
A Nested Dissection Partitioning Method for
Parallel Sparse Matrix-Vector Multiplication

Erik G. Boman and Michael M. Wolf∗
Sandia National Laboratories†

Albuquerque, NM 87185-1318
Email: egboman@sandia.gov, michael.wolf@ll.mit.edu

Abstract—We consider how to map sparse matrices across pro-
cesses to reduce communication costs in parallel sparse matrix-
vector multiplication, an ubiquitous kernel in high performance
computing. Our main contributions are: (i) an exact graph
model for communication with general (two-dimensional) matrix
distribution, and (ii) a recursive partitioning algorithm based on
nested dissection that approximately solves this model.

We have implemented our algorithm using hypergraph par-
titioning software to enable a fair comparison with existing
methods. We present partitioning results for sparse structurally
symmetric matrices from several application areas. Our new
method is competitive with the best 2D algorithm (fine-grain
hypergraph model) in terms of communication volume, but
requires fewer messages. The nested dissection method is almost
as fast to compute as 1D methods and the communication
volume is significantly reduced (up to 97%) compared to 1D
layout. Further improvements in quality may be possible by small
modifications to existing nested dissection ordering software.

I. INTRODUCTION AND BACKGROUND

Sparse matrix-vector multiplication (SpMV) is a ubiquitous
kernel in high performance computing and is of particular
importance for iterative linear solvers and graph analytics
related to network data (e.g., Signal Processing for Graphs
algorithms [1]). An important combinatorial problem in paral-
lel computing is how to map or distribute the matrix and the
vectors across the processes to minimize the communication
cost. A good distribution for these matrices and vectors is
crucial to obtaining good parallel performance for SpMV,
especially for matrices derived from network data that are
particularly computationally challenging. Our work is relevant
to parallel computing on both distributed-memory and shared-
memory systems. Typically, multicore computers have non-
uniform memory access so data layout is important. The
phrase “communication” correspond to memory access on
those systems.

The SpMV y = Ax is usually parallelized such that
the process that owns element aij computes aijxj (a local
operation if xj , yi, and aij reside on the same process;
otherwise communication is required). In general, there are
two phases of communication: sending xj to processes with a

∗Currently at MIT Lincoln Laboratory.
†Sandia National Laboratories is a multi-program laboratory managed and

operated by Sandia Corporation, a wholly owned subsidiary of Lockheed
Martin Corporation, for the U.S. Department of Energys National Nuclear
Security Administration under contract DE-AC04-94AL85000.

nonzero aij (expand) and sending the partial inner product yi
values to relevant processes (fold). In this paper, we address
sparse matrix-vector partitioning (Definition 1), where both
the matrix nonzeros and vector elements are partitioned into
different parts. For parallel computing, this data is mapped to
different processes based on this part assignment.

Definition 1. Sparse matrix-vector partitioning. Given a
sparse matrix A, an integer k > 1, and ε > 0, compute
(i) a matrix partition A =

∑k
i=1Ai where each Ai contains

a subset of the nonzeros of A, such that nnz(Ai) ≤
(1 + ε)nnz(A)/k, ∀i, where nnz denotes the number of
nonzeros, (patterns of Ai are disjoint)

(ii) partitions of the input and output vectors,
such that when the data is distributed across processes based
on these partitions, the communication cost of sparse matrix-
vector multiply, y = Ax, is minimized.

For SpMV, the total volume is the most common communica-
tion cost metric (see e.g., [2]). However, several other com-
munication metrics are also relevant, including the maximum
volume for any process, the total number of messages, and
the maximum number of messages for any process [3]. Any
single metric is insufficient to predict performance. We choose
to focus on both total volume and messages in this paper since
we believe that to consider only volume is too simplistic.

Stated above is a very general form. We first consider
a restricted version for symmetric matrices where the input
and output vectors must have the same distribution. It has
been observed [2], [4] that the matrix and vector partitioning
problems can be separated. For any given matrix distribution
(partition), it is easy to find a “compatible” vector partition
and these together give a solution to the combined matrix-
vector problem. We focus on the matrix partitioning step but
simultaneously obtain a compatible vector partitioning as well.

By far, the most common way to partition a sparse matrix is
to use a 1D scheme where each part is assigned the nonzeros
for a set of rows or columns. The simplest 1D method is to
assign approximately n/k consecutive rows (or columns) to
each part, where n denotes the number of rows and k the
number of parts in a partition. However, it is often possible
to reduce the communication by partitioning the rows in a
better (non-contiguous) way, using graphs or hypergraphs to
model this problem [2]. The complication is that solving these

Ka
Typewritten Text
978-1-4799-1365-7/13/$31.00 ©2013 IEEE

graph [5] or hypergraph [6] partitioning problems optimally
(maintaining load-balance while minimizing communication)
is known to be NP-hard. Multilevel methods, however, have
been effective in obtaining high quality partitions of graphs at
a low cost (linear time in the graph size) [7]–[9].

Although the simplicity of 1D distributions may be desir-
able, the communication volume can often be reduced by using
2D distributions. Figure 1 shows an example where 1D par-
titioning will always be poor. Consider the arrowhead matrix
of dimension n, and bisection (k = 2). Due to a single dense
row and column, any load balanced 1D partitioning will have
a communication volume of approximately (3/4)n words. The
optimal volume is actually 2 words as demonstrated in the 2D
partitioning of Figure 1 (right).

Fig. 1. Arrowhead matrix with 1D (left) and 2D (right) distribution, for two
parts (colors). The communication volumes in this example are eight and two
words, respectively.

Recently, several 2D decompositions have been proposed
[10]–[12]. The idea is to reduce the communication volume
further by giving up the simplicity of the 1D structure. The
fine-grain hypergraph method [10] is of particular interest
since it is the most general method with the matrix nonzeros
being assigned to parts (processes) individually. In the fine-
grain hypergraph model, each nonzero is a vertex while rows
and columns correspond to hyperedges. This gives an exact
model of the communication volume and the corresponding
method typically yields low communication volume. However,
this method is mostly of theoretical interest since it is quite
slow and not supported in any standard software library.

In this paper, we introduce a graph model that also accu-
rately describes communication in general (fine-grain) distri-
bution. This leads to a new graph-based algorithm, a “nested
dissection partitioning algorithm,” which is related to previous
nested dissection work for parallel Cholesky factorization
[13]. (A brief preliminary version, without analysis, appeared
in [14].) An important aspect to both our partitioning method
and the previous parallel Cholesky factorization work is that
communication is limited to separator vertices in the corre-
sponding graph. One of our objectives in developing new 2D
methods is to produce similar quality partitions to fine-grain
hypergraph in shorter runtime.

II. AN EXACT GRAPH MODEL FOR STRUCTURALLY
SYMMETRIC MATRICES

We present an accurate graph model for communication
volume in SpMV for structurally symmetric matrices, which

can be extended to nonsymmetric matrices by using a bipartite
graph model. We restrict our attention here to symmetric
partitioning schemes, where aij and aji are assigned the
same part, and further, the input and output vectors have the
same distribution. This allows us to work with the undirected
graph G(V,E), where the vertices correspond to the vector
indices (and diagonal nonzeros) and the edges correspond to
the off-diagonal nonzeros. We partition both the vertices and
edges, that is, assign vector elements and matrix nonzeros
to parts. We allow arbitrary assignment of both vertices and
edges, which distinguishes our approach from the 1D graph
model and allows for 2D partitioning.

Theorem 1. Let G(V,E) be the graph of a symmetric sparse
matrix A such that A has the same nonzero structure as
the adjacency matrix of G(V,E). Let E(v) denote the set
of edges incident to vertex v. Let π(v) denote the part to
which v belongs. Let π(e) denote the part to which edge
e belongs. Then the communication volume in SpMV is
2
∑

v∈V (|π(v) ∪ π(E(v))| − 1).

Proof: A vertex vi incurs communication if and only if
there are incident edges that belong to a different part. The
volume (for one phase of communication) is equivalent to the
number of parts assigned to the incident edges that differ from
the part of vi since these correspond to the processes that will
receive xi from and send their portion of the inner product
for yi to the process owning vi during the sparse matrix-
vector product operation. The factor two arises because any
communication occurs in both phases (expand and fold).

This exact graph model yields a minimum volume balanced
partition for SpMV when optimally solved.

Figure 2 illustrates the exact graph model for 2D symmetric
partitioning of matrices. The graph corresponds to the sym-
metric matrix (showed partitioned on the right). The edges and
vertices in the graph are partitioned into two parts (colors).
The vertices that have incident edges belonging to a different
part (and thus incur communication) are highlighted in green.
The matrix on the right shows the 2D symmetric matrix
partition obtained from the partitioned graph. The partition of
the diagonal entries corresponds to the partition of the graph
vertices. The partition of the off-diagonal entries corresponds
to the partition of the edges in the graph.

III. A VERTEX SEPARATOR PARTITIONING ALGORITHM

In Section II, we introduced an exact graph model for 2D
partitioning of symmetric matrices. If we solved this model
optimally, we would obtain a balanced partition to minimize
communication volume for resulting matrix-vector multipli-
cation. However, this problem is NP-hard. In this section, we
introduce an algorithm for solving this exact graph model sub-
optimally in polynomial time (assuming the vertex separator
is found in polynomial time). An edge separator in the fine-
grain hypergraph model corresponds to a vertex separator in
the graph. Thus, we can derive a fine-grain decomposition

1 873 542 6
1

3
2

8
7
6
5
43

4

56

1 2

7 8

Fig. 2. 2D graph bisection for symmetrically partitioned matrix. Part (color)
of graph edge corresponds to symmetric pair of off-diagonal nonzeros.

V0 S V1

Fig. 3. Bisection. Vertex separator (uncolored vertices) used to partition
vertices into three disjoint subsets (V0, V1, S).

from a vertex separator for the graph. One constraint that we
impose on our algorithm is that the vertex and edge partitions
are compatible. A vertex partition is compatible with an edge
partition if every vertex belongs to the same part as one of its
incident edges. Similarly, an edge partition is compatible with
a vertex partition if every edge belongs to the same part as one
of its two vertices. There is no reason to violate this constraint
since it will only increase the communication volume.

A. Bisection

For simplicity, we consider bisection first. First we compute
a small balanced vertex separator S for the graph where the
separator is balanced by edges (since the primary goal is load
balance of the matrix non zeros). This partitions the vertices
into three disjoint subsets (V0, V1, S). Let Ej := {e ∈ E|e ∩
Vj 6= ∅} for j = 0, 1, that is, Ej is the set of edges with at
least one endpoint in Vj . Vj and Ej are assigned to part Pj

for j = 0, 1 (example shown in Figure 3).
The procedure above intentionally does not specify how

to distribute the vertices in S and the edges therein. The
partitioning of these vertices and edges does not affect the
communication volume as long as the partitions are compati-
ble. There are several ways to exploit this flexibility, yielding
several variations on our basic algorithm.

1) If load balance in the matrix is of primary concern,
distribute the vertices in S (and edges therein) in such
a way to obtain balance.

2) To improve balance in the vector distribution, assign
more vertices in S to the process with the fewest vector
elements.

3) One can also try to minimize a secondary objective, such
as minimizing the maximum communication volume for

(a) Graph (b) Matrix

Fig. 4. k-way partition of graph and corresponding block matrix.

any process. This is similar to the vector partitioning
problem posed in [4].

B. Extension to k-way Partitioning

In practice, one wishes to partition into k > 2 parts. A
natural extension is to compute a balanced k-separator, a set S
such that the removal of S breaks G into k disjoint subgraphs.
We then assign each subgraph to a different part. Again, we
need to decide how to assign the vertices and edges in the
separator. Edges with one endpoint in subgraph Gi should be
assigned to part i. Such a partition is illustrated in Figure 4.

The lower right matrix block corresponds to the separator.
We left it gray because it is not obvious how best to partition
it. Unlike the bisection case, the communication volume can
change depending on how the separator vertices/edges are
assigned. From Theorem 1 it follows that:

Theorem 2. The communication volume in SpMV for a matrix
A and a partition π from a k-separator S, is

V ol(A, k, π) = 2
∑
v∈S

(λ(v)− 1) ,

where λ(v) is the number of parts assigned to edges incident
to v.

This theorem tells us that not only do we want to find small
separators, but also the vertices in the separators should be
connected to as few parts as possible.

C. Nested Dissection Partitioning Algorithm

The communication volume depends not only on the sepa-
rator sizes, but also on the structure of the separators. We seek
separators that are connected to as few parts as possible. We
propose to use recursive bisection. At each bisection, the graph
is split into two subgraphs and a small separator. At the next
level, the separators for the right and left subgraphs are not
connected, so the overall connectivity of separators is limited.
This recursive bisection technique has been effectively used
in many graph and hypergraph partitioning methods [2], [15].

Coincidentally, recursive bisection is the most common
method to produce a k-separator. This procedure is known as
“nested dissection” and has been well studied [16], [17] since
it is important for sparse matrix ordering and factorization.
Our idea is that nested dissection not only produces a small

(a) Generic graph (b) Corresponding matrix

Fig. 5. Graph partitioned using nested dissection and corresponding matrix.
Striped areas in matrix represent nonzeros corresponding to separators in
graph where we have some flexibility in assignment. Gray blocks of nonzeros
correspond to separator-separator edges in the the graph for which we also
have flexibility in assignment.

k-separator but also implicitly reduces the communication
volume by imposing helpful structure in the separators.

The procedure is illustrated in Figure 5 for four parts. We
show the recursive procedure on a generic graph and the
corresponding matrix. The striped and gray areas correspond
to separators and separator-separator edges, respectively. We
have not specified how to partition this data. It is important
to note that it is not necessary to use the nested dissection
ordering to permute the matrix, as shown in Figure 5. We do
this in illustrations to make the partitioning method more clear.

Algorithm 1 summarizes our recursive algorithm. The sub-
routine SEPARATOR finds an α-balanced separator with respect
to the edges (where α = k̂/k). At each level of recursion,
the α-balanced separators are found within a load-imbalance
tolerance of ε/(log k), allowing the overall k-separator to
have the same amount of work (edges) in each subdomain
within the tolerance ε. After the separator S is found, the two
subproblems can be solved independently, possibly in parallel.
This is an advantage of using recursive bisection.

Computing a minimal (balanced) vertex separator is NP-
hard. We do not propose any new algorithms but rather lever-
age existing methods. The most effective separator heuristics
for large, irregular graphs are multilevel algorithms such as
those implemented in METIS [18] and Scotch [19]. It is also
possible to construct vertex separators from edge separators.
This allows the use of graph partitioning software, but the
quality is often not as good as a more direct method. A
third option is to derive a vertex separator from hypergraph
partitioning.

D. Variations

In nested dissection algorithms, there is a choice how to
handle the separator at each level. Say V has been partitioned
into V0, V1, and S, where S is the separator. The question
is whether S should be included in the subproblems or
not. We have chosen not to include the separator vertices
in the subproblems in the recursion since it simplified our
implementation. A complication for us is that if the separator
is not included, additional rules are needed to decide how to
assign vertices and edges adjacent to the separators. However,
this can be advantageous if this flexibility is used properly.

Algorithm 1 Nested Dissection Graph Partitioning
1: procedure NDPARTITION(G, k, ε, i, part)
2: // Input: G = (V,E) (graph of a symmetric matrix)
3: // Input: k (number of parts), ε (allowed imbalance)
4: // Input: i (label for the first part in this bisection)
5: // Output: part (a map of vertices and edges to parts)
6: if k > 1 then . Bisect and recurse
7: k̂ := dk/2e
8: α := k̂/k
9: [V0, V1, S] := SEPARATOR(G,α, ε/(log k)) .

Find α-balanced separator
10: NDPARTITION(G(V0), k̂, ε, i, part(V0))
11: NDPARTITION(G(V1), k − k̂, ε, i+ k̂, part(V1))
12: for each edge e with one vertex, v, in V0 or V1 do
13: part(e) := part(v)
14: end for
15: Assign vertices in S to compatible parts
16: Assign edges with both vi ∈ S to compatible parts
17: else . Base case: assign V,E this part.
18: part(V) := i
19: part(E) := i
20: end if
21: end procedure

Algorithm 1 does not depend on any particular method for
calculating the vertex separators in line 10. In general, smaller
separators will tend to yield lower communication volumes.
The assignment rule in lines 13-15 means that edges between
separator vertices and non-separator (at this level of recursion)
vertices are assigned to the part of the latter, corresponding to
the partitioning shown in Figure 5. However, this rule is not
essential and other partitionings of these edges may give lower
communication cost.

In our current implementation, we assign all the vertices
in a given separator (line 16) to a part in the range of parts
belonging to one half of the subdomain. The half is chosen
to keep the vertex partitioning as balanced as possible. We
assigned each separator vertex to the part of the first traversed
neighbor vertex in the correct range that had already been
assigned a part. This greedy heuristic is not optimal but has
the advantage of being simple to implement and yields better
results than some more complicated heuristics we tried. For
the assignment of edges interior to a separator (line 17), we
assigned these to the part of the lower numbered incident
vertex (a reasonable heuristic but there are other options).

IV. RESULTS

We compare the partitionings of different methods for a
set of eight sparse matrices (summarized in Table I). These
matrices were derived from different application areas with
the first four being used and described in [12] and the last
four obtained from [20].

Below, we compare the communication volume and the
messages sent in the resulting parallel SpMV as well as the
runtimes for several partitioning methods. In particular, we

TABLE I
MATRIX INFO

Name N nnz nnz/N application
cage10 11,397 150,645 13.2 DNA electrophoresis

finan512 74,752 596,992 8.0 portfolio optimization
bcsstk32 44,609 2,014,701 45.2 structural engineering
bcsstk30 28,924 2,043,492 70.7 structural engineering

c-73 169,422 1,279,274 7.6 non-linear optimization
asic680ks 682,712 2,329,176 3.4 circuit simulation
pkustk04 55,590 4,218,660 75.9 structural engineering
gupta3 16,783 9,323,427 555.5 linear programming

compare the implementation of our nested dissection algorithm
with 1D hypergraph partitioning and fine-grain hypergraph
partitioning. Though NP-hard problems, several good codes
for graph and hypergraph partitioning are available, all based
on the multilevel method. We used PaToH 3.0 [2] (called via
Zoltan [21]) as our hypergraph partitioner with an imbalance
tolerance of 3%. For our nested dissection method, we derived
our vertex separators via hypergraph partitioning. We first
apply hypergraph partitioning, then compute a vertex cover
of the resulting boundary graph. This gives a small and
balanced vertex separator for the original graph. This choice
also enables a fair comparison across methods since the code
base is the same for both graph and hypergraph-oriented
algorithms.

All our experiments were run on a linux 64-bit workstation
with four dual-core Intel Xeon processors (though only one
core was used per run) and 16 GB RAM. Additional experi-
ments can be found in [22].

A. Communication Metrics

We partition the eight symmetric matrices shown in Table
I using 1D, fine-grain, and the nested dissection methods
of partitioning for 4, 16, 64, and 256 parts. The average
communication volumes are shown in Table II. For 1D parti-
tioning, we list the total communication volume. For the fine-
grain and nested dissection methods, we list a scaled volume
relative to the 1D volumes (scaled volume less than 1 indicates
an improvement over the 1D method). The 1D column and
nested dissection partition methods had problems obtaining
a balanced partition for some of the partitionings, unlike the
fine-grain method, which by means of its flexibility can always
realize load balance.

We see that our nested dissection method performs con-
sistently better than 1D. When compared to the fine-graph
method, we see for most partitionings that the nested dissec-
tion method yielded similar or better results for six of the eight
matrices. The nested dissection only performed significantly
worse for cage10 and asic680ks.

Communication volume is not the only important metric
when evaluating the quality of a sparse matrix partitioning in
terms of parallel SpMV. The number of messages communi-
cated can be as important or more important if the volume is
low or the latency is high. 1D partitioning of the sparse matrix
yields a parallel matrix-vector algorithm with only one phase

TABLE II
AVERAGE (20 RUNS) COMMUNICATION VOLUME (IN WORDS) AND

AVERAGE MESSAGES SENT (SAME AS RECEIVED) PER PROCESS FOR
K-WAY PARTITIONING OF SYMMETRIC MATRICES. * - DESIGNATES

PARTITIONS THAT DID NOT MEET THE 3% LOAD BALANCE TOLERANCE.

1D fine-grain nested diss.
total scaled scaled

Name k volume msgs vol. msgs vol. msgs
cage10 4 5.38e3 3.0 0.76 6.0 0.82 3.5

16 1.29e4 11.6 0.69 21.4 0.89 15.4
64 2.35e4 20.0 0.70 35.1 0.98 27.7

256 4.08e4 24.2 0.72 36.4 1.03 33.6
finan512 4 2.96e2 2.0 0.88 4.0 0.78 2.0

16 1.21e3 2.0 0.84 4.0 0.77 2.0
64 9.99e3 2.1 0.86 9.3 0.81 2.3

256 3.90e4 6.0 0.68 17.4 0.77 7.2
bcsstk32 4 2.11e3 2.7 0.76 4.7 0.84 3.1

16 7.89e3 4.5 0.80 7.7 0.86 5.3
64 1.99e4 6.1 0.94 10.9 0.91 7.6

256 4.64e4 6.7 1.00 11.7 0.94 8.6
bcsstk30 4 1.79e3 1.6 1.08 3.3 0.78 1.6

16 8.62e3 3.6 1.13 7.6 0.83 4.2
64 2.33e4 5.9 1.10 12.2 0.90 7.6

256 5.61e4 7.3 1.03 16.0 0.98 9.9
c-73 4 4.23e4 2.6 0.04 2.8 0.03 3.0

16 9.99e4 8.3 0.05 11.4 0.05 9.0
64 2.06e5* 21.5 0.07 26.1 0.06 22.9

256 1.71e5* 24.1* 0.23 48.0 0.25* 28.4*
asic680ks 4 3.56e3 3.0 0.51 4.6 0.61 3.5

16 1.00e4 10.8 0.46 19.2 0.61 13.7
64 2.18e4 19.9 0.44 33.5 0.59 25.4

256 3.89e4 21.3 0.49 31.5 0.61 26.7
pkustk04 4 6.61e3 1.6 0.63 4.6 0.53 1.7

16 2.76e4 3.5 0.49 13.5 0.60 4.4
64 7.53e4 8.3 0.42 23.0 0.62 11.5

256 1.62e5 15.3 0.43 26.0 0.56 20.6
gupta3 4 3.01e4 2.9 0.29 5.9 0.19 3.5

16 1.03e5 12.0 0.31 23.9 0.21 15.8
64 3.33e5 39.4 0.27 63.2 0.19 46.5

256 1.11e6* 127.7* 0.17 92.6 0.18* 132.0*

of communication. This results in a low number of messages
in comparison to 2D partitioning methods such as the fine-
grain method. Table II shows the average number of messages
sent (same as average number of messages received) per part
during the resulting SpMV for the 1D column, fine-grain,
and nested dissection partitionings of the eight symmetric
matrices. As expected, the 1D method has consistently the
lowest average number of messages sent per part of the three
methods. The number of messages resulting from the nested
dissection partitions is significantly lower than that of the fine-
grain method for most of the partitionings of the matrices.

B. Partitioning Time

Another important factor in the effectiveness of a partition-
ing method is how much runtime is required to obtain the
partition. The runtimes of partitioning the matrices in Table I
with the different methods are shown in Figure 6. We first scale
the runtimes for each matrix relative to the one-dimensional
column partitioning and k = 4 runtime. Each line in the figures
is the geometric average of the scaled runtimes across the
matrices in the set.

As expected, the 1D method requires less time to partition
the sparse matrices than the 2D methods. In particular, the 1D
method is much faster than the fine-grain hypergraph method

Fig. 6. Geometric average of relative runtimes for matrices in Table I.

but only slightly faster than the nested dissection method.
The nested dissection method is also significantly faster than
the fine-grain hypergraph method. For instance, for the nested
dissection partitionings of the larger matrices, we see up to a
96% decrease in the runtime over the fine-grain partitionings.

V. CONCLUSIONS

We presented a new graph-oriented approach to sparse
matrix partitioning for sparse matrix-vector multiplication.
We also presented a nested dissection partitioning algorithm
that approximately solves our communication graph model.
Although nested dissection has been previously used in several
contexts, this is the first such algorithm and analysis specif-
ically for sparse matrix-vector multiplication. Our method is
fairly simple to implement and provides a nice compromise:
low communication volume, low message count, and it is
relatively fast to compute. We showed our partitioning method
is clearly superior to the traditional 1D partitioning method (up
to 97% reduction in communication volume), and produces
partitions of similar quality to the fine-grain method at a great
reduction in the runtime.

There are several directions for improvement of our algo-
rithm and implementation. First, one could use a better im-
plementation to find vertex separators (e.g., Metis or Scotch),
if good edge balance can be enforced. Second, one can likely
partition the vertices and edges in and around the separators
in a better way. This becomes increasingly more important as
the number of parts grows.

Although our work targeted sparse matrix-vector multiplica-
tion, the partitioning algorithm (data distribution) we presented
can be used in any sparse matrix computation, and may also
reduce communication in parallel graph algorithms. As net-
work data continues to grow in scale, partitioning algorithms
such as the one presented here will be crucial to obtaining
good parallel performance for the resulting graph and sparse
matrix computations, helping to overcome the challenges of
irregular communication and lack of data locality associated
with these challenging sparse computations.

ACKNOWLEDGMENT

We thank Rob Bisseling, Umit Catalyurek, Michael Heath,
and Bruce Hendrickson for helpful discussions. We thank

Florin Dobrian and Mahantesh Halappanavar for providing the
MatchBox matching code used to produce vertex separators.
This work was funded by the US DOE Office of Science
through the CSCAPES Institute and the SciDAC program.

REFERENCES

[1] B. A. Miller, N. Arcolano, M. S. Beard, J. Kepner, M. C. Schmidt,
N. T. Bliss, and P. J. Wolfe, “A scalable signal processing architecture
for massive graph analysis,” in Proc. IEEE Int. Conf. Acoust., Speech
and Signal Process., 2012, pp. 5329–5332.

[2] Ü. Çatalyürek and C. Aykanat, “Hypergraph-partitioning-based decom-
position for parallel sparse-matrix vector multiplication,” IEEE Trans.
Parallel Dist. Systems, vol. 10, no. 7, pp. 673–693, 1999.

[3] B. Uçar and C. Aykanat, “Encapsulating multiple communication-cost
metrics in partitioning sparse rectangular matrices for parallel matrix-
vector multiplies,” SIAM J. on Scientific Computing, vol. 26, no. 6, pp.
1837–1859, 2004.

[4] R. H. Bisseling and W. Meesen, “Communication balancing in parallel
sparse matrix-vector multiplication,” Electronic Transactions on Numer-
ical Analysis, vol. 21, pp. 47–65, 2005.

[5] M. Garey, D. Johnson, and L. Stockmeyer, “Some simplified NP-
complete graph problems,” Theoretical Computer Science, vol. 1, pp.
237–267, 1976.

[6] T. Lengauer, Combinatorial Algorithms for Integrated Circuit Layout.
New York, NY: John Wiley & Sons, 1990.

[7] S. T. Barnard and H. D. Simon, “A fast multilevel implementation of
recursive spectral bisection for partitioning unstructured problems,” in
Proc. 6th SIAM Conf. Parallel Processing for Scientific Computing.
SIAM, 1993, pp. 711–718.

[8] B. Hendrickson and R. Leland, “A multilevel algorithm for partitioning
graphs,” in Proc. Supercomputing ’95. ACM, December 1995.

[9] G. Karypis and V. Kumar, “Multilevel graph partition and sparse matrix
ordering,” in Intl. Conf. Parallel Processing, 1995, pp. 113–122.

[10] Ü. Çatalyürek and C. Aykanat, “A fine-grain hypergraph model for 2d
decomposition of sparse matrices,” in Proc. IPDPS 8th Int’l Workshop
on Solving Irregularly Structured Problems in Parallel, April 2001.

[11] ——, “A hypergraph-partitioning approach for coarse-grain decomposi-
tion,” in Proc. Supercomputing 2001. ACM, 2001.

[12] B. Vastenhouw and R. H. Bisseling, “A two-dimensional data distri-
bution method for parallel sparse matrix-vector multiplication,” SIAM
Review, vol. 47, no. 1, pp. 67–95, 2005.

[13] A. George, M. T. Heath, J. W.-H. Liu, and E. G.-Y. Ng, “Solution of
sparse positive definite systems on a hypercube,” Journal of Computa-
tional and Applied Mathematics, vol. 27, pp. 129–156, 1989.

[14] E. G. Boman, “A nested dissection approach to sparse matrix partition-
ing,” Proc. Applied Math. and Mechanics, vol. 7, no. 1, pp. 1 010 803–
1 010 804, 2007, presented at ICIAM’07, Zürich, Switzerland, July 2007.

[15] K. Devine, E. Boman, R. Heaphy, R. Bisseling, and U. Catalyurek,
“Parallel hypergraph partitioning for scientific computing,” in Proc.
of 20th International Parallel and Distributed Processing Symposium
(IPDPS’06). IEEE, 2006.

[16] A. George, “Nested dissection of a regular finite-element mesh,” SIAM
Journal on Numerical Analysis, vol. 10, pp. 345–363, 1973.

[17] R. J. Lipton, D. J. Rose, and R. E. Tarjan, “Generalized nested
dissection,” SIAM Journal on Numerical Ananlysis, vol. 16, pp. 346–
358, 1979.

[18] G. Karypis and V. Kumar, “METIS 4.0: Unstructured graph partitioning
and sparse matrix ordering system,” Dept. Computer Science, University
of Minnesota, Tech. Rep., 1998, http://www.cs.umn.edu/˜metis.

[19] C. Chevalier and F. Pellegrini, “PT-SCOTCH: A tool for efficient parallel
graph ordering,” Parallel Comp., vol. 34, no. 6–8, pp. 318–331, 2007.

[20] T. A. Davis, The University of Florida Sparse Matrix Collection, 1994,
matrices found at http://www.cise.ufl.edu/research/sparse/matrices/.

[21] K. Devine, E. Boman, R. Heaphy, B. Hendrickson, and C. Vaughan,
“Zoltan data management services for parallel dynamic applications,”
Computing in Science and Engineering, vol. 4, no. 2, pp. 90–97, 2002.

[22] M. M. Wolf, “Hypergraph-Based Combinatorial Optimization of Matrix-
Vector Multiplication,” Ph.D. dissertation, University of Illinois at
Urbana-Champaign, July 2009.

