
FPGA-based Hyperspectral Covariance Coprocessor
for Size, Weight, and Power Constrained Platforms

David A. Kusinsky
MIT Lincoln Laboratory

Lexington, MA
Email: kusinsky@ll.mit.edu

Miriam E. Leeser
Northeastern University

Boston, MA
Email: mel@coe.neu.edu

Abstract—Size, weight, and power (SWaP) are important
factors in the design of any remote sensing platform. These remote
sensing platforms, such as Unmanned Air Vehicles (UAVs) and
microsatellites, are becoming increasingly small. This creates a
need for remote sensing and image processing hardware that
consumes less area, weight, and power, while delivering processing
performance. It is also advantageous to utilize the same hardware
for multiple platform tasks. The purpose of this research is to
design and characterize an FPGA-based hardware coprocessor
that parallelizes the calculation of covariance, a time-consuming
step common in hyperspectral image processing. Our design is
compared to a CPU-based implementation and shown to have
an overall SWaP advantage. We evaluate our coprocessor using
a metric that is useful in the consideration of future SWaP-
constrained remote sensing platforms: floating point operations
per Watt-kg (FLOPs/W-kg). Additional hardware capacity exists
in our design to implement other remote sensing platform tasks.

I. INTRODUCTION

Remote sensing can be defined as the overhead observa-
tion of the earth. This observation is performed by sensors
that reside on board remote sensing platforms. Airborne and
spaceborne remote sensing platforms are often constrained by
size, weight, and power. This limits the amount of processing
that can be accomplished by the platform, pushing these tasks
to ground-based processing systems.

An example remote sensing platform is shown in Figure 1.
This example platform contains a single remote sensor, a
hyperspectral imager; in practice a platform may have several
sensors. In addition, a remote sensing platform may have
up to four types of electronics to perform its tasks: imager
control, data processing, position and orientation, and com-
mand/communications.

From this description, it is clear that improving the size,
weight, or power of any of these distinct blocks is advanta-
geous to the overall platform. Additionally, if hardware tasks
can be consolidated into a fewer number of hardware modules,
the overall platform can benefit. Our research is focused on the
tasks of the data processing electronics, with the eventual goal
of implementing the imager control tasks as well.

This work is sponsored by the Department of the Air Force under Air
Force Contract #FA8721-05-C-0002. Opinions, interpretations, conclusions
and recommendations are those of the author and are not necessarily endorsed
by the United States Government. Approved for public release; distribution is
unlimited.

Remote

Sensor +

Optics

Imager

Control

Electronics

Control

Data

Position & Orientation Electronics

Global Positioning

System

(GPS)

Inertial

Measurement Unit

(IMU)

Data

Processing

Electronics

Platform

Command &

Communications

TX/RX

RX

Data

Fig. 1. Example Remote Sensing Platform

One type of sensor that can be employed in remote sensing
is a hyperspectral imager (HSI). HSI sensors collect a series
of two-dimensional images. Each image collected corresponds
to one wavelength band in the electromagnetic spectrum [1].
Depending on the sensor used, the number of spectral bands
imaged can be over two hundred. This generates a large
amount of image data that, if not compressed or processed,
can exceed a communication system’s maximum data rate [2].
Onboard processing of HSI data, within the SWaP constraints
of the platform, can help alleviate this problem and enable
real-time processing performance.

One common operation performed during the processing
of HSI data is the computation of covariance. In this paper we
present the design of an FPGA-based covariance coprocessor,
suitable for SWaP-constrained HSI platforms. The coprocessor
was targeted for the Xilinx ML605 evaluation board, which
contains a Xilinx Virtex-6 FPGA and DDR3 memory.

This work provides several contributions. To our knowl-
edge, this is the first FPGA-based HSI data processing platform
to perform the covariance calculation on HSI data having a
large number of spectral bands, 50 in our case. Second, this
is the first time that a user-generated processing algorithm has
been successfully integrated inside the OpenCPI framework
on the ML605. Third, we demonstrate that HSI covariance
calculation in FPGAs is an attractive option when compared
to CPU-based approaches. Last, we show that our coprocessor

Ka
Typewritten Text
978-1-4799-1365-7/13/$31.00 ©2013 IEEE

has substantial unused resources that can be used to perform
additional HSI data processing operations in future research.
These unused resources can also be used to perform additional
platform tasks, such as directly interfacing with HSI cameras
and aiding in platform communication and navigation.

The rest of the paper is organized as follows. First, a
background on hyperspectral imaging, remote sensing plat-
forms, and covariance is provided. Section III discusses the
architecture of the coprocessor and the details of the covariance
computation, which is performed using single-precision arith-
metic. We then cover the implementation of the coprocessor
through the use of the Xilinx ISE design suite and OpenCPI
middleware [3]. The performance of our coprocessor is com-
pared to a CPU-based processing platform. This comparison
includes processing throughput, power dissipation, and energy
expended during processing. For more details see [4].

II. BACKGROUND

A. Hyperspectral Imaging

HSI is typically set apart from simple three-color and mul-
tispectral imagery in that the spectral bands being imaged are
very closely-spaced, very high in number (several hundred),
or both. Because processed HSI sensor data typically contains
one spectral dimension and two spatial dimensions, this data is
typically referred to as a hyperspectral image cube. Because of
the large number of closely spaced bands, HSI is particularly
useful in remote sensing applications that will exploit this high
spectral resolution and wide spectral range. Shaw and Burke
define three major applications for HSI: anomaly detection,
target recognition, and background characterization [1].

One example of an HSI platform is NASA’s Airborne
Visible/Infrared Imaging Spectrometer (AVIRIS). AVIRIS is
an airborne scientific instrument that images the ground in
the visible, near-infrared, and short-wave infrared. AVIRIS
produces image cubes having 224 spectral bands and 512 x 614
spatial pixels [5]. AVIRIS data is commonly used in remote
sensing research [6], [7], [8], has a large number of bands,
and much of the data collected by AVIRIS is available to the
academic community. For these reasons, a 512 x 614 x Nb

image cube of AVIRIS data was used in our research, where
Nb = 50 bands. This image cube is shown in Figure 2.

B. HSI Platform Size, Weight, and Power

Minimizing size, weight, and power (SWaP) is a common
design goal for airborne, spaceborne, and even ground-based
HSI platforms. Research has been done on band selection
techniques [9] and HSI data dimensionality reduction [2]. The
former has the potential to reduce HSI sensor size and weight,
and the latter can lead to reductions in data storage/downlink
and processing requirements.

However, some of these techniques push additional pro-
cessing requirements closer to the HSI sensor itself, wherever
it may be operating. With the shrinking size of highly capable
remote sensing platforms (UAVs, microsatellites, etc.) and
the equally-shrinking power and sensor weight capacity, the
processing performance per Watt of power must improve to
compensate, or the capabilities of the remote sensing platform
may be diminished.

Fig. 2. 50-Band Hyperspectral Image Cube

C. Covariance

The calculation of covariance is a necessary step in many
HSI data processing and target detection algorithms, such
as matched filtering and anomaly detection [6]. In some
applications, several covariance calculations may be performed
per frame of imagery and can be a limit to performance [10].

Because we are using pixel data from an image cube to
compute covariance, we are calculating the sample covariance
matrix, defined as:

Σj,k =
1

Npix − 1

Npix∑
i=1

(xij − x̂j)(xik − x̂k), (1)

Here, i represents the pixel number and Npix the number of
pixels. j and k are the band numbers. x̂j and x̂k represent the
means of bands j and k, respectively, over all image pixels.

D. Related Work

There is related work that presents the computation of
covariance in several types of hardware, including FPGAs.
Martelli et al. [11] recognized that covariance computation
can be a bottleneck for some systems. They implemented
a covariance computation on an FPGA to compute a 6x6
covariance matrix. This was used in a linear SVM classifier
for a pedestrian detection application. Their research utilized
fixed-point data representations and six features during the
covariance computation. The computation described here is
significantly larger.

In [12], four DSPs were chosen to perform the covariance
calculations for 80 channels of data in a multi-beam echo
sounding application. FPGAs were also used in their process-
ing hardware to perform digital down-conversion and other
tasks, but were not used for covariance computations.

There has also been research into understanding the number
of hyperspectral bands needed for a given detection applica-
tion to achieve good detection algorithm performance. Costa
[9] demonstrated that, depending on the detection algorithm
and band selection technique, the number of bands used for
detection could be reduced as much at 50% with only a 12%
drop in the probability of detection. This research is relevant
to the covariance coprocessor presented here, as the number
of AVIRIS bands used (50) is a subset of the available bands.

Fig. 3. Xilinx ML605 Evaluation Board

III. DESIGN

A. Covariance Algorithm

The computation of sample covariance requires many mul-
tiply accumulate operations (MACs). These operations map
well to FPGAs. Recall the sample covariance calculation in
Eq. (1). Every ith pixel intensity in spectral band j, xij , must
be multiplied against its intensity in band k, xik. This occurs
after the respective means of bands j and k across all pixels
are subtracted from these two intensity values. The resulting
product is then accumulated over all the pixels in the image
cube.

In the covariance calculation for our AVIRIS image cube,
there are two areas where parallelism can be exploited. First,
some or all of the band-to-band intensity products mentioned
above for a single pixel can be computed in parallel. Second,
these band-to-band products can be computed for several pixels
in parallel. Both types of parallelism were exploited in our
design.

B. Hardware Platform

The hardware platform used in this research is the Xilinx
ML605 evaluation board, shown in Figure 3, which contains
a Xilinx Virtex-6 LX240T FPGA. This FPGA features 768
DSP48E1 slices, which are used by the adders and multipliers
in our design, as well as 14,976 Kb of internal block RAM
used for data storage.

Additional hardware available on the ML605 used in this
research is 32 MB of BPI flash memory, 512 MB of DDR3
memory, and a PCI Express connector located on the board’s
edge. Also of interest for future work is the ML605’s support
for two FPGA Mezzanine Cards (FMCs), which can be used
for external hardware interfacing. The ML605 is well-suited
for this research because of its highly capable FPGA, onboard
DDR3 memory for image storage, and PCI Express interface.

1) Hardware Interfaces: The PCI Express interface is used
as the means to transfer data and control signals between the
coprocessor and a host PC, as described later in this section.
To facilitate testing of our covariance implementation, the open
source framework OpenCPI is utilized. OpenCPI [3] is an
open-source middleware solution that is geared towards het-
erogeneous processing applications. OpenCPI (OCPI) enables
ML605 communications with a host PC over PCI Express,
as well as reading and writing to the DDR3 memory on the
ML605.

Host PC

OCPI

Control

Application

ML605

OCPI Middleware

PCIe

Interface

Covariance

Implementation

DDR3 Memory

OCPI Memory

Worker

OCPI Worker

Fig. 4. Design High Level Block Diagram

2) OCPI ML605 Middleware: The covariance implemen-
tation in this research interfaces with and executes within the
OCPI middleware in the ML605’s FPGA. A custom Verilog
wrapper was created to perform this interfacing. Figure 4
shows a block diagram of the high-level design and relevant
interfaces. The OCPI middleware, OCPI worker, and OCPI
control application were also modified as needed to commu-
nicate with our implementation.

3) OCPI Software: The OCPI control application on the
host PC is used for several tasks: writing the image cube
to the DDR3 memory on the ML605, starting/stopping the
coprocessor, monitoring status, and retrieving the covariance
results. The host PC and control application were used as a
control and diagnostics tool and are not actively needed by the
coprocessor during processing.

It is important to note that the image cube transferred
to the ML605 memory from the host PC is already mean-
subtracted. This section shows that significant FPGA resources
are available after implementation of our coprocessor. These
resources can be used to implement the subtraction of means
in the future.

The OCPI ML605 middleware enables the testing of our
hardware implementation, at the cost of additional FPGA
resource utilization. Direct interfacing with an HSI sensor can
remove the need for OCPI and its associated overhead, freeing
additional resources for other tasks.

C. Hardware Covariance Implementation

Figure 5 shows the datapath of the design. N input pixels
are passed through a FIFO constructed from FPGA block
memory. The output of the FIFO is used by parallel multipliers,
50 per pixel, during which the next N pixels are enqueued
into the FIFO. This buffering keeps the OCPI DDR3 memory
interface occupied with read requests, which maximizes its
performance.

The multipliers consist of single-precision Xilinx multiplier
IP cores. These multipliers are provided new data every clock
cycle to compute one row to sum into a 50x50 accumulator
matrix. This is performed in parallel for N pixels. Therefore,
there are N accumulator matrices and 50N multipliers. The
first clock cycle provides data for the b1,1, b1,2, · · · , b1,50 band-
band products for each pixel. The second clock cycle provides

MAC Block A

MUX

X

bi , ith clock cycle

b1 Xb2 Xb50
. . .

Block A Accumulator

(Dual-Port BRAMs)

+ + +. . .

Pixel Data Interface (128-bit)

Pixel Storage During MACs (2 pixels)

Pixel Requests Pixel Data

+

Serial Divide and Covariance Output

External Interface (32-bit)

Npix – 1

MAC Block B

MUX

X

bi , ith clock cycle

b1 Xb2 Xb50

Block B Accumulator

(Dual-Port BRAMs)

+ + +

. . .

. . .

Σ

Fig. 5. Detailed Datapath of Covariance Implementation

the b2,1, b2,2, · · · , b2,50 products. This proceeds for 50 clock
cycles to compute all 50 rows of the accumulator matrix.

In our research, N = 2 was chosen: computing the 50x50
accumulator matrix for two pixels in parallel. Figure 5 shows
the datapath with N = 2. One parallel pixel is processed
by MAC block A, and the other by MAC block B. More
pixels could be processed in parallel consuming more FPGA
resources, if available.

FPGA block RAMs are used to implement storage of the
accumulator matrices, and Xilinx single-precision adder cores
are used for the additions. As with the parallel multipliers, 50N
adders are used. The block RAMs are configured as simple
dual-port RAMs. The read address of the block RAMs are set
to follow the current row of the band-to-band products being
output by the multipliers. The write address is set to follow
the row corresponding to the sum being output by the adders.
Therefore, the write address lags behind the read address by
the adder latency, and read-write collisions are avoided.

Once all pixels in the image have been processed through
the datapath, the N accumulator matrices must be added
together and divided by Npix−1 to obtain the final covariance
matrix. Because the number of pixels is large (Npix = 512 ∗
614 = 314, 368), a serial sum of N2

b = 2500 accumulator
matrix values takes a small amount of time compared to the
MACs. Therefore, this sum is performed serially and only
requires a single adder. The results of this serial sum are
provided directly to a divider that divides by Npix − 1 to
produce one entry of the 50x50 covariance matrix each clock.
This data is provided as an output of our datapath, along with
an enqueue signal that is used by the OCPI worker shown in
Figure 4 to schedule writes to the ML605 DDR3 memory.

D. FPGA Resource Utilization

The FPGA resource utilization of our design is reported
by the Xilinx design tools. Two cases were considered. The
first is the FPGA resource utilization for just the covariance
calculation. The second is the resource utilization for the

TABLE I. FPGA RESOURCE UTILIZATION

FPGA
Resource # Available Covariance

Calculation
Full

Coprocessor
Slice Registers 301,440 51,082 (16%) 83,559 (27%)

Slice LUTs 150,720 38,940 (25%) 80,829 (53%)
RAMB36E1s 416 0 (0%) 39 (9%)
RAMB18E1s 832 308 (37%) 311 (37%)

DSP48E1s 768 502 (65%) 502 (65%)

full coprocessor, after its integration with the OCPI FPGA
middleware. Table I provides the major FPGA resources for
both cases.

The utilization of the FPGA registers and lookup tables
(LUTs) for the covariance calculation is very low (25% or
less). It can be seen that OCPI adds 11% and 28% overhead,
respectively, to these resources to obtain a testable design.
Some of these resources could be freed by interfacing directly
to an HSI sensor, thereby allowing the removal of the OCPI
middleware. Regardless, the full coprocessor design utilizes
less than 55% of the total FPGA resources in each category,
with the exception of the DSP48E1s (65% utilization).

IV. RESULTS

A. Design Validation

Before measuring performance, our design was validated
for proper operation through a combination of hardware sim-
ulations and analysis of coprocessor output. For hardware
simulations of our VHDL code, the ModelSim simulation
environment was used to validate proper operation of our
FPGA covariance implementation.

Our hardware implementation was tested with the same
pixel data used in our simulation testbench. The testbench
results were found to exactly match those of our hardware
coprocessor. Both results were found to match a covariance
calculation performed using the software package MATLAB.

TABLE II. ML605 AND FPGA POWER SUMMARY

Supply Currents Idle Running
FPGA VCCAUX 0.80A 0.81A
FPGA VCC1V5 1.0A 0.95A
FPGA VCCINT 4.03A 6.0A
FPGA VCC2V5 0.04A 0.04A

Total ML605 Input 1.86A 2.13A
FPGA Power (W) 7.63 9.55

Total ML605 Power (W) 22.6 25.9
Processing Energy (J) N/A 2.1

B. Coprocessor Performance

Performance measurements were made to determine the
runtime of our coprocessor for the 512 x 614 x 50 image
cube. Registers in the hardware design were used to record
the number of clock cycles that the covariance module takes
to perform the computation for each loop of execution.

On average, the coprocessor took 10,286,763 clock cycles
at 125MHz to process a full image cube, or 82.3 ms. This
corresponds to almost 12.2 image cubes per second process-
ing throughput. The image cube requires approximately 1.57
GFLOP to compute, and therefore our coprocessor currently
achieves 19.1 GFLOPS during the covariance computation.

Power measurements of the coprocessor were performed
to determine the power dissipation and total energy used to
perform the covariance computation. This was accomplished
by using the built-in capability of the ML605 evaluation board
to monitor supply currents on major voltage rails. This includes
the main input supply for the entire ML605, as well as the
individual FPGA supply voltages.

This allows a determination of the FPGA’s contribution
to the ML605 total power, and the increase in FPGA power
during active processing. A summary of all voltage rails
measured and power consumption of each is provided in
Table II. Total FPGA and ML605 power is also provided in
this table. Note that the ML605 power increased by only 3.3W
(15%) between idle and active processing states.

C. Comparison Platform Performance

A Single Board Computer (SBC) was used as a perfor-
mance and power comparison platform. This platform consists
of a Congatec conga-BM67 CPU board mounted to an ACTIS
Computer KCAC-0320 carrier board that provides access to
external peripherals and power. The BM67 contains a 2.1 GHz
Intel Corei7 2710QE processor, 512MB of DDR3 memory, and
runs CentOS Linux from flash memory. This reference SBC
was chosen specifically to model processing hardware that is
typical of SWaP-constrained remote sensing platforms.

Performance measurements were made to determine the
runtime of the SBC on the 512x614x50 image cube. A
multithreaded C version of the covariance algorithm was
written to perform calculations in parallel, much like the HW
coprocessor. Each thread processed an equal share of the
total number of pixels. Because the SBC platform’s quad-
core processor supports eight logical cores, both four- and
eight-thread versions of the code were executed. The code
was compiled using gcc 4.7.2 with the -lpthread -lrt -m32
-march=corei7 -mfpmath=sse -Ofast -flto compiler flags. As

TABLE III. SBC POWER AND ENERGY VS. ML605 COPROCESSOR

SBC
Idle

SBC
Four

Threads

SBC
Eight

Threads

ML605
Coprocessor

Voltage (V) 12 12 12 12.14
Current (A) 1.07 4.6 5.2 2.13
Power (W) 12.8 55.2 62.4 25.9
Processing
Energy (J) N/A 3.8 4.3 2.1

with our FPGA-based platform described in Section III, the
input pixel data is mean-subtracted per (1).

On average, the SBC took 79ms to process a single
image cube using 4 threads, and 69ms using 8 threads. This
corresponds to about 12.7 and 14.5 image cubes per second
processing throughput, respectively. These measurements place
the comparison platform at 22.8 GFLOPS during the covari-
ance calculation.

Power measurements were performed with a digital mul-
timeter wired in series with the +12V DC power input to the
SCB to measure average current. Measurements were taken
during an idle state and during the execution of the four- and
eight-thread code. The power and energy measurements of the
SBC are shown in bold in Table III. The power and energy
measurements of the FPGA-based coprocessor are included in
the rightmost column for comparison.

From these measurements, it can be seen that the SBC
platform requires less power and energy when idle than the
ML605. This is due to frequency scaling of the Corei7 CPU on
the SBC, which lowers the clock frequency during idle states,
reducing power consumption. However, the SBC platform
dissipates more than twice as much power as the ML605
during active processing. The energy required for processing
on the SBC is about twice that of the ML605 coprocessor.

D. SWaP Implications

The performance, power, and FLOPS measurements are
further utilized to investigate the attractiveness of both the
covariance coprocessor and SBC from the SWaP perspective.
One such metric to consider is the number of FLOPS per
Watt of power consumed (FLOPS/W). This is a popular metric
in the field, but it omits the weight portion of the system
design, which is also of high importance for current and
future airborne and spaceflight processing systems. Therefore,
we also consider another metric, FLOPS/(W·kg) during the
evaluation of these types of systems.

The ML605 and SBC were weighed to support this SWaP
analysis, and the results are provided in Table IV. For this
analysis, the average power seen during processing was used.
These results indicate that the coprocessor performance in
FLOPS/W is approximately twice that of the SBC, and around
2.75 times that of the SBC in FLOPS/(W·kg).

V. CONCLUSION

Our research investigated and implemented a parallelized
sample covariance calculation, targeted to an FPGA-based
platform. This platform, the Xilinx ML605 was chosen because
of its PCI Express interface, onboard DDR3 memory, and

TABLE IV. ML605 COPROCESSOR AND SBC SWAP COMPARISON

ML605
Coprocessor SBC

FLOPS 19.1G 22.8G
Power (W) 25.9 62.4
Mass (kg) 0.336 0.476
FLOPS/W 737M 365M

FLOPS/(W·kg) 2.2G 0.8G

potential for lower size, weight, and power. An open-source
middleware framework, OpenCPI, was utilized to extend the
covariance calculation into a complete coprocessor.

We described the major aspects of the datapath and control
of the covariance implementation, and the validation of proper
hardware operation through simulation.

Our coprocessor was found to provide around 12 sample
covariance calculations per second on 512 x 614 x 50 AVIRIS
hyperspectral image cubes. Performance was evaluated and
found to be promising for use on SWaP-constrained HSI
platforms, providing a greater than 2X improvement in power
and energy dissipation over a CPU-based platform.

Contributions of our research include being the first co-
processor to perform FPGA-based covariance calculations on
HSI data having this many spectral bands. Additionally, this is
the first time that a VHDL/Verilog user application has been
successfully integrated inside the OpenCPI ML605 middle-
ware. We have shown that FPGA-based processing platforms
are an attractive option for the processing of HSI data, and are
competitive from a size, weight, and power perspective. More
details can be found in [4].

Future work includes adding mean-subtraction to our hard-
ware implementation, interfacing the coprocessor directly to
a hyperspectral camera, and the addition of HSI processing
steps after the sample covariance calculation. This additional
processing will make the FPGA even more attractive for
remote sensing platforms since a larger amount of the image
processing can be done in a small form factor with high energy
efficiency.

ACKNOWLEDGMENT

The authors would like to thank Xilinx for providing the
ML605 board used in this research, and Bluespec, Inc. for
providing their BSV compiler. We would also like to thank
Shep Siegel of Atomic Rules for supporting our work with
OpenCPI, and Marc Burke of Lincoln Laboratory for providing
the SBC used in our research.

REFERENCES

[1] G. A. Shaw and H. K. Burke, “Spectral imaging for remote sensing,”
Lincoln Laboratory Journal, vol. 14, no. 1, pp. 3–28, 2003.

[2] S. Cook and J. Harsanyi, “Onboard processor for compressing HSI
data,” in Proceedings of the 31st Applied Imagery Pattern Recognition
Workshop (AIPR02), 2002.

[3] Mercury Federal Systems, Inc. OpenCPI - open component portability
infrastructure. http://opencpi.org. [Online; accessed 21-Feb-2013].

[4] D. A. Kusinsky, “Fpga-based hyperspectral covariance coprocessor for
size, weight, and power constrained platforms,” Master’s thesis, Dept.
Elect. and Comput. Eng., Northeastern Univ., Boston, MA, 2013.

[5] C. I. o. T. Jet Propulsion Laboratory. AVIRIS - airborne visible
/ infrared imaging spectrometer. http://aviris.jpl.nasa.gov/index.html.
[Online; accessed 21-Feb-2013].

[6] D. Manolakis, D. Marden, and G. A. Shaw, “Hyperspectral image pro-
cessing for automatic target detection applications,” Lincoln Laboratory
Journal, vol. 14, no. 1, pp. 79–116, 2003.

[7] A. Paz and A. Plaza, “Clusters versus GPUs for parallel target and
anomaly detection in hyperspectral images,” EURASIP Journal on
Advances in Signal Processing, vol. 2010.

[8] S. Bernabé, S. López, A. Plaza, and R. Sarmiento, “GPU implemen-
tation of an automatic target detection and classification algorithm for
hyperspectral image analysis,” IEEE Geoscience and Remote Sensing
Lett., vol. 10, no. 2, Mar. 2013.

[9] J. S. Costa, “Band selection techniques for hyperspectral chemical agent
detection,” Master’s thesis, Dept. Elect. and Comput. Eng., Northeastern
Univ., Boston, MA, 2011.

[10] M. L. Pieper, D. Manolakis, R. Lockwood, T. Cooley, P. Armstrong,
and J. Jacobson, “Hyperspectral detection and discrimination using the
ACE algorithm,” in Imaging Spectrometry XVI, 2011.

[11] S. Martelli, D. Tosato, M. Cristani, and V. Murino, “Fast FPGA-based
architecture for pedestrian detection based on covariance matrices,” in
2011 18th IEEE International Conference on Image Processing, 2011,
pp. 389–392.

[12] B. Yao, H. Li, T. Zhou, B. Chen, and H. Yu, “Real-time implementation
of multiple sub-array beam-space MUSIC based on FPGA and DSP ar-
ray,” in Fifth IEEE International Symposium on Embedded Computing,
2008, pp. 186–191.

