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Abstract—1 The supercomputing and enterprise computing arenas 
come from very different lineages. However, the advent of 
commodity computing servers has brought the two arenas closer 
than they have ever been. Within enterprise computing, commodity 
computing servers have resulted in the development of a wide range 
of new cloud capabilities: elastic computing, virtualization, and 
data hosting. Similarly, the supercomputing community has 
developed new capabilities in heterogeneous, massively 
parallel hardware and software. Merging the benefits of enterprise 
clouds and supercomputing has been a challenging goal. 
Significant effort has been expended in trying to deploy 
supercomputing capabilities on cloud computing systems. These 
efforts have resulted in unreliable, low-performance solutions, 
which requires enormous expertise to maintain.  

LLSuperCloud provides a novel solution to the problem of merging 
enterprise cloud and supercomputing technology. More specifically 
LLSuperCloud reverses the traditional paradigm of attempting to 
deploy supercomputing capabilities on a cloud and instead deploys 
cloud capabilities on a supercomputer. The result is a system that 
can handle heterogeneous, massively parallel workloads while also 
providing high performance elastic computing, virtualization, and 
databases. The benefits of LLSuperCloud are highlighted using a 
mixed workload of C MPI, parallel MATLAB, Java, databases, and 
virtualized web services.  

Keywords – virtual machines, cloud computing, high 
performance computing, .  

I.  INTRODUCTION 

A. Enterprise clouds 
The underpinnings of current enterprise cloud computing 

and general shared computing resources have been developing 
and evolving for over four decades. The first virtual machines 
were developed to share expensive mainframe computer 
systems among many users by providing each user with a fully 
independent image of the operating system. On the research 
front, MIT, Bell Labs, and General Electric developed the 
Multics system, a hardware and operating system co-design 
that featured (among many other things) virtual memory for 
each user and isolated program execution space [1]. 
Commercially, the pioneer was IBM with the release of System 

                                                             
1 This work is sponsored by the Department of the Air Force under 
Air Force contract FA8721-05-C-0002. Opinions, interpretations, 
conclusions and recommendations are those of the author and are not 
necessarily endorsed by the United States Government. 

360/67, which presented each user with a full System 360 
environment [2]. This line of capability development enjoyed 
over two decades of improvements, but shared computing 
resources fell out of favor as x86-based personal computers and 
servers became more widely accessible and affordable at work 
and at home.  

The x86-based platforms were not initially designed for 
virtualization, which is essential for shared cloud enterprise 
computing capabilities. However, the beginning of a 
resurgence of shared enterprise server systems started in 1997 
when VMware developed a technique based on binary code 
substitution (binary translation) that enabled the execution of 
privileged (OS) instructions from virtual machines on x86 
systems. Further strides were made with the Xen project, which 
in 2003 used a jump table for choosing bare metal execution or 
virtual machine execution of privileged (OS) instructions. Such 
projects prompted Intel and AMD to add the VT-x and AMD-
V virtualization extensions to the x86 and x86-64 instruction 
sets in 2006, which further pushed the performance and 
adoption of cloud computing environments for shared 
enterprise computing solutions. As these technology 
developments gained acceptance, companies including 
Amazon, Salesforce.com, Google, Rackspace, and many others 
saw opportunities to productize shared enterprise computing 
offerings.  

Modern virtual machines enable dynamic allocation of 
hardware resource assignments for virtual machines, and they 
enable live migration of running virtual machines from one 
hardware server to another. However, such resource 
management capabilities are not frequently utilized by most 
users; mostly the capabilities are used for planned server 
maintenance by highly skilled server system administrators. 
Further, the algorithms for allocating server resources are fairly 
simple.  

B. Cloud Computing for HPC 
Meanwhile in the high performance computing (HPC) 

industry, simultaneously sharing system time among many 
users was intuitively assumed from early on. Like one-of-a-
kind national-asset telescopes, large supercomputing systems 
were designed and built to be shared among many researchers, 
often across many scientific disciplines. Even today, 
supercomputers are seldomly allocated to any one user for any 
significant stretch of time; the systems are almost always 
executing jobs for multiple users simultaneously. However, just 
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as with shared enterprise computing systems, the ubiquitous 
adoption of the x86-based computing platform made HPC 
solutions more widely accessible and affordable to more 
researchers and businesses. It should be noted that there are 
some subtle differences in the feature sets of shared enterprise 
x86-based servers and HPC servers, particularly in their 
network fabric and floating point computational capability.  

A number of companies and projects have demonstrated 
shared enterprise cloud and HPC capabilities on the same 
solution platform. Most notable of these is Amazon Web 
Services, which offers HPC nodes and GPUs [3]. However, 
these solutions all require that all computations must be 
conducted within virtual machines, regardless of whether they 
can execute natively on the underlying hardware and software 
stack. This means that all cloud enterprise and HPC 
applications must incur the performance penalties, particularly 
in disk, network, and other I/O transactions [4].   

C. LLSuperCloud - shared HPC cloud capabilities 
Over the past ten years, the LLGrid [5] at MIT Lincoln 

Laboratory has evolved from a four-node prototype cluster 
running single-user MatlabMPI jobs to a constellation of 
systems serving well over 300 users each year. LLGrid was 
developed to enable the rapid prototyping computational needs 
of MIT Lincoln Laboratory, providing interactive, on-demand 
parallel and distributed simulation, data processing, and 
algorithm exploration and development capabilities across a 
wide range of DoD mission areas including ballistic missile 
defense, radar digital signal processing algorithm development, 
aircraft collision avoidance algorithm verification, 
communication channel reliability modeling, and satellite 
propagation simulations. With this goal in mind, the LLGrid 
team continues to explore novel ways to accommodate various 
high performance computing requirements and needs on shared 
HPC hardware systems.  

The LLGrid system, depicted in Figure 1, is comprised of 
two primary types of nodes: compute nodes and service nodes. 
Among the service nodes, there is further distinction. The login 
nodes are compute nodes on which the scheduler is forbidden 
to launch jobs. The file system server nodes export the central 

file system to all of the other nodes in the cluster as well as user 
laptops and desktops. The management node is used to deliver 
the appropriate software stack to all of the nodes in the cluster 
based on each node’s role in the cluster. Finally, the scheduler 
matches job launch requests (including resource requirements 
for each job) with available compute node resources. The 
scheduler also reports on the status and resource usage of jobs, 
and keeps track of the system status of all of the compute nodes 
in the cluster. Currently, LLGrid uses Open Grid Scheduler [6], 
but LLGrid has also run on the Condor [7], 
OpenPBS/TORQUE/PBS Pro [8,9], and LSF [10] schedulers.  

It is the centrality of the scheduler that enables many 
different types of jobs to execute simultaneously on LLGrid 
including interactive, on-demand parallel MATLAB jobs; 
parallel C/MPI, C++/MPI, Java, and Fortran jobs; MapReduce 
jobs; dynamically-allocated databases; and virtual machines. 
Regardless of the job type, they are all processes that are 
brokered and launched on compute nodes using the scheduler’s 
remote shell. After all, a scheduler is just a sophisticated cluster 
resource manager, which determines what resources should be 
used to execute one or more remoted shell-based executable. 
Once resource assignment has been established, the scheduler 
launches the jobs using its remote shell infrastructure. In the 
next several sections, we will discuss how each of these 
different types of capabilities are enabled.  

II. PMATLAB AND GRIDMATLAB JOBS 
The establishing goal of the LLGrid project was to develop 

a on-demand, interactive grid computing capability for 
MATLAB – the dominant programming language for 
implementing numerical computations, widely used for 
algorithm development, simulation, data reduction, testing, and 
system evaluation – as its initial target application. Choosing 
MATLAB was simple back then: Lincoln had over one 
thousand MATLAB users; nearly two hundred users run very 
long jobs that could benefit from parallel processing. (Today 
those numbers are higher.) The LLGrid project had developed 
three technologies that allow these users to run parallel 
MATLAB jobs transparently on the LLGrid systems: 

 
Figure 1: The LLGrid System Architecture 

 



• MatlabMPI for point-to-point messaging [11];  
• pMatlab for parallel global array semantic (PGAS) 

programming [12,13]; and  
• gridMatlab for integrating user’s computers into the 

LLgrid and automatically allocating grid computing 
resources [14]. 

These three toolboxes are combined to create a unique on-
demand, interactive grid computing experience, whereby 
running a parallel MATLAB job on LLGrid is identical to 
running MATLAB on the desktop.  Users can use LLgrid from 
Windows, Linux, and Mac OS X computers with their desktop 
computer becoming a personal node in the LLGrid thereby 
establishing a transparent interface between the user’s 
computer and the grid resources. LLGrid is enabling faster 
algorithm development, prototyping, and validation cycles for 
Lincoln staff.  

Further description of the gridMatlab toolbox is merited 
with regard to building a multi-purpose shared cloud 
computing capability. The gridMatlab toolbox transparently 
integrates the MATLAB on each user’s desktop with shared 
grid clusters through the cluster scheduler by launching a job 
array of parallel MATLAB processes whenever a MatlabMPI 
or pMatlab job is run by the user in his or her MATLAB 
session. These parallel MATLAB processes join the user’s 
MATLAB session. Similarly, job status checks, LLGrid system 
status checks, and job aborts are also issued with MATLAB 
commands that call the scheduler to perform the requested 
action. Essential to enabling interactive, on-demand parallel 
activities is low latency launch times. Figure 2 shows the 
launch times for pMatlab jobs from one to 64 processes per 
job. As one might expect, users’ expectations for job launches 
depends on how many parallel processes they are launching, 
and we have found that users are consistently content with the 
launch times that the system delivers. However, users are quick 
to request help when job launches slow down. The LLGrid 
team has found this advantageous because slow launch times 
are often a symptom of some underlying system issue.  

III. BATCH COMPUTING JOBS AND LLMAPREDUCE JOBS 
For many applications and simulations at Lincoln 

Laboratory, interactive, on-demand launching (particularly 
MATLAB) is the ideal environment. However, there are other 

users who have many single process jobs, many independent 
single process jobs (job arrays), or parallel (one job with many 
communicating simultaneous processes) jobs. These jobs are in 
any of a number of programming languages including C/MPI, 
C++/MPI, Fortran, Java, Python, MATLAB, etc. For regular 
batch jobs, whether single processes, job arrays, or parallel 
jobs, the user interface is the command line on login nodes.  

In recent years with the gaining acceptance of the Hadoop 
[15] framework, the map/reduce programming model has 
gained familiarity and popularity. The map/reduce parallel 
programming model is the simplest of all parallel programming 
models, and it is arguably much easier to learn than message 
passing or distributed arrays. The map/reduce parallel 
programming model consists of two user-written programs: the 
Mapper and the Reducer, each of which have input and output 
files. The output of the Mappers is the input of the Reducer; 
there are one or more Mappers, but only one Reducer. 
Launching consists of starting many Mapper programs each 
with a different file, and when the Mapper programs have 
completed the Reduce program is run on the Mapper outputs to 
aggregate or consolidate the results. 

LLGrid MapReduce enables map/reduce for any 
programming language using a simple one-line command. 
Upon launching such a job, LLGrid MapReduce identifies the 
input files to be processed by scanning a given input directory 
or reading a list from an input file. It then submits a job array 
with one process for each file, and the user can choose how 
many of these job array processes are executed concurrently.  
Once all of the input files are processed by the Mappers, there 
is an option to collect the results using the Reducer. The reduce 
task will wait until all the mapper tasks are completed by 
setting a job dependency between the mapper tasks and the 
reducer task. LLGrid MapReduce is covered in more detail in 
[16].  

IV. D4M AND ACCUMULO - DYNAMIC DATABASES FOR 
HPC 

Scientific computing jobs and virtual machines can be I/O 
intensive, but many database instances typically execute in a 
very I/O intensive manner. This is because the contents of 
database tables often cannot be contained in their entirety in 
computers main memory. Hence, database administrators 
(DBAs) implement database instances using a local hard drive 
or locally attached disk arrays; most DBAs would not think of 
hosting databases on shared network storage. Also, most 
databases are considered network data services shared by many 
users or used by applications that are used by many users, so 
they are usually turned on and not brought down or moved 
except for occasional maintenance.  

Databases used for scientific computing and data research 
(Big Data) are often different. The requirements for their use 
still require intense I/O capability, but they are often used by 
only a single user (or a handful of users), and they usually used 
in spurts; i.e., they are used intensely to do some data ingests, 
searches, and analyses but then are not used for some stretch of 
days or weeks until the next intense session. Such a usage 
pattern lends itself well to using shared HPC servers and a 
scheduler to manage on which server the database instances 
run. But there are a few further challenges: using a consistent 

 
Figure 2: Launch time latency for pMatlab job launches on 

LLGrid. 



URL for the database service and guaranteeing acceptable I/O 
performance for the database instance. The first challenge has 
been overcome by deploying a custom database-backed 
dynamic DNS (domain name service) capability; this LLGrid-
hosted service has a RESTful web service interface and is 
available throughout the Lincoln local area network (LLAN).  

But providing acceptable I/O performance for database 
instances is more challenging. Running the database from a 
data store on the central file system delivers subpar 
performance due to the network latency from the compute 
nodes to the central storage – databases are just too closely knit 
to the underlying disk storage. So for the LLGrid dynamic 
databases solution, another option was developed. The path 
location of the database datastore in the file system has been 
standardized, as is the path location of where the database 
datastore is archived on central storage. LLGrid database 
instances can be managed from the login node command line 
or through a web browser interface. When a new database is 
instantiated, the scheduler dispatches the database launching 
script to one of the compute nodes. Once launched, the 
database creates its data files in the temporary storage area of 
the local disks of the compute node. When the database 
instance is suspended, a suspension script shuts down the 
database instance on the compute node, zips up the database 
data files into an archive file and copies the database data 
archive onto the central storage. When the database instance is 
re-instantiated, the scheduler finds a new compute node on 
which to launch the database instance, the database archive file 
is copied to that compute node and unzipped, and the database 
process is launched again. The current LLGrid dynamic 
database capability supports Apache Accumulo [17] NoSQL 
database. Table 1 shows the typical launch times for several 
scenarios. All of these timings were taken with Accumulo 
databases.  

Table 1: Execution times for dynamic Accumulo database 
startups and stops. 

Scenario Execution Time 
Empty database startup ~90 sec 
Empty database stop ~90 sec 
13.6 GB database startup ~240 sec 
13.6 GB database stop ~90 sec 
200 GB database startup <10 min 

 

Currently, LLGrid dynamic databases can only be single 
process / single node instances of a given database, but if the 
demand exists, clustered databases could also be implemented 
with this dynamic capability.  

V. VIRTUAL MACHINES FOR HPC 
For LLGrid users, the two most appealing advantages of 

using virtual machines are rapid distributed computing system 
prototyping and support for legacy operating systems. Often a 

part of starting a new research project involves purchasing one 
or more servers before really understanding the computational 
requirements of the application codes. Users can configure and 
execute VM instances on LLGrid so that their research projects 
can explore the computational requirements of their application 
codes without having to wait for a server order to arrive. With 
regard to supporting legacy operating systems, we routinely 
work with research teams that have a scientific code suite that 
has been validated and verified with a certain OS type, version, 
etc. that is different than the one installed on LLGrid. Usually 
this means that the research team must revalidate and re-verify 
their scientific code suite on the LLGrid software stack. 
Another scenario is that the scientific code suite is no longer 
supported on the hardware and OS that comprises LLGrid. If 
they could execute their code suite within virtual machines 
with the identical environment in which they were verified, the 
research teams would sacrifice some performance, while 
gaining productivity by not having to revalidate and reverify.  

The abstraction layer on which virtual machines are 
executed is called the hypervisor, and there are two types of 
hypervisors. Type 1 hypervisors are installed directly on the 
hardware; in this deployment, the hypervisor is essentially a 
minimal OS for executing virtual machines. Type 2 hypervisors 
are installed within a host operating system, and they are 
executed as a process in the host OS. Each guest virtual 
machine is then a child process to the hypervisor process, and 
processes within each virtual machine are co-managed by each 
virtual machine OS and the hypervisor. Because the hypervisor 
and virtual machine processes are just common processes, they 
can be launched through the cluster scheduler, which is how we 
handle virtual machine jobs on LLGrid [18]. We have 
demonstrated this capability with VirtualBox [19] and 
VMWare [20] hypervisors and virtual machines, and we intend 
to demonstrate it with some other VM types.  

To enable fast launch times, we stripped down the VM 
operating system image to have no services and only the 
libraries that were required for scientific computing. If other 
libraries are needed they will be symlinked into the users 
virtual machine environment from a centrally shared library 
repository. The job submitted to the scheduler clones a VM 
image, registers the image to the compute node that the 
scheduler has chosen, and begins the boot sequence of the VM. 
The job execution in the VM is written into the initialization 
scripts of the VM so that when the VM has fully booted, it 
immediately begins execution of the job. After execution of the 
job, the VM enters the shutdown script, and upon shutdown the 
VM image is discarded. If the VM job is aborted before 
execution is completed, the VM catches the kill signal sent by 
the scheduler, and the VM is cleanly powered down and 
discarded. While the default is to launch one VM job per job 
slot, we have added the ability to overload each scheduler 
jobslot with multiple VMs. The resources that are available on 
a compute node limit the number of VMs that can be launched 
per jobslot.  



Figure 3 shows the launch times of optimized VM instances 
for both VirtualBox and VMWare hypervisors and VMs. 
VMWare is faster both at the low end (one VM on one node) 
and the high end (16 VMs on each of 8 nodes, 128 total) – 
between 25% and 35% faster across number of jobslots and 
VMs per jobslot. Further, VMWare did not have the reliability 
problems that VirtualBox did. The VMWare launch scripts ran 
straight through with no failures – with VirtualBox there were 
occasional deadlocks that required some manual cleanup while 
running the benchmarks. 

VI. SCHEDULING JOBS 
Resource management and scheduling on the LLGrid 

systems have evolved over the past few years. Early in the 
project we ran LLGrid exclusively as an interactive, on-
demand computing resource. This worked well for the most 
part, until we opened up access for accommodating batch-style 
jobs. As expected, our system was swamped by several large 
batch-style jobs, and no interactive jobs could be run for hours.  

Currently LLGrid utilizes a hybrid scheduling policy [21]. 
This policy enables two queues, one for interactive, on-demand 
jobs and a second for batch jobs. The interactive, on-demand 
parallel MATLAB jobs, dynamic database, and virtual machine 
jobs are launched through the interactive, on-demand queue, 
while the batch and LLGrid MapReduce jobs are launched 
through the batch queue. The interactive, on-demand queue has 
a higher priority on jobs slots (CPUs) than the batch queue. 
However, the interactive, on-demand queue has a lower per-
user CPU limit of only 64 CPUs per job (more upon request) 
versus the 48 or 96 (day/night) CPU limit on the batch queue. 
On future LLGrid systems that have more CPU cores/jobslots, 
these limits will rise.  

VII. RELATED WORK 
In the ten years that LLGrid has been evolving many other 

organizations have adopted interactive HPC solutions. Some 
have implemented this using the slot reservation systems 
available with many modern HPC schedulers, while others 
have provisioned extra nodes and job scheduling policies like 
LLGrid. Batch computing and MapReduce jobs are common 
on almost all HPC systems. Hadoop [15] has a capability for 
dynamically launching Hadoop environments, but this 

generally refers to HDFS and MapReduce capabilities; HBase 
is always statically deployed. Also, for many years, the IBM 
Platform Symphony product has been utilized for launching 
and managing web services that front databases in an 
instantaneous on-demand fashion [22].  

However, scheduling databases and virtual machines as 
HPC jobs is a rather unique endeavor. We are not aware of any 
other organization that is dynamically launching and managing 
shared database instances. However, there are a few instances 
of research with launching virtual machines onto HPC systems.  

A team at Taiwan’s National Center for High-Performance 
Computing, Tainan, developed a hybrid bare-metal/virtualized 
computing cluster called Formosa3 [23]. They modified the 
Torque scheduler to interface and manage OpenNebula, which 
subsequently managed the VMs on the compute nodes (an 
approach 1 and 2 hybrid with type-2 hypervisor). OpenNebula 
was responsible for provisioning and deprovisioning VMs on 
the compute nodes; once a compute node was provisioned, it 
signaled Torque that the VM was ready to accept a VM job. In 
their cluster, compute nodes could either run VM jobs or HPC 
jobs, but they did not allow the two types of jobs to comingle 
on the same compute node. They included benchmarking of 
VM job launches and found similar results to our unoptimized 
results.  

The Clemson University School of Computing team used 
the KVM hypervisor on a cluster for grid computing research 
[24]. They statically allocated VMs onto compute nodes with 
the hypervisor running on the compute node operating system 
(with Type 2 hypervisor), and they used the Condor scheduler 
to launch jobs onto the static VMs. They demonstrated how a 
virtualized cluster could be a part of a multi-organization grid 
computing infrastructure and ran a variety of benchmarks. Just 
like the Formosa3 team, they used stock OS images.  

VIII. SUMMARY AND FUTURE WORK 
This article has explained how a variety of different 

prototyping job types are being accommodated on the LLGrid 
shared HPC cluster computing system. Particularly, we have 
explored how interactive, on-demand jobs, batch jobs, 
map/reduce jobs, dynamic database jobs, and virtual machine 
jobs are launched through a common cluster resource 
manager/scheduler. By enabling such varied application 
technologies, the LLGrid system is the most versatile 
computational platform for research computing.  

In the future, we plan to extend the dynamic database 
capability to add dynamic clustered/distributed database 
support. Also we will continue to add capabilities to the virtual 
machine offerings by including virtual network support and 
parallel virtual machine job launches for legacy MPI 
applications.  
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