
Nazario Irizarry, Jr.

Expanding the High Performance
Embedded Computing Tool Chest

- Mixing Java and C

MITRE Corporation
202 Burlington Rd.

Bedford, MA, 01730

Presented	 at	 IEEE	 High	 Performance	 Extreme	 Compu8ng	 Conference	 (HPEC	 `13),	 Waltham,	 MA	
©2013-‐The	 MITRE	 Corpora8on.	 All	 rights	 reserved.	

Approved	 for	 Public	 Release;	 Distribu8on	 Unlimited.	 13-‐1117	

§ Goals & motivation
§ Performance findings

– CPU experiments
– GPU experiment

§ Helpful frameworks

| 2 |

Outline

§  C is fast but development is meticulous
and time consuming

§  Java is not as fast but development is more
expeditious

§  Java frameworks are very capable
–  Logging, dynamic scheduling, CPU load

balancing, elastic grid resizing, automatic data
serialization, automatic work failover, etc.

§  Want to build hybrid apps that leverage the
strengths of both
–  Need to understand when Java 7 will and

won’t perform
–  Need to understand the cost of interactions

between Java and C
–  Need to understand how effectively Java can

utilize GPUs

| 3 |

Motivation & Goals

Java C GPU

§ Java startup is slow
– Disk I/O
– Class lookup & validation
– Static initialization

§ Java Hotspot optimizes during
runtime
– Dynamically switch from interpreted to

compiled
– Aggressive method in-lining

| 4 |

Isn’t Java Slow?

| 5 |

Effect of Java Warming on Execution Time

50 100 150 200 250 300 350 400
Iteration

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

Ex
ec

ut
io

n
Ti

m
e

(u
s.

) Iteration 1 (not plotted) = 14 us.

§ Hardware
– Intel Core 2 Quad Q9650 @ 2.99GHz
– 4 GB RAM
– Four core, not hyper-threaded, SSE4.1

§ Linux 2.6.32
§ GCC 4.4.6

– -O3 optimization
§ Oracle Java 7

– Standard edition, 1.7.0_02

| 6 |

Test Environment

Execution Time - LFSR Sequence Generation

C Java
0

1

2

3

m
se

c.

2.8 2.0

§ Workload consists of generating
multiple linear feedback shift
register sequences

| 7 |

Test: Bit-Twiddling

Java

C

§ Red-black tree key-value insertion
and retrieval

§ Exercises
– Memory allocation
– Integer key comparison
– Conditional code execution
– Reference manipulation

| 8 |

Test: Structure Building

Red-Black Tree Data Insertion Time

Insert (4 bytes) Insert (512 bytes) Insert (2048 bytes)
0

5 0

1 0 0

1 5 0

2 0 0

2 5 0

3 0 0

3 5 0

4 0 0

4 5 0

5 0 0

5 5 0

6 0 0

m
se

c.

51 62 36 89 121 110 93 108 440

| 9 |

C

C
(incl free())

Java

Red-Black Tree Data Retrieval Time

Get (4 bytes) Get (512 bytes) Get (2048 bytes)
0

5

1 0

1 5

2 0

2 5

3 0

3 5

4 0

4 5

5 0

5 5

6 0

6 5
m

se
c.

36 38 53 56 48 39

| 10 |

C Java

NxN Matrix Multiply

10 20 30 40 50 60 70 80 90
Matrix Rank

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Sp
ee

d
(G

FL
O

PS
)

§ Matrix multiply
– 10 ≤ N ≤ 90

| 11 |

Test: Simple Iteration and Math

C

Java

§ Fast Fourier Transform
– Non-optimized radix 2

butterflies

| 12 |

Test: Intricate Iteration and Math

FFT Speeds

6 7 8 9 10 11 12 13 14 15 16 17 18
N (Number of points = 2^N)

0.00

0.25

0.50

0.75

1.00

1.25

1.50

Sp
ee

d
(G

FL
O

PS
)

C

Java

§ 0 GC actions/sec
§ Bit twiddling test
§ Preallocated

buffers

| 13 |

Test Design: Impact of Garbage
Collector

§ 7.5 GC actions/sec.
§ Red black tree test
§ Lots of memory

allocation

Test 1 Test 2

§ 2 scenarios for each
– 2 compute threads on 2 cores
– 2 compute thread on 3 cores

Intentionally
poorly tuned

§ Key design practices
– Preallocate buffers and structures
– Be smart about String concatenation
– Keep the GC quiet

| 14 |

Test Results: Impact of Garbage
Collector

§ 0 GC actions/sec § 7.5 GC actions/sec.
Test 1 Test 2

§ Java data is “fenced”
– Passing reference types (arrays and

objects) to C incurs overhead
§ Java Native Interface (JNI) is fastest

but most tedious
§ Alternatives: Java Native Access,

BridJ, SWIG, HawtJNI

| 15 |

Investigation: Accessing Native
Memory

Call Arguments JNI SWIG BridJ
4 int args 11 ns. 17 ns. 200 ns.
2 read-only Java arrays
(double, length 200) 13 ms. 190 ms. 110 ms.

Pointers to 2 native arrays
reference by Java proxies N/A 58 ns. 10 ns.

| 16 |

Comparing 3 Bridging Alternatives

§  BridJ and SWIG provide good performance
§  BridJ is easier to use

–  Uses .h files directly
–  Includes ability to manage C memory from Java

§  See paper and final MITRE report for more details
and test cases

§ FFT’s of varying sizes invoked with both
synchronous and asynchronous kernel
invocation

§ Apple’s optimized FFT’s for OpenCL was
ported to Java
– BridJ for native data management
– JavaCL for OpenCL access
– Both are subprojects of “nativelibs4java” at

Sourceforge

| 17 |

Test: Utilizing GPUs (1 of 2)

| 18 |

§ Java kept the GPU’s as busy as C did
– Kernel invocation from Java was 2 ms

longer than from C (9 ms)

GPU-Based FFTs

6 7 8 9 10 11 12 13 14 15 16 17 18 19
N, (Number of points = 2^N)

0.0
2.5
5.0
7.5
10.0
12.5
15.0
17.5
20.0
22.5
25.0
27.5
30.0
32.5
35.0

Sp
ee

d
(G

FL
O

PS
)

Async. C

Sync. C

Sync. Java

Async. Java

§  Java 7 (w/ Hotspot) can perform well after warming
–  Code loops with regular indexes do well
–  Structure allocation and manipulation of moderate sized structures
–  Boolean integer operations
–  Conditional logic

§  Well designed code can incur negligible GC impact
§  Hybrid performance will depend on:

–  Granularity of interactions between the Java and C code
–  Whether data is created natively or in Java

§  Frameworks exist to help glue the hybrid Java/C app
§  GPUs can be effectively managed and utilized if the data is native
§  A detailed final research report will be available

–  Parallelism; CPython, Jython, PyPy, Scala; Java grid-computing
frameworks

| 19 |

Summary

§ BridJ –Java to C binding
–  http://code.google.com/p/bridj/

§ JavaCL – Java tier over OpenCL
–  http://code.google.com/p/javacl/

§ SWIG – Multiple languages to C binding
–  http://www.swig.org/

§ CShimToJava – C to Java binding
–  http://cshimtojava.sourceforge.net

§ Benchmarks used in this study
–  http://jcompbmarks.sourceforge.net

| 20 |

Frameworks and Links

