
LLSuperCloud: Sharing HPC Systems
for Diverse Rapid Prototyping

Albert Reuther, Jeremy Kepner, William Arcand, David Bestor, Bill Bergeron, Chansup Byun,
Matthew Hubbell, Peter Michaleas, Julie Mullen, Andrew Prout, Antonio Rosa

Computing and Analytics Group
MIT Lincoln Laboratory

Lexington, MA, USA
{reuther, kepner, warcand, david.bestor, bbergeron, cbyun, mhubbell, pmichaleas, jsm, aprout, antonio.rosa}@ll.mit.edu

Abstract—1 The supercomputing and enterprise computing arenas
come from very different lineages. However, the advent of
commodity computing servers has brought the two arenas closer
than they have ever been. Within enterprise computing, commodity
computing servers have resulted in the development of a wide range
of new cloud capabilities: elastic computing, virtualization, and
data hosting. Similarly, the supercomputing community has
developed new capabilities in heterogeneous, massively
parallel hardware and software. Merging the benefits of enterprise
clouds and supercomputing has been a challenging goal.
Significant effort has been expended in trying to deploy
supercomputing capabilities on cloud computing systems. These
efforts have resulted in unreliable, low-performance solutions,
which requires enormous expertise to maintain.

LLSuperCloud provides a novel solution to the problem of merging
enterprise cloud and supercomputing technology. More specifically
LLSuperCloud reverses the traditional paradigm of attempting to
deploy supercomputing capabilities on a cloud and instead deploys
cloud capabilities on a supercomputer. The result is a system that
can handle heterogeneous, massively parallel workloads while also
providing high performance elastic computing, virtualization, and
databases. The benefits of LLSuperCloud are highlighted using a
mixed workload of C MPI, parallel MATLAB, Java, databases, and
virtualized web services.

Keywords – virtual machines, cloud computing, high
performance computing, .

I. INTRODUCTION

A. Enterprise clouds
The underpinnings of current enterprise cloud computing

and general shared computing resources have been developing
and evolving for over four decades. The first virtual machines
were developed to share expensive mainframe computer
systems among many users by providing each user with a fully
independent image of the operating system. On the research
front, MIT, Bell Labs, and General Electric developed the
Multics system, a hardware and operating system co-design
that featured (among many other things) virtual memory for
each user and isolated program execution space [1].
Commercially, the pioneer was IBM with the release of System

1 This work is sponsored by the Department of the Air Force under
Air Force contract FA8721-05-C-0002. Opinions, interpretations,
conclusions and recommendations are those of the author and are not
necessarily endorsed by the United States Government.

360/67, which presented each user with a full System 360
environment [2]. This line of capability development enjoyed
over two decades of improvements, but shared computing
resources fell out of favor as x86-based personal computers and
servers became more widely accessible and affordable at work
and at home.

The x86-based platforms were not initially designed for
virtualization, which is essential for shared cloud enterprise
computing capabilities. However, the beginning of a
resurgence of shared enterprise server systems started in 1997
when VMware developed a technique based on binary code
substitution (binary translation) that enabled the execution of
privileged (OS) instructions from virtual machines on x86
systems. Further strides were made with the Xen project, which
in 2003 used a jump table for choosing bare metal execution or
virtual machine execution of privileged (OS) instructions. Such
projects prompted Intel and AMD to add the VT-x and AMD-
V virtualization extensions to the x86 and x86-64 instruction
sets in 2006, which further pushed the performance and
adoption of cloud computing environments for shared
enterprise computing solutions. As these technology
developments gained acceptance, companies including
Amazon, Salesforce.com, Google, Rackspace, and many others
saw opportunities to productize shared enterprise computing
offerings.

Modern virtual machines enable dynamic allocation of
hardware resource assignments for virtual machines, and they
enable live migration of running virtual machines from one
hardware server to another. However, such resource
management capabilities are not frequently utilized by most
users; mostly the capabilities are used for planned server
maintenance by highly skilled server system administrators.
Further, the algorithms for allocating server resources are fairly
simple.

B. Cloud Computing for HPC
Meanwhile in the high performance computing (HPC)

industry, simultaneously sharing system time among many
users was intuitively assumed from early on. Like one-of-a-
kind national-asset telescopes, large supercomputing systems
were designed and built to be shared among many researchers,
often across many scientific disciplines. Even today,
supercomputers are seldomly allocated to any one user for any
significant stretch of time; the systems are almost always
executing jobs for multiple users simultaneously. However, just

Ka
Typewritten Text
978-1-4799-1365-7/13/$31.00 ©2013 IEEE

as with shared enterprise computing systems, the ubiquitous
adoption of the x86-based computing platform made HPC
solutions more widely accessible and affordable to more
researchers and businesses. It should be noted that there are
some subtle differences in the feature sets of shared enterprise
x86-based servers and HPC servers, particularly in their
network fabric and floating point computational capability.

A number of companies and projects have demonstrated
shared enterprise cloud and HPC capabilities on the same
solution platform. Most notable of these is Amazon Web
Services, which offers HPC nodes and GPUs [3]. However,
these solutions all require that all computations must be
conducted within virtual machines, regardless of whether they
can execute natively on the underlying hardware and software
stack. This means that all cloud enterprise and HPC
applications must incur the performance penalties, particularly
in disk, network, and other I/O transactions [4].

C. LLSuperCloud - shared HPC cloud capabilities
Over the past ten years, the LLGrid [5] at MIT Lincoln

Laboratory has evolved from a four-node prototype cluster
running single-user MatlabMPI jobs to a constellation of
systems serving well over 300 users each year. LLGrid was
developed to enable the rapid prototyping computational needs
of MIT Lincoln Laboratory, providing interactive, on-demand
parallel and distributed simulation, data processing, and
algorithm exploration and development capabilities across a
wide range of DoD mission areas including ballistic missile
defense, radar digital signal processing algorithm development,
aircraft collision avoidance algorithm verification,
communication channel reliability modeling, and satellite
propagation simulations. With this goal in mind, the LLGrid
team continues to explore novel ways to accommodate various
high performance computing requirements and needs on shared
HPC hardware systems.

The LLGrid system, depicted in Figure 1, is comprised of
two primary types of nodes: compute nodes and service nodes.
Among the service nodes, there is further distinction. The login
nodes are compute nodes on which the scheduler is forbidden
to launch jobs. The file system server nodes export the central

file system to all of the other nodes in the cluster as well as user
laptops and desktops. The management node is used to deliver
the appropriate software stack to all of the nodes in the cluster
based on each node’s role in the cluster. Finally, the scheduler
matches job launch requests (including resource requirements
for each job) with available compute node resources. The
scheduler also reports on the status and resource usage of jobs,
and keeps track of the system status of all of the compute nodes
in the cluster. Currently, LLGrid uses Open Grid Scheduler [6],
but LLGrid has also run on the Condor [7],
OpenPBS/TORQUE/PBS Pro [8,9], and LSF [10] schedulers.

It is the centrality of the scheduler that enables many
different types of jobs to execute simultaneously on LLGrid
including interactive, on-demand parallel MATLAB jobs;
parallel C/MPI, C++/MPI, Java, and Fortran jobs; MapReduce
jobs; dynamically-allocated databases; and virtual machines.
Regardless of the job type, they are all processes that are
brokered and launched on compute nodes using the scheduler’s
remote shell. After all, a scheduler is just a sophisticated cluster
resource manager, which determines what resources should be
used to execute one or more remoted shell-based executable.
Once resource assignment has been established, the scheduler
launches the jobs using its remote shell infrastructure. In the
next several sections, we will discuss how each of these
different types of capabilities are enabled.

II. PMATLAB AND GRIDMATLAB JOBS
The establishing goal of the LLGrid project was to develop

a on-demand, interactive grid computing capability for
MATLAB – the dominant programming language for
implementing numerical computations, widely used for
algorithm development, simulation, data reduction, testing, and
system evaluation – as its initial target application. Choosing
MATLAB was simple back then: Lincoln had over one
thousand MATLAB users; nearly two hundred users run very
long jobs that could benefit from parallel processing. (Today
those numbers are higher.) The LLGrid project had developed
three technologies that allow these users to run parallel
MATLAB jobs transparently on the LLGrid systems:

Figure 1: The LLGrid System Architecture

• MatlabMPI for point-to-point messaging [11];
• pMatlab for parallel global array semantic (PGAS)

programming [12,13]; and
• gridMatlab for integrating user’s computers into the

LLgrid and automatically allocating grid computing
resources [14].

These three toolboxes are combined to create a unique on-
demand, interactive grid computing experience, whereby
running a parallel MATLAB job on LLGrid is identical to
running MATLAB on the desktop. Users can use LLgrid from
Windows, Linux, and Mac OS X computers with their desktop
computer becoming a personal node in the LLGrid thereby
establishing a transparent interface between the user’s
computer and the grid resources. LLGrid is enabling faster
algorithm development, prototyping, and validation cycles for
Lincoln staff.

Further description of the gridMatlab toolbox is merited
with regard to building a multi-purpose shared cloud
computing capability. The gridMatlab toolbox transparently
integrates the MATLAB on each user’s desktop with shared
grid clusters through the cluster scheduler by launching a job
array of parallel MATLAB processes whenever a MatlabMPI
or pMatlab job is run by the user in his or her MATLAB
session. These parallel MATLAB processes join the user’s
MATLAB session. Similarly, job status checks, LLGrid system
status checks, and job aborts are also issued with MATLAB
commands that call the scheduler to perform the requested
action. Essential to enabling interactive, on-demand parallel
activities is low latency launch times. Figure 2 shows the
launch times for pMatlab jobs from one to 64 processes per
job. As one might expect, users’ expectations for job launches
depends on how many parallel processes they are launching,
and we have found that users are consistently content with the
launch times that the system delivers. However, users are quick
to request help when job launches slow down. The LLGrid
team has found this advantageous because slow launch times
are often a symptom of some underlying system issue.

III. BATCH COMPUTING JOBS AND LLMAPREDUCE JOBS
For many applications and simulations at Lincoln

Laboratory, interactive, on-demand launching (particularly
MATLAB) is the ideal environment. However, there are other

users who have many single process jobs, many independent
single process jobs (job arrays), or parallel (one job with many
communicating simultaneous processes) jobs. These jobs are in
any of a number of programming languages including C/MPI,
C++/MPI, Fortran, Java, Python, MATLAB, etc. For regular
batch jobs, whether single processes, job arrays, or parallel
jobs, the user interface is the command line on login nodes.

In recent years with the gaining acceptance of the Hadoop
[15] framework, the map/reduce programming model has
gained familiarity and popularity. The map/reduce parallel
programming model is the simplest of all parallel programming
models, and it is arguably much easier to learn than message
passing or distributed arrays. The map/reduce parallel
programming model consists of two user-written programs: the
Mapper and the Reducer, each of which have input and output
files. The output of the Mappers is the input of the Reducer;
there are one or more Mappers, but only one Reducer.
Launching consists of starting many Mapper programs each
with a different file, and when the Mapper programs have
completed the Reduce program is run on the Mapper outputs to
aggregate or consolidate the results.

LLGrid MapReduce enables map/reduce for any
programming language using a simple one-line command.
Upon launching such a job, LLGrid MapReduce identifies the
input files to be processed by scanning a given input directory
or reading a list from an input file. It then submits a job array
with one process for each file, and the user can choose how
many of these job array processes are executed concurrently.
Once all of the input files are processed by the Mappers, there
is an option to collect the results using the Reducer. The reduce
task will wait until all the mapper tasks are completed by
setting a job dependency between the mapper tasks and the
reducer task. LLGrid MapReduce is covered in more detail in
[16].

IV. D4M AND ACCUMULO - DYNAMIC DATABASES FOR
HPC

Scientific computing jobs and virtual machines can be I/O
intensive, but many database instances typically execute in a
very I/O intensive manner. This is because the contents of
database tables often cannot be contained in their entirety in
computers main memory. Hence, database administrators
(DBAs) implement database instances using a local hard drive
or locally attached disk arrays; most DBAs would not think of
hosting databases on shared network storage. Also, most
databases are considered network data services shared by many
users or used by applications that are used by many users, so
they are usually turned on and not brought down or moved
except for occasional maintenance.

Databases used for scientific computing and data research
(Big Data) are often different. The requirements for their use
still require intense I/O capability, but they are often used by
only a single user (or a handful of users), and they usually used
in spurts; i.e., they are used intensely to do some data ingests,
searches, and analyses but then are not used for some stretch of
days or weeks until the next intense session. Such a usage
pattern lends itself well to using shared HPC servers and a
scheduler to manage on which server the database instances
run. But there are a few further challenges: using a consistent

Figure 2: Launch time latency for pMatlab job launches on

LLGrid.

URL for the database service and guaranteeing acceptable I/O
performance for the database instance. The first challenge has
been overcome by deploying a custom database-backed
dynamic DNS (domain name service) capability; this LLGrid-
hosted service has a RESTful web service interface and is
available throughout the Lincoln local area network (LLAN).

But providing acceptable I/O performance for database
instances is more challenging. Running the database from a
data store on the central file system delivers subpar
performance due to the network latency from the compute
nodes to the central storage – databases are just too closely knit
to the underlying disk storage. So for the LLGrid dynamic
databases solution, another option was developed. The path
location of the database datastore in the file system has been
standardized, as is the path location of where the database
datastore is archived on central storage. LLGrid database
instances can be managed from the login node command line
or through a web browser interface. When a new database is
instantiated, the scheduler dispatches the database launching
script to one of the compute nodes. Once launched, the
database creates its data files in the temporary storage area of
the local disks of the compute node. When the database
instance is suspended, a suspension script shuts down the
database instance on the compute node, zips up the database
data files into an archive file and copies the database data
archive onto the central storage. When the database instance is
re-instantiated, the scheduler finds a new compute node on
which to launch the database instance, the database archive file
is copied to that compute node and unzipped, and the database
process is launched again. The current LLGrid dynamic
database capability supports Apache Accumulo [17] NoSQL
database. Table 1 shows the typical launch times for several
scenarios. All of these timings were taken with Accumulo
databases.

Table 1: Execution times for dynamic Accumulo database
startups and stops.

Scenario Execution Time
Empty database startup ~90 sec
Empty database stop ~90 sec
13.6 GB database startup ~240 sec
13.6 GB database stop ~90 sec
200 GB database startup <10 min

Currently, LLGrid dynamic databases can only be single
process / single node instances of a given database, but if the
demand exists, clustered databases could also be implemented
with this dynamic capability.

V. VIRTUAL MACHINES FOR HPC
For LLGrid users, the two most appealing advantages of

using virtual machines are rapid distributed computing system
prototyping and support for legacy operating systems. Often a

part of starting a new research project involves purchasing one
or more servers before really understanding the computational
requirements of the application codes. Users can configure and
execute VM instances on LLGrid so that their research projects
can explore the computational requirements of their application
codes without having to wait for a server order to arrive. With
regard to supporting legacy operating systems, we routinely
work with research teams that have a scientific code suite that
has been validated and verified with a certain OS type, version,
etc. that is different than the one installed on LLGrid. Usually
this means that the research team must revalidate and re-verify
their scientific code suite on the LLGrid software stack.
Another scenario is that the scientific code suite is no longer
supported on the hardware and OS that comprises LLGrid. If
they could execute their code suite within virtual machines
with the identical environment in which they were verified, the
research teams would sacrifice some performance, while
gaining productivity by not having to revalidate and reverify.

The abstraction layer on which virtual machines are
executed is called the hypervisor, and there are two types of
hypervisors. Type 1 hypervisors are installed directly on the
hardware; in this deployment, the hypervisor is essentially a
minimal OS for executing virtual machines. Type 2 hypervisors
are installed within a host operating system, and they are
executed as a process in the host OS. Each guest virtual
machine is then a child process to the hypervisor process, and
processes within each virtual machine are co-managed by each
virtual machine OS and the hypervisor. Because the hypervisor
and virtual machine processes are just common processes, they
can be launched through the cluster scheduler, which is how we
handle virtual machine jobs on LLGrid [18]. We have
demonstrated this capability with VirtualBox [19] and
VMWare [20] hypervisors and virtual machines, and we intend
to demonstrate it with some other VM types.

To enable fast launch times, we stripped down the VM
operating system image to have no services and only the
libraries that were required for scientific computing. If other
libraries are needed they will be symlinked into the users
virtual machine environment from a centrally shared library
repository. The job submitted to the scheduler clones a VM
image, registers the image to the compute node that the
scheduler has chosen, and begins the boot sequence of the VM.
The job execution in the VM is written into the initialization
scripts of the VM so that when the VM has fully booted, it
immediately begins execution of the job. After execution of the
job, the VM enters the shutdown script, and upon shutdown the
VM image is discarded. If the VM job is aborted before
execution is completed, the VM catches the kill signal sent by
the scheduler, and the VM is cleanly powered down and
discarded. While the default is to launch one VM job per job
slot, we have added the ability to overload each scheduler
jobslot with multiple VMs. The resources that are available on
a compute node limit the number of VMs that can be launched
per jobslot.

Figure 3 shows the launch times of optimized VM instances
for both VirtualBox and VMWare hypervisors and VMs.
VMWare is faster both at the low end (one VM on one node)
and the high end (16 VMs on each of 8 nodes, 128 total) –
between 25% and 35% faster across number of jobslots and
VMs per jobslot. Further, VMWare did not have the reliability
problems that VirtualBox did. The VMWare launch scripts ran
straight through with no failures – with VirtualBox there were
occasional deadlocks that required some manual cleanup while
running the benchmarks.

VI. SCHEDULING JOBS
Resource management and scheduling on the LLGrid

systems have evolved over the past few years. Early in the
project we ran LLGrid exclusively as an interactive, on-
demand computing resource. This worked well for the most
part, until we opened up access for accommodating batch-style
jobs. As expected, our system was swamped by several large
batch-style jobs, and no interactive jobs could be run for hours.

Currently LLGrid utilizes a hybrid scheduling policy [21].
This policy enables two queues, one for interactive, on-demand
jobs and a second for batch jobs. The interactive, on-demand
parallel MATLAB jobs, dynamic database, and virtual machine
jobs are launched through the interactive, on-demand queue,
while the batch and LLGrid MapReduce jobs are launched
through the batch queue. The interactive, on-demand queue has
a higher priority on jobs slots (CPUs) than the batch queue.
However, the interactive, on-demand queue has a lower per-
user CPU limit of only 64 CPUs per job (more upon request)
versus the 48 or 96 (day/night) CPU limit on the batch queue.
On future LLGrid systems that have more CPU cores/jobslots,
these limits will rise.

VII. RELATED WORK
In the ten years that LLGrid has been evolving many other

organizations have adopted interactive HPC solutions. Some
have implemented this using the slot reservation systems
available with many modern HPC schedulers, while others
have provisioned extra nodes and job scheduling policies like
LLGrid. Batch computing and MapReduce jobs are common
on almost all HPC systems. Hadoop [15] has a capability for
dynamically launching Hadoop environments, but this

generally refers to HDFS and MapReduce capabilities; HBase
is always statically deployed. Also, for many years, the IBM
Platform Symphony product has been utilized for launching
and managing web services that front databases in an
instantaneous on-demand fashion [22].

However, scheduling databases and virtual machines as
HPC jobs is a rather unique endeavor. We are not aware of any
other organization that is dynamically launching and managing
shared database instances. However, there are a few instances
of research with launching virtual machines onto HPC systems.

A team at Taiwan’s National Center for High-Performance
Computing, Tainan, developed a hybrid bare-metal/virtualized
computing cluster called Formosa3 [23]. They modified the
Torque scheduler to interface and manage OpenNebula, which
subsequently managed the VMs on the compute nodes (an
approach 1 and 2 hybrid with type-2 hypervisor). OpenNebula
was responsible for provisioning and deprovisioning VMs on
the compute nodes; once a compute node was provisioned, it
signaled Torque that the VM was ready to accept a VM job. In
their cluster, compute nodes could either run VM jobs or HPC
jobs, but they did not allow the two types of jobs to comingle
on the same compute node. They included benchmarking of
VM job launches and found similar results to our unoptimized
results.

The Clemson University School of Computing team used
the KVM hypervisor on a cluster for grid computing research
[24]. They statically allocated VMs onto compute nodes with
the hypervisor running on the compute node operating system
(with Type 2 hypervisor), and they used the Condor scheduler
to launch jobs onto the static VMs. They demonstrated how a
virtualized cluster could be a part of a multi-organization grid
computing infrastructure and ran a variety of benchmarks. Just
like the Formosa3 team, they used stock OS images.

VIII. SUMMARY AND FUTURE WORK
This article has explained how a variety of different

prototyping job types are being accommodated on the LLGrid
shared HPC cluster computing system. Particularly, we have
explored how interactive, on-demand jobs, batch jobs,
map/reduce jobs, dynamic database jobs, and virtual machine
jobs are launched through a common cluster resource
manager/scheduler. By enabling such varied application
technologies, the LLGrid system is the most versatile
computational platform for research computing.

In the future, we plan to extend the dynamic database
capability to add dynamic clustered/distributed database
support. Also we will continue to add capabilities to the virtual
machine offerings by including virtual network support and
parallel virtual machine job launches for legacy MPI
applications.

REFERENCES
[1] F.J. Corbató and V.A. Vyssotsky, “Introduction and overview of the

Multics system,” AFIPS, 1965.
[2] R. Dittner and D. Rule Jr., Best Damn Server Virtualization Book

Period, Syngress, 2007.
[3] High Performance Computing – Amazon Web Services,

http://aws.amazon.com/hpc-applications/.

Figure 3: Virtual machine launch times on LLGrid.

[4] P. Luszczek, E. Meek, S. Moore, D. Terpstra, V. Weaver, J. Dongarra,
"Evaluation of the HPC Challenge benchmarks in virtualized
environments," 6th Workshop on Virtualization in High-Performance
Cloud Computing, Bordeaux, France, August 30, 2011.

[5] N. Bliss, R. Bond, H. Kim, A. Reuther, and J. Kepner, “Interactive grid
computing at Lincoln Laboratory,” Lincoln Laboratory Journal, vol. 16,
no. 1, 2006.

[6] OpenGridScheduler, http://gridscheduler.sourceforge.net.
[7] High Throughput Computing Condor, http://research.cs.wisc.edu

/htcondor/.
[8] TORQUE Resource Manager, http://www.adaptivecomputing.com

/products/open-source/torque/.
[9] PBS Professional, http://www.pbsworks.com/.
[10] IBM Platform LSF, http://www-03.ibm.com/systems

/technicalcomputing /platformcomputing/products/lsf/.
[11] J. Kepner and S. Ahalt, “MatlabMPI,” Journal of Parallel and

Distributed Computing, vol. 64, issue 8, August, 2004.
[12] N. Bliss and J. Kepner, “pMatlab parallel Matlab library,” International

Journal of High Performance Computing Applications: Special Issue on
High Level Programming Languages and Models, J. Kepner and H.
Zima (editors), Winter 2006 (November).

[13] J. Kepner, Parallel Matlab for Multicore and Multinode Computers,
SIAM Press, Philadelphia, 2009.

[14] A.I. Reuther, T. Currie, J. Kepner, H.G. Kim, A. McCabe, M.P. Moore,
N. Travinin, "On-Demand Grid Computing Using gridMatlab and
pMatlab," In Proceedings of the High Performance Computing
Modernization Office Users Group Conference 2004, Williamsburg,
VA, 8 June 2004.

[15] Apache Hadoop, http://hadoop.apache.org/.
[16] C. Byun, W. Arcand, D. Bestor, B. Bergeron, M. Hubbell, J. Kepner, A.

McCabe, P. Michaleas, J. Mullen, D. O'Gwynn, A. Prout, A. Reuther, A.
Rosa, and C. Yee, “Driving Big Data With Big Compute,” IEEE High
Performance Extreme Computing (HPEC) conference, Waltham, MA,
September 10-12, 2012.

[17] Apache Accumulo, http://accumulo.apache.org/.
[18] A. Reuther, P. Michaleas, A. Prout, and J. Kepner, “HPC-VMs: Virtual

Machines in High Performance Computing Systems,” IEEE High
Performance Extreme Computing (HPEC) conference, Waltham, MA,
September 10-12, 2012.

[19] Oracle VM Virtual Box, https://www.virtualbox.org/.
[20] VMWare Virtualization, http://www.vmware.com/.
[21] A. Reuther, J. Kepner, A. McCabe, J. Mullen, N.T. Bliss, and H. Kim,

“Technical Challenges of Supporting Interactive HPC,” In Proceedings
of the High Performance Computing Modernization Office (HPCMO)
Users Group Conference (UGC) 2007, Pittsburgh, PA, 18-22 June 2007.

[22] IBM Platform Symphony Software, http://www-03.ibm.com
/systems/technicalcomputing/platformcomputing/products/symphony/.

[23] C.H. Li, T.M. Chen, Y.C. Chen, and S.T. Wang, “Formosa3: A cloud-
enabled HPC cluster in NCHC,” World Academy of Science,
Engineering, and Technology Journal, Vol. 73, No. 38, 2011.

[24] M. Fenn, M.A. Murphy, S. Goasguen, “A study of a KVM-based Cluster
for Grid Computing,” In Proceedings of the 47th Annual Southeast
Regional Conference (ACM-SE 47). ACM, New York, NY, USA,
Article 34.

