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Abstract—Open-source, BigTable-like distributed databases
provide a scalable storage solution for data-intensive applica-
tions. The simple key–value storage schema provides fast record
ingest and retrieval, nearly independent of the quantity of
data stored. However, real applications must support non-trivial
queries that require careful key design and value indexing. We
study an Apache Accumulo–based big data system designed for
a network situational awareness application. The application’s
storage schema and data retrieval requirements are analyzed.
We then characterize the corresponding Accumulo performance
bottlenecks. Queries are shown to be communication-bound and
server-bound in different situations. Inefficiencies in the open-
source communication stack and filesystem limit network and
I/O performance, respectively. Additionally, in some situations,
parallel clients can contend for server-side resources. Maximizing
data retrieval rates for practical queries requires effective key
design, indexing, and client parallelization.

I. INTRODUCTION

An increasing number of applications now operate on
datasets too large to store on a single database server. These
Big Data applications face challenges related to the volume,
velocity and variety of data. A new class of distributed
databases offers scalable storage and retrieval for many of these
applications. One such solution, Apache Accumulo [1] is an
open-source database based on Google’s BigTable design [2].

BigTable is a tabular key–value store, in which each key is
a pair of strings corresponding to a row and column identifier,
such that records have the format:

(row, column)→value

Records are lexicographically sorted by row key, and rows are
distributed across multiple database servers. The sorted records
ensure fast, efficient reads of a row, or a small range of rows,
regardless of the total system size. Compared to HBase [3],
another open-source BigTable implementation, Accumulo pro-
vides cell-level access control and features an architecture that
leads to higher performance for parallel clients [4].

The BigTable design eschews many features of traditional
database systems, making trade-offs between performance,
scalability, and data consistency. A traditional Relational
Database Management System (RDBMS) based on Structured
Query Language (SQL) provides atomic transactions and data
consistency, an essential requirement for many applications.
On the other hand, BigTable uses a “NoSQL” model that
relaxes these transaction requirements, guaranteeing only even-
tual consistency while tolerating stale or approximate data in
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the interim. Also unlike RDBMS tables, BigTables do not
require pre-defined schema, allowing columns to be added to
any row at-will for greater flexibility. However, new NoSQL
databases lack the mature code base and rich feature set of
established RDBMS solutions. Where needed, query planning
and optimization must be implemented by the application
developer.

As a result, optimizing data retrieval in a NoSQL system
can be challenging. Developers must design a row key scheme,
decide which optimizations to employ, and write queries
that efficiently scan tables. Because distributed systems are
complex, bottlenecks can be difficult to predict and identify.
Many open-source NoSQL databases are implemented in Java
and use heavy communication middleware, causing inefficien-
cies that are difficult to characterize. Thus, designing a Big
Data system that meets challenging data ingest, query, and
scalability requirements represents a very large tradespace.

In this paper, we study a practical Big Data application
using a multi-node Accumulo instance. The Lincoln Labora-
tory Cyber Situational Awareness (LLCySA) system monitors
traffic and events on an enterprise network and uses Big Data
analytics to detect cybersecurity threats. We present the storage
schema, analyze the retrieval requirements, and experimentally
determine the bottlenecks for different query types. Although
we focus on this particular system, results are applicable to
a wide range of applications that use BigTable-like databases
to manage semi-structured event data. Advanced applications
must perform ad hoc, multi-step queries spanning multiple
database servers and clients. Efficient queries must balance
server, client and network resources.

Related work has investigated key design schemes and
performance issues in BigTable implementations. Although
distributed key–value stores have been widely used by web
companies for several years, studying these systems is a
relatively new area of research. Kepner, et al. propose the
Dynamic Distributed Dimensional Data Model (D4M), a gen-
eral purpose schema suitable for use in Accumulo or other
BigTable implementations [5]. Wasi-ur-Rahman, et al. study
performance of HBase and identify the communication stack
as the principal bottleneck [6]. The primary contribution of our
work is the analysis of Accumulo performance bottlenecks in
the context of an advanced Big Data application.

This paper is organized as follows. Section II discusses
the data retrieval and server-side processing capabilities of
Accumulo. Section III contains a case study of a challenging
application using Accumulo. Then, Section IV describes our
performance evaluation methodology and presents the results.
Finally, Section V concludes with specific recommendations
for optimizing data retrieval performance in Accumulo.



Fig. 1. In a parallel client query, M tablet servers send entries to N Accumulo
clients where results are further processed before being aggregated at a single
query client.

II. DATA RETRIEVAL IN ACCUMULO

A single key–value pair in Accumulo is called an entry. Per
the BigTable design, Accumulo persists entries to a distributed
file system, generally running on commodity spinning-disk
hard drives. A contiguous range of sorted rows is called a
tablet, and each server in the database instance is a tablet
server. Accumulo splits tablets into files and stores them on the
Hadoop Distributed File System (HDFS) [7], which provides
redundancy and high-speed I/O. Tablet servers can perform
simple operations on entries, enabling easy parallelization of
tasks such as regular expression filtering. Tablet servers will
also utilize available memory for caching entries to accelerate
ingest and query.

At query time, Accumulo tablet servers process entries
using an iterator framework. Iterators can be cascaded together
to achieve simple aggregation and filtering. The server-side
iterator framework enables entries to be processed in parallel
at the tablet servers and filtered before sending entries across
the network to clients [8]. While these iterators make it easy to
implement a parallel processing chain for entries, the iterator
programming model has limitations. In particular, iterators
must operate on a single row or entry, be stateless between
iterations, and not communicate with other iterators. Opera-
tions that cannot be implemented in the iterator framework
must be performed at the client.

An Accumulo client initiates data retrieval by requesting
scans on one or more row ranges. Entries are processed by
any configured iterators, and the resulting entries are sent
from server to client using Apache Thrift object serialization
middleware [9], [10]. Clients deserialize one entry at a time
using client-side iterators and process the entries according to
application requirements. Simple client operations may include
generating a list of unique values or grouping and counting
entries.

Unlike a RDBMS, Accumulo queries often require pro-
cessing on both the server side and client side because of
the limitations of the iterator framework. Fortunately, tablet
servers can handle simultaneous requests from multiple clients,
enabling clients to be parallelized to accelerate queries. A
simple way to parallelize an Accumulo client is to partition
the total row range across a number of client processes. Each
Accumulo client processes its entries, and then results can be
combined or reduced at a single query client. Figure 1 shows
how data flows in a query with parallel Accumulo clients.

In a multi-step query, an Accumulo client receives entries
and uses those results to initiate a new scan. For example,
using an index table to locate rows containing specific values

Src. Dest. Bytes Port 
13-01-01_a8c8 Alice Bob 128 
13-01-02_c482 Bob Carol 80 
13-01-02_7204 Alice Carol 8080 
13-01-03_5d86 Carol Bob 55 21 

13-01-01_a8c8 13-01-02_c482 13-01-02_7204 13-01-03_5d86 

Alice|Src. 1 1 
Bob|Dest. 1 1 
Bob|Src. 1 
Carol|Dest. 1 1 
Carol|Src. 1 

Primary Table 

Index Table 

Fig. 2. In this example, network events are stored in a primary table using a
datestamp and hash as a unique row identifer. The index table enables efficient
look-up by attribute value without the need to scan the entire primary table.

requires a two-step query. Suppose each row in the primary
table represents a persisted object, and each column and value
pair in that row represent an object attribute. In the index table,
each row key stores a unique attribute value from the primary
table, and each column contains a key pointing to a row in
the primary table. Figure 2 illustrates a notional example of
this indexing technique. Given these tables, an indexed value
look-up requires a first scan of the index table to retrieve a set
of row keys, and a second scan to retrieve those rows from the
primary table. In a RDBMS, this type of query optimization
is handled automatically.

III. CASE STUDY: NETWORK SITUATIONAL AWARENESS

Network Situational Awareness (SA) is an emerging appli-
cation area that addresses aspects of the cybersecurity problem
with data-intensive analytics. The goal of network SA is to pro-
vide detailed, current information about the state of a network
and how it got that way. The primary information sources are
the logs of various network services. Enterprise networks are
large and complex, as an organization may have thousands
of users and devices, dozens of servers, multiple physical
locations, and many users connecting remotely. Thus, network
logs exhibit the variety, velocity and volume associated with
Big Data. The data must be efficiently stored and retrieved to
support real-time threat detection algorithms as well as forensic
analysis.

The various data sources capture different types of network
events. For example, an event may represent a user logging in
to a device or a device requesting a web page through a proxy
server. Each type of event has a set of attributes associated with
it. LLCySA currently stores more than 50 event types in an
Accumulo database instance. A data enrichment process can
create additional event types by combining information from
multiple captured data sources.

Recall, Accumulo is a tabular key–value store in which
keys contain a row and column identifier. In LLCySA, each
event type is stored in a separate table. A row in an event table
corresponds to a particular event occurrence. Columns store the



various attributes of the event occurrence. For example, web
proxy traffic is stored in a dedicated Accumulo table. Each row
represents a specific web request and contains many columns
corresponding to the event’s attributes, such as time, requested
URL, source IP address, and dozens of other properties.

LLCySA also applies three optimization techniques at
ingest time in order to accelerate future queries. First, the
row identifier contains a reversed timestamp, encoded to lex-
icographically sort in descending order (such that the most
recent events sort to the top). This feature enables efficient
queries constrained by time range, and enables the most recent
events to be returned to the user first. Second, each event table
has a corresponding index table to support efficient queries
based on column values. In the index table, the row identifiers
begin with values concatenated with column names, and each
column points to a row in the primary event table. Without
such an index table, finding a particular value would require
scanning the entire event table. This indexing technique would
be equivalent to the following SQL:

CREATE INDEX field_index
ON event_table (field, event_time)

for each event attribute, field. Figure 3 shows the key
scheme for the event and index tables. Note that Accumulo
keys support column families (for locality grouping), cell
versioning, and cell access control. For simplicity, these com-
ponents of the entry keys are not shown in Figure 3.

The final optimization is sharding, a partitioning technique
that distributes rows across database servers. LLCySA uses
random sharding in the event tables to ensure database scans
will always have a high degree of parallelism by avoiding hot
spots corresponding to time ranges. Sharding in Accumulo is
accomplished by pre-pending a shard number to the start of the
row key. Shard number for an event is determined based on a
hash of the event’s attributes, resulting in an essentially random
assignment, uniformly distributed among the allowed shard
numbers. We instruct Accumulo to distribute these shards
across tablet servers by pre-splitting tablets based on shard
number ranges. As the database grows, the exact mapping
between shard number and tablet server may change, but
the uniform distribution will be largely maintained. Scanning
for a single time range in the sharded event tables requires
specifying a key range for each valid shard number. This adds
complexity to the Accumulo clients but results in a higher
degree of scan parallelism.

Accumulo and the LLCySA storage schema enable high-
performance parallel data ingest. We have previously demon-
strated data ingest rates in excess of four million records per
second for our 8-node Accumulo instance, with speedup for
up to 256 client processes parsing raw data and inserting
records [11]. These ingest rates on the LLCySA system are
roughly an order of magnitude faster than insert rates for
traditional relational databases reported on the web [12], and
the Accumulo architecture offers significantly more scalability.

Network SA also requires high-performance data retrieval
for a variety of queries. Simple queries may extract all or
some of the columns for events in some time range. Use cases
for these simple scan-based queries include graph formation
or listing active devices over some time range. Other queries

Fig. 3. The LLCySA storage schema uses two tables per event type and
carefully designed keys to support efficient queries.

find the set of events where a column contains a particular
value (i.e., the equivalent of a SQL SELECT query with a
WHERE clause). These queries may utilize the index table to
identify applicable event rows. Another common query creates
a histogram for event occurrences over a time range. The next
section identifies the bottlenecks of each of these types of
query.

IV. PERFORMANCE RESULTS

To quantify Accumulo data retrieval performance, we run
four types of queries on the LLCySA web_request table.
Rows of the table have over 50 columns (e.g., event_time,
source_ip, and domain_name) corresponding to the var-
ious event attributes captured in the proxy server log file. In
each experiment, the number of Accumulo clients is varied,
with the parallel clients partitioned by time range. For example,
if a one-hour time range were partitioned across four clients,
each client would request a contiguous 15-minute chunk of
that hour. The sharding scheme ensures data requested by each
client will be distributed uniformly among the tablet servers.
The key performance metrics for the query experiements are
query speedup (how many times faster the parallel clients
complete the query compared to a single client) and scan rate
(the total number of entries per second received by clients).

Experiments are performed on a 16-node cluster managed
by the Grid Engine scheduler. Each server node contains dual
AMD Opteron 6100 12-core processors, 64 GB RAM, 12 TB
RAID storage, and nodes are interconnected with 10 Gbps
Ethernet. The first 8 servers comprise a single distributed Ac-
cumulo 1.4 database instance. The remaining 8 servers are used
as grid compute nodes. To execute parallel queries, clients are
dispatched onto compute nodes by the scheduler. Experiments
are managed by a custom benchmarking framework, which
monitors CPU and network utilization on each server and
performed parameter sweeps.

Query 1: Unfiltered Scan

In this query, a full scan is performed over a time range
of web request data with no server-side filtering. Every entry
within the time range is returned to a client. The total time
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Fig. 4. Query 1 results. (a) Scan rate increases with number of clients. (b)
Client CPU usage stalls at 2.0.

range is partitioned across a variable number of parallel
clients. The clients receive entries and count them, but perform
no other processing. The web request records are sharded
randomly across all tablet servers, so each parallel client
will receive entries from all 8 tablet servers. Figure 4 (a)
shows that scan rate increases with the number of clients,
with diminishing returns for higher numbers of clients as scan
rate approaches about 500,000 entries per second. Figure 4
(b) shows average CPU usage across clients peaks around 2.0
(i.e., 2 fully utilized cores out of 24), while server CPU usage
continues to increase linearly with the number of clients. These
trends suggest that Query 1 is bound primarily by the ability of
the clients to receive entries from the network and de-serialize
the messages. Although these queries are communication-
bound, average network utilization for the 12-client case is 29.8
Mbps, more than 300x below the network capacity. Therefore,
scan rate is limited by communication overhead rather than
network bandwidth.

Query 2: Server-Side Filtering

Now, records are filtered by the tablet servers. Acceptance
rate refers to the fraction of entries read at the tablet server
that are sent to the client. A custom server-side iterator is
used to vary acceptance rate as an independent variable. By
comparison, Query 1 had an acceptance rate of 1.0. The

number of clients, n, is also varied. Figure 5 (a) shows that
for high acceptance rates (right side of x-axis), scan rate varies
with number of clients, which indicates scan rate is bound by
the clients’ ability to receive entries (as seen in Query 1).
However, for low acceptance rates (left side of x-axis), the
total scan rate is independent of the number of clients.

In Figure 5 (b), entries handled per second refers to the
rate at which entries are read from disk and passed through
the server-side iterator chain. As acceptance rate decreases
(going right to left along the x-axis), the total number of
entries handled peaks at a rate mostly independent of client
count. Figure 5 (c) shows the average CPU usage at client
and server. Together, these three plots demonstrate that data
retrieval is client bound for high acceptance rates and server
bound for low acceptance rates, with the crossover point
around 1% for this particular dataset and cluster. For server-
bound scans, a sustained disk read rates of 80–160 MB/s were
observed, consistent with expected read performance but below
the maximum performance of the underlying RAID. Thus we
conclude scans with low acceptance rates are I/O bound by
HDFS read rates.

Query 3: Histogram

Counting occurrences of unique values or binning values
to form a histogram are common queries for database appli-
cations. While Accumulo provides some server-side capability
for aggregating results in the iterator framework, many of these
count-type operations must be performed at the client. For
example, consider this SQL query that creates a histogram of
web requests to a particular domain name over the time range
[t1, t2), assuming timestamps have been previously binned and
stored in the bin field:

SELECT bin, COUNT(bin) FROM web_requests
WHERE event_time >= t1 AND event_time < t2
AND domain_name = "example.com"

GROUP BY bin;

Figure 6 shows results for the simple histogram query, in
which time stamps from web requests are binned into time
ranges by parallel clients. This query differs from the SQL
example above because the bins are computed by the client,
rather than pre-computed and stored as a separate column.
Our schema enables this particular query to be performed
using only the index table since the WHERE clause depends
only on the timestamp and one other field (recall the index
table keying scheme in Figure 3). Measured runtime does not
include the final reduce step, which would combine the counts
generated by each client. However, the runtime of this final
step is insignificant compared to total query runtime. Query 3
is run for two different time ranges of web request data. For
the larger time range (8 hours), this query achieves increasing
speedup for up to 5 clients before contention for the index
table eventually lowers the scan rate.

Query 4: Index Look-up

Finally, Query 4 looks at parallelization of a query using
both tables. This is two-step query, in which the index table
is used to find a set of rows containing a particular attribute
name and value pair. The index table also supports conditions
on time range with no additional computation. After the first
step completes, the clients have a set of keys corresponding to
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Fig. 5. Query 2 results showing (a) scan rate, (b) entry handling rate, and (c) client and server CPU usage as a function of filter acceptance rate, where n is
the number of Accumulo clients.
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Fig. 6. Query 3 results show speedup for parallel histogram creation queries.

rows in the event table. The clients then issue scans to retrieve
the desired columns from those event rows. In LLCySA, this
type of query could be used to retrieve all source IP addresses
that accessed a particular domain name. This query could be
equivalently expressed in SQL as follows:

SELECT source_ip FROM web_requests
WHERE event_time >= t1 AND event_time < t2

AND domain_name = "example.com";

Without an index table, this query would require a complete
scan of the event table over the desired time range. If only a
small percentage of traffic went to “example.com”, the query
would have a very low acceptance rate and would consume
significant tablet server resources to complete the scan. This
multi-step Accumulo query approach could also be used to
accomplish JOINs across tables.

Figure 7 shows speedup for Query 4. Interestingly, paral-
lelizing this query across multiple clients significantly degrades
performance. In the case of two and four clients (as shown),
the index table step comprised 1–2% of the total query runtime
time. Thus the bottleneck is clearly on the second step,
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Fig. 7. Query 4 results show speedup for parallel queries using index table.

retrieving the set of relevant rows from the event table. During
this step, each client requests a disjoint set of rows, located
randomly across the tablet servers. Accumulo is unable to
efficiently process these random-access requests from multiple
clients. The contention for the various tablets and underlying
files decimates performance.

V. CONCLUSIONS

The results for our four experimental queries help define
the landscape of data retrieval performance in Accumulo. For
someone with a background in traditional database systems,
these results may seem unintuitive. Accumulo is a scalable
distributed tabular key–value store, built on an open-source
Java-based software stack. Compared to traditional databases,
the Accumulo code base is orders of magnitude smaller and
less mature. Moreover, developers must implement their own
application-specific query planning and optimization. Parallel
database management systems have demonstrated far better
query performance at the scale of 10–100 nodes [13]. Already
for several years, the inefficiency of popular open-source data-
intensive computing platforms have been noted [14]. However,
the cost, complexity, and limited flexibility of commercial
parallel database solutions have pushed many users to the



Hadoop paradigm for Big Data applications. Additionally,
Accumulo (and other BigTable implementations) can achieve
far better ingest rates compared to other database architectures,
which can be a key requirement for applications with ingest-
heavy workloads.

In the first query, we observed scan rates limited by
the client’s ability to receive and process messages over the
network. When tablet servers send all entries to a small number
of clients, the query is bound by communication overhead at
the client, as a small number of threads fully utilize a subset of
the CPU cores and bottleneck the scan rate. Communication in
Accumulo is handled by Apache Thrift, which does not satu-
rate network bandwidth, as confirmed by benchmarks available
on the web [15]. Re-architecting the communication stack in
future versions of Accumulo could alleviate this bottleneck [6].
For other queries with low acceptance rates, the scan rate is
server bound. In this case, the query is bound by I/O rates, and
disk read rates are limited by the performance of the distributed
filesystem and the storage hardware.

We also observed queries in which server-side contention
for records bottlenecked scan rate performance. The histogram
operation, in which multiple clients create hotspots in the
index table, shows speedup for only a small number of clients.
Beyond that, performance is likely bound by contention for the
index tablets. Two-step queries utilizing the index table were
not effectively parallelized at all. Multiple clients randomly
accessing rows from the tablet servers resulted in contention
that seriously degraded scan rate performance. Queries with
random row-access patterns should not be parallelized.

Given these performance results, we can issue some addi-
tional recommendations to application developers. First, row
keys should be selected to accelerate the application’s queries.
For example, in our application case study, all queries were
constrained by a time range. Therefore, including a timestamp
in the event table row keys improved query performance. Next,
an index table should only be used when the scan acceptance
rate is expected to be very low. For the LLCySA system,
the critical filter acceptance rate was around 1%. This value
will vary for different hardware and software configurations.
Finally, an area of future work is improving client-bound scan
rates by optimizing the Accumulo client. The open-source
community has recently created a C++ implementation of an
Accumulo client [16]. Using a lower-level language may help
improve communication efficiency.

In summary, we have characterized performance of typical
queries in a Big Data application. Some queries are bound by
the communication stack, while others are bound by filesystem
I/O. In both cases, hardware is not fully utilized by the open-
source Java software stack, which could benefit from optimiza-
tion. Although Accumulo offers schema-less storage, devel-
opers must carefully design row keys in order to efficiently
support their application’s query requirements. Accumulo and
Hadoop offer easy server administration and programmability.
On the other hand, traditional database systems provide ad-
vanced query planning and optimization features. No single
product fits all applications perfectly. However, Accumulo can
be an effective storage solution for data-intensive applications
requiring high ingest rates, distributed processing, and a high
degree of scalability.
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