
1

Enhancing a Cross-Platform Hyperspectral
Image Analysis Library for Heterogeneous CUDA

Support
Brian A. Landrón-Rivera, Jonathan Torres-Conty, Nayda G. Santiago

Electrical and Computer Engineering Department, University of Puerto Rico,
Mayagüez, PR 00681

Abstract—Modern hyperspectral image (HSI) analysis makes use of the high performance computing power provided by
General Purpose Graphical Processing Units (GPGPUs) due to the large volume of hyperspectral sensor data involved.
To aid rapid prototyping of HSI analysis platforms that make use of GPGPUs, an open source software library, libdect,
supported by the NVIDIA Compute Unified Device Architecture (CUDA) is being improved. The libdect library includes
an implementation of the Reed-Xiaoli (RX) and Matched Filter (MF) target detection algorithms and its infrastructure is
supported by the CMake build system, incorporating cross-platform compatibility into libdect. Coding guidelines and a
build log was integrated into CMake using KWStyle, CTest, and CDash. This paper addresses the partition of large HSIs
for detectors to analyze using multiple kernel launches. The presented solution discusses how to select smaller workloads
that a CUDA device can handle while ensuring coalesced memory transactions using a specific data format.

Keywords—GPU, high performance, software library, hyperspectral, build system, software engineering

F

1 INTRODUCTION

HSI analysis applications range in purpose
from military reconnaissance devices to devices
that aid medical diagnostics [1]. These applica-
tions require a substantial amount of learning
and development to be conducted in order to
correctly implement GPGPU based algorithms.
In an attempt to significantly reduce prototyp-
ing time, the libdect library was developed [2].
This library is intended to be open source soft-
ware to avoid complications associated with
license restrictions that limit software use and
availability [3]. The libdect library provides an
encapsulation of detection algorithm imple-
mentations supported by the NVIDIA CUDA
framework that future developers need not be
concerned about while balancing performance.

Further author information:
Brian A. Landrón-Rivera: E-mail: brian.landron@upr.edu
Jonathan Torres-Conty: E-mail: jonathan.torres@upr.edu
Nayda G. Santiago: E-mail: nayda.santiago@ece.uprm.edu

2 LIBDECT DESIGN

The libdect library supports a GPU and CPU
version of the RX and MF target detectors,
which were originally implemented by Blas
Trigueros [1]. A set of coding style rules has
been developed and can be tested for auto-
matically with KWStyle, which has been in-
corporated into libdect’s CMake infrastructure.
Support for CTest (unit test driver) and CDash
(distributed testing result website) has been
added to CMake as well.

3 WORKLOAD PARTITION

The problems solved and described in this
work are centered on enhancing libdect to in-
clude support for processing large HSIs on
CUDA GPUs. The implemented solution allows
libdect to process an entire HSI even if it cannot
be stored on a CUDA capable device’s global
memory as a single workload. In addition the
previously used HSI data format, band sequen-
tial (BSQ), ensured coalesced memory transac-
tions by each warp [1], but partitioning HSIs
in this format results in having CUDA kernels

Ka
Typewritten Text
978-1-4799-1365-7/13/$31.00 ©2013 IEEE

2

compute a detector’s output with an incom-
plete dataset. A potential solution to this issue
was developed where large datasets are par-
titioned into smaller workloads that a CUDA
capable device can handle. This includes chang-
ing the supported HSI format from BSQ to
band interleaved per line (BIL), which supports
coalesced memory transactions [1].

For each kernel to process a HSI partition,
libdect determines the largest amount of lines
in a HSI that can be processed by the selected
device, the amount of kernels needed to pro-
cess the complete dataset, and the remaining
amount of lines that occupy less than the se-
lected device’s available global memory. The
amount of kernels needed is determined by
dividing the size of the HSI by the available
global memory size. The amount of lines that
can be processed by the selected device is cal-
culated by dividing available global memory
size by the size of each line. These parameters
(kernel count and lines per kernel) are used
in the kernel configuration for any amount
of lines that fit the GPU global memory in
a loop until the complete dataset has been
processed. In addition libdect uses the lines per
kernel parameter as an offset when copying
a HSI partition from host to device and each
detector’s partial output from device to host.
A CUDA block size of 512 threads that ensures
maximum occupancy on devices with compute
capability 1.2 and above was determined using
the CUDA Occupancy Calculator [4]. Block x
and y dimensions, 32 and 16 respectively, have
remained as in [1].

4 RESULTS

The libdect library is emerging from its proto-
type phase. The partition of HSIs required to
compute the MF detector output for HSIs that
occupy more than the available global memory
in a CUDA capable device has been completed.
This will ensure the complete analysis of HSIs
stored in BIL format of any dimension, with
coalesced memory transactions. The partition
approach has only been tested with the MF de-
tector and we are currently working on testing
the RX detector. This solution has been tested
with synthetic HSIs of 0.5GB, 2GB, 4GB, and

8GB using a GeForce GTX 480, Tesla C1060,
and a Tesla C2075. Spectral signatures were
obtained from the Laboratory for Applied Re-
mote Sensing and Image Processing (LARSIP)
at the University of Puerto Rico, Mayagez Cam-
pus and were mixed using the linear mixing
model [5] to generate HSI backgrounds and
insert target signatures. This approach resulted
in performance gains in all mentioned CUDA
devices for datasets larger than 2GB. Average
speedus for the 2GB, 4GB, and 8GB datasets
were calculated using measurements from all
three CUDA devices. In comparison to the non-
partitioning CPU version the results reveal an
average speedup of 0.089s, 1.03s, and 1.8s in
the GPGPU analysis of the 2GB, 4GB, and 8GB
datasets respectively.

5 CONCLUSIONS

Migration from BSQ to BIL HSI format is com-
plete and ensures coalesced memory transac-
tions. An algorithm that partitions the input
and determines the largest amount of lines a
selected device can handle is in effect. It also
has the capability to determine the amount of
kernels needed to analyze a complete dataset.
Each kernel is launched with 512 threads per
block to ensure maximum occupancy on de-
vices of compute capability 1.2 and above. The
MF algorithm has been tested with synthetic
HSIs of various sizes.

REFERENCES

[1] B. Trigueros, “GPU based implementation of target detec-
tion algorithms for hyperspectral images using NVIDIA
CUDA,” Master’s thesis, University of Puerto Rico,
Mayagüez, 2011.

[2] G. J. Pérez-Irizarry, F. De La Cruz-Sánchez, B. A. Landrón-
Rivera, N. G. Santiago, and M. Vélez-Reyes, “Developing a
portable gpu library for hyperspectral image processing,”
Algorithms and Technologies for Multispectral, Hyperspectral,
and Ultraspectral Imagery, vol. Proc. SPIE 8390, no. XVIII,
pp. 839 017–839 017–11, 2012.

[3] I. H. Donner, “Don’t judge a software license by its cover,”
Computer, vol. 29, no. 10, pp. 114–115, Oct. 1996.

[4] NVIDIA Corporation. (2013, Jul.)
CUDA Occupancy Calculator. Available:
http://developer.download.nvidia.com/compute/cuda/
CUDA Occupancy calculator.xls

[5] R. Schowengerdt, Remote Sensing: Models and Methods for
Image Processing. Elsevier Science, 2006.

