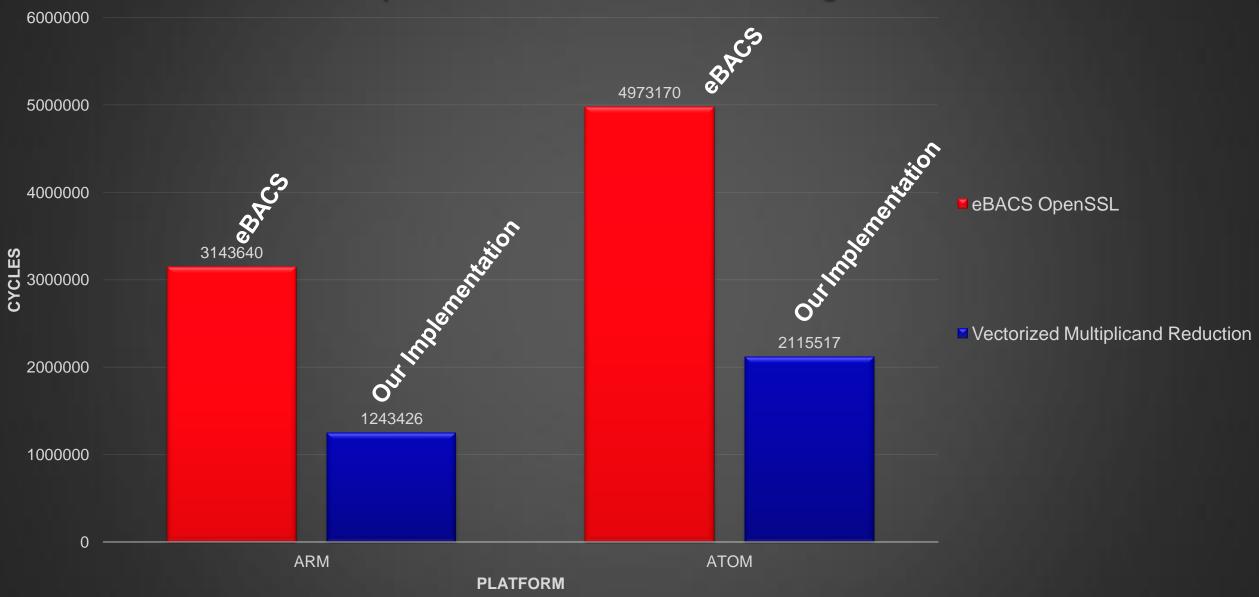
Comparison of Results (Cont')

P224 Modular Multiplication on Various Platforms



Comparison of ECC Point Multiplication Cycles

Point Multiplication on P192 with Existing Benchmarks



- Both the approaches are significantly faster than GMP on both the platforms
- The vectorized versions run faster than non vectorized versions
- ECC point multiplication for P192 is more than two times faster than the existing benchmarks from eBACS
- Future Work:
 - More optimizations can be done by vectorizing final accumulation

QUESTIONS??