Expanding the High Performance
Embedded Computing Tool Chest
- Mixing Java and C

Nazario Irizarry, Jr.

MITRE Corporation
202 Burlington Rd.
Bedford, MA, 01730

Outline

= Goals & motivation
= Performance findings

—CPU experiments
—GPU experiment
= Helpful frameworks

Motivation & Goals

C is fast but development is meticulous
and time consuming

= Java is not as fast but development is more
expeditious

= Java frameworks are very capable

— Logging, dynamic scheduling, CPU load
balancing, elastic grid resizing, automatic data
serialization, automatic work failover, etc.

= Want to build hybrid apps that leverage the
strengths of both

— Need to understand when Java 7 will and
won'’t perform

— Need to understand the cost of interactions
between Java and C

— Need to understand how effectively Java can
utilize GPUs

Isn’t Java Slow?

= Java startup is slow
—Disk 1/0O
—Class lookup & validation
—Static initialization

= Java Hotspot optimizes during
runtime

—Dynamically switch from interpreted to
compiled

—Aggressive method in-lining

Effect of Java Warming on Execution Time

U

Execution Time (

0.50

o
[
a

o
W
S

0.20 |

0.15

0.10

0.05 1

0.00°

1| <— lteration 1 (not plotted) = 14 us.

ﬂ'
s

Ly

_Mm—-‘“____

50 100 150 200 250 300 350 400

Iteration

Test Environment

= Hardware
— Intel Core 2 Quad Q9650 @ 2.99GHz
-4 GB RAM
— Four core, not hyper-threaded, SSE4.1
* Linux 2.6.32
=GCC44.6
—-03 optimization
= Oracle Java 7
— Standard edition, 1.7.0 02

Test: Bit-Twiddling

= Workload consists of generating
multiple linear feedback shift

xecution Time - LFSR Sequence Genera tion

register sequences .

Javar

Test: Structure Building

= Red-black tree key-value insertion
and retrieval

= Exercises
—Memory allocation
—Integer key comparison
—Conditional code execution
—Reference manipulation

msec.

600

550

500

450

400

350

300

250

200

150

100

50

Red-Black Tree Data Insertion Time

C

(incl free())

X

Insert (4 bytes) \ Insert (512 bytes)

Java

Insert (2048 bytes)

msec.

Red-Black Tree Data Retrieval Time

65

60

55

50

45

40

35

30

25

20

15/

10

C

/Get (4 bytes)

Get (512 bytes)

Java

Get (2048 bytes)

10

Test: Simple Iteration and Math

= Matrix multiply

—10<N <90 NxN Matrix Multiply
2.00 7
Java —_» R
o
o
™
O 1.00
g C
8 075
7
0.50 1
0.25 1
0.00 -

10 20 30 40 50 60 70 80
Matrix Rank

90

11

Test: Intricate Iteration and Math

= Fast Fourier Transform
—Non-optimized radix 2

butterflies

1.50 1

Speed (GFLOPS)
>

o
a
o

o
N
o

0.00 -

FFT Speeds

12

—
N
(63

%\ﬂ

—
o
o

/C

|||||||||||||

6 7 8 9 10 11 12 13 14 15 16 17 18
N (Number of points = 2AN)

13

Test Design: Impact of Garbage
Collector

Test 1 Test 2
= 0 GC actions/sec = 7.5 GC actions/sec.
= Bit twiddling test = Red black tree test
= Preallocated = Lots of memory
buffers allocation

\

= 2 scenarios for each Intentionally

rly tun
— 2 compute threads on 2 cores poorly tunea

— 2 compute thread on 3 cores

Test Results: Impact of Garbage
Collector

Test 1 Test 2
= 0 GC actions/sec = 7.5 GC actions/sec.

No Impact 15 % Execution
Time Impact

= Key design practices
— Preallocate buffers and structures

—Be smart about String concatenation
—Keep the GC quiet

Investigation: Accessing Native
Memory

= Java data is “fenced”

—Passing reference types (arrays and
objects) to C incurs overhead

= Java Native Interface (JNI) is fastest
but most tedious

= Alternatives: Java Native Access,
BridJ, SWIG, HawtJNI

Comparing 3 Bridging Alternatives

4 int args 11 ns. 117 ns. | 200 ns.
2 read-only Java arrays
(double, length 200) 13 ms. 190 ms. 110 ms.

Pointers to 2 native arrays

: N/A 98 ns. 10 ns.
reference by Java proxies

* BridJ and SWIG provide good performance
= BridJ is easier to use

— Uses .h files directly

— Includes ability to manage C memory from Java

= See paper and final MITRE report for more details
and test cases

Test: Utilizing GPUs (1 of 2)

" FFT’s of varying sizes invoked with both
synchronous and asynchronous kernel
invocation

= Apple’s optimized FFT’s for OpenCL was
ported to Java

— BridJ for native data management
— JavaCL for OpenCL access

— Both are subprojects of “nativelibs4java” at
Sourceforge

17

GPU-Based FFTs
Sync. C

35.0
32,5
30.0
275

& 25.0

S 225

I 20.0

S 175

20 Async. C

O

& 125 N
10.0 ~
75
5.0
25
0.0

Sync. Java

Async. Java

6 7 8 9 10 11 12 13 14 15 16 17 18 19
N, (Number of points = 2AN)

= Java kept the GPU’s as busy as C did

— Kernel invocation from Java was 2 ms
longer than from C (9 ms)

18

Summary

Java 7 (w/ Hotspot) can perform well after warming

— Code loops with regular indexes do well

— Structure allocation and manipulation of moderate sized structures
— Boolean integer operations

— Conditional logic

Well designed code can incur negligible GC impact

Hybrid performance will depend on:

— Granularity of interactions between the Java and C code

— Whether data is created natively or in Java

Frameworks exist to help glue the hybrid Java/C app

GPUs can be effectively managed and utilized if the data is native
A detailed final research report will be available

— Parallelism; CPython, Jython, PyPy, Scala; Java grid-computing
frameworks

Frameworks and Links

= BridJ —Java to C binding
— http://code.google.com/p/bridj/

= JavaCL - Java tier over OpenCL
— http://code.google.com/p/javacl/

= SWIG - Multiple languages to C binding
— http://www.swig.org/

= CShimTodJava — C to Java binding
— http://cshimtojava.sourceforge.net

= Benchmarks used In this study
— http://jcompbmarks.sourceforge.net

20

