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§ Goals & motivation 
§ Performance findings 

– CPU experiments 
– GPU experiment 

§ Helpful frameworks 
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Outline 



§  C is fast but development is meticulous 
and time consuming 

§  Java is not as fast but development is more 
expeditious 

§  Java frameworks are very capable 
–  Logging, dynamic scheduling, CPU load 

balancing, elastic grid resizing, automatic data 
serialization, automatic work failover, etc. 

§  Want to build hybrid apps that leverage the 
strengths of both 
–  Need to understand when Java 7 will and 

won’t perform 
–  Need to understand the cost of interactions 

between Java and C 
–  Need to understand how effectively Java can 

utilize GPUs 
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Motivation & Goals 

Java C GPU 



§ Java startup is slow 
– Disk I/O 
– Class lookup & validation 
– Static initialization 

§ Java Hotspot optimizes during 
runtime 
– Dynamically switch from interpreted to 

compiled 
– Aggressive method in-lining 
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Isn’t Java Slow? 
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Effect of Java Warming on Execution Time
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§ Hardware 
– Intel Core 2 Quad Q9650 @ 2.99GHz 
– 4 GB RAM 
– Four core, not hyper-threaded, SSE4.1 

§ Linux 2.6.32 
§ GCC 4.4.6 

– -O3 optimization 
§ Oracle Java 7 

– Standard edition, 1.7.0_02 
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Test Environment 



Execution Time - LFSR Sequence Generation

C Java
0

1

2

3

m
se

c.

2.8 2.0

§ Workload consists of generating 
multiple linear feedback shift 
register sequences 
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Test: Bit-Twiddling 

Java 

C 



§ Red-black tree key-value insertion 
and retrieval 

§ Exercises  
– Memory allocation 
– Integer key comparison 
– Conditional code execution 
– Reference manipulation 

| 8 | 

Test: Structure Building 



Red-Black Tree Data Insertion Time
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C 

C 
(incl free()) 

Java 



Red-Black Tree Data Retrieval Time
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C Java 



NxN Matrix Multiply
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§ Matrix multiply 
– 10 ≤ N ≤ 90 
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Test: Simple Iteration and Math 

C 

Java 



§ Fast Fourier Transform 
– Non-optimized radix 2 

butterflies 
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Test: Intricate Iteration and Math 

FFT Speeds

6 7 8 9 10 11 12 13 14 15 16 17 18
N (Number of points = 2^N)

0.00

0.25

0.50

0.75

1.00

1.25

1.50

Sp
ee

d 
(G

FL
O

PS
)

C 

Java 



§ 0 GC actions/sec 
§ Bit twiddling test 
§ Preallocated 

buffers 
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Test Design: Impact of Garbage 
Collector 

§ 7.5 GC actions/sec.  
§ Red black tree test 
§ Lots of memory 

allocation 

Test 1 Test 2 

§ 2 scenarios for each 
– 2 compute threads on 2 cores 
– 2 compute thread on 3 cores 

Intentionally 
poorly tuned 



§ Key design practices 
– Preallocate buffers and structures 
– Be smart about String concatenation 
– Keep the GC quiet 
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Test Results: Impact of Garbage 
Collector 

§ 0 GC actions/sec § 7.5 GC actions/sec.  
Test 1 Test 2 



§ Java data is “fenced” 
– Passing reference types (arrays and 

objects) to C incurs overhead 
§ Java Native Interface (JNI) is fastest 

but most tedious 
§ Alternatives: Java Native Access, 

BridJ, SWIG, HawtJNI 
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Investigation: Accessing Native 
Memory 



Call Arguments JNI SWIG BridJ 
4 int args 11 ns. 17 ns. 200 ns. 
2 read-only Java arrays 
(double, length 200) 13 ms. 190 ms. 110 ms. 

Pointers to 2 native arrays 
reference by Java proxies N/A 58 ns. 10 ns. 
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Comparing 3 Bridging Alternatives 

§  BridJ and SWIG provide good performance 
§  BridJ is easier to use 

–  Uses .h files directly 
–  Includes ability to manage C memory from Java 

§  See paper and final MITRE report for more details 
and test cases 



§ FFT’s of varying sizes invoked with both 
synchronous and asynchronous kernel 
invocation 

§ Apple’s optimized FFT’s for OpenCL was 
ported to Java 
– BridJ for native data management 
– JavaCL for OpenCL access 
– Both are subprojects of “nativelibs4java” at 

Sourceforge 
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Test: Utilizing GPUs (1 of 2) 
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§ Java kept the GPU’s as busy as C did 
– Kernel invocation from Java was 2 ms 

longer than from C (9 ms) 

GPU-Based FFTs
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§  Java 7 (w/ Hotspot) can perform well after warming 
–  Code loops with regular indexes do well 
–  Structure allocation and manipulation of moderate sized structures 
–  Boolean integer operations 
–  Conditional logic 

§  Well designed code can incur negligible GC impact 
§  Hybrid performance will depend on: 

–  Granularity of interactions between the Java and C code 
–  Whether data is created natively or in Java 

§  Frameworks exist to help glue the hybrid Java/C app 
§  GPUs can be effectively managed and utilized if the data is native 
§  A detailed final research report will be available 

–  Parallelism; CPython, Jython, PyPy, Scala; Java grid-computing 
frameworks 
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Summary 



§ BridJ –Java to C binding 
–  http://code.google.com/p/bridj/  

§ JavaCL – Java tier over OpenCL 
–  http://code.google.com/p/javacl/ 

§ SWIG – Multiple languages to C binding 
–  http://www.swig.org/  

§ CShimToJava – C to Java binding 
–  http://cshimtojava.sourceforge.net  

§ Benchmarks used in this study 
–  http://jcompbmarks.sourceforge.net 
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Frameworks and Links 


