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Abstract—This paper introduces a 3D-stacked logic-in-memory
(LiM) system to accelerate the processing of sparse matrix data
that is held in a 3D DRAM system. We build a customized content
addressable memory (CAM) hardware structure to exploit the
inherent sparse data patterns and model the LiM based hardware
accelerator layers that are stacked in between DRAM dies for the
efficient sparse matrix operations. Through silicon vias (TSVs)
are used to provide the required high inter-layer bandwidth.
Furthermore, we adapt the algorithm and data structure to fully
leverage the underlying hardware capabilities, and develop the
necessary design framework to facilitate the design space evalu-
ation and LiM hardware synthesis. Our simulation demonstrates
more than two orders of magnitude of performance and energy
efficiency improvements compared with the traditional multi-
threaded software implementation on modern processors.

Index Terms—3D-Stacked DRAM; TSV; Logic-in-Memory;
CAM; Sparse Matrix Matrix Multiplication

I. INTRODUCTION

Graphs are fundamental data structures used in many data
analysis problems (e.g. WWW graph, social networks) [14].
These problems are important enough to support architec-
ture investments to surpass the traditional computing which
has reached the limit for increasing performance without
an increase in power [25], [17]. It is widely accepted to
exploit the duality between sparse matrix and graph to solve
graph algorithms. For example, generalized sparse matrix-
sparse matrix multiplication (SpGEMM) is a key primitive for
graph algorithms such as breadth-first search and shortest-path
algorithms [4]. However, the development of sparse matrix
algorithms poses numerous challenges due to their sparse
and irregular data structures and the low ratio of flops to
memory access. When running them on modern computers,
most of time and energy are spent on moving data rather than
on computation. Further, today’s systems are power limited,
exacerbating the problem.

An effective approach to address these challenges requires
to co-optimize the algorithm, architecture and hardware. As
shown in Fig. 1, we propose a logic-in-memory (LiM) accel-
erated 3D DRAM system that is customized for accelerating
the notoriously hard sparse data problems. The proposed
computing system has logic layers stacked in between DRAM
dies which communicate with each other vertically using
through silicon vias (TSVs) [19], [26]. Facilitated by the sub-
20nm regular pattern construct based circuit design [22], we
dedicate the logic layer by tightly integrating the application-
specific logic with the embedded memory blocks, resulting in

 Slide 1  Slide 1 

App- 

Specific 

Logic 

Memory 

Bitcell  Arrays 

Custom Periphery Logic 

Logic-in-Memory (LiM) Accelerated 3D DRAM Stack 

LiM layer 

DRAM dies 

DRAM dies 
Matrix-Matrix Multiplication  

Algorithm 

Architecture 

Hardware 

Algorithm, Architecture and 

Hardware CO-OPTIMIZATION 

Main  

Memory 

Logic 

CPU 

Local 

Memory 

Logic 

Application-specific Logic in Memory 

Fig. 1. 3D DRAM-LiM Stacked System Optimized for Graph Algorithms.

an 3D-stacked logic-in-memory accelerator layer (i.e., LiM-
layer). The 3D-stacked architecture and its TSV capabilities,
along with the localized application-specific embedded mem-
ory specialization on the LiM layer, can optimize the system
to a level that is impossible with general purpose computing
or configurable hardware computing.

In implementation we fully exploit the rich silicon estate
on the LiM layer and the fast and dense TSVs to hold as
many as active DRAM pages to increase the DRAM cache
capacity [19], [26]. To design the LiM layer in an energy-
efficient manner and minimize the thermal hotspots in the 3D
stack [20], we carefully analyze the inherent data storage and
access patterns that are existing in the algorithms, and build
a logic-enhanced content-addressable memory (CAM) archi-
tecture by taking advantage of its internal parallel matching
capabilities, to accelerate the index alignment of SpGEMM
algorithm [23]. Moreover, we revise the sparse data structure
and algorithm to adequately leverage the customized hardware.

Design co-optimization from algorithm to hardware gives
rise to a huge design tradeoff space. The 3D DRAM modeling
framework is based on the CACTI-3DD for fast design space
exploration [9]. We have also developed an end-to-end LiM
design framework for the automated hardware synthesis of
the customized LiM layer with user control of architectural
parameters [29]. Our experimental results demonstrate orders
of magnitude of performance and energy improvements com-
pared with the multi-threaded software SpGEMM implemen-
tations on modern CPU.

II. SPARSE DATA FORMAT AND SPGEMM ALGORITHM

Efficient implementation of sparse matrix operations re-
quires careful choice of data structures to avoid the storage
and operations on zeros. In our approach, different choices
of sparse data structures and algorithms not only determine
the data distribution in the 3D DRAM, but also the smart
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Fig. 3. 3D DRAM-LiM Stacked Architecture for SpGEMM Implementation.

LiM layer design and the inter-layer data communication. In
this section, we will exploit the suitable SpGEMM algorithms
and the sparse data formats that match to the customized
architecture and hardware characteristics.

We use a 2-dimensional (2D) block data decomposition of
the matrices based on the SRUMMA algorithm [15], which is
modified from the Cannon’s algorithm for distributed memory
architectures [6]. As shown in Fig. 2, the matrix A, matrix
B, and resulting matrix C are tiled into smaller blocks. We
assume each block is n×n-size and has nnz number of non-
zero (nnz) elements. The resulting block C(i, j) is computed
from the ith block row of the matrix A and jth block column
of the matrix B. This sequential block access order preserves
good data locality and minimizes the DRAM row miss. It also
allows an easy-scheduled 3D DRAM access to fully utilize
the TSV bandwidth. However, such matrix decomposition will
cause overhead to store and access the block addresses (e.g.,
block meta-data). In Section IV we will exploit efficient meta-
data storage formats to minimize the overhead cost.

For the multiplication of any two blocks, we use the column-
by-column SpGEMM algorithm introduced in [5]. As shown in
Fig. 4, the basic idea of the algorithm is to compute a column
i of block C as a linear combination of the block A that are
specified by the nonzero elements in the same column i of
the block B, and it constructs one column C at a time. This
algorithm avoids the unnecessary operations of data which is
not at the intersections. The algorithm requires the random
access to columns of the matrix block A, for which we can
use the compressed sparse column (CSC) data storage format
that allows column-wise random access [3]. However, the
CSC format requires space complexity of O(n+ nnz+ nnz)
and the dependency on the matrix block dimension n causes
too much overhead when the matrices get very sparse [5].
Therefore we adopt the doubly compressed sparse column
(DCSC), which was used for hypersparse matrix data storage
when nnz < n [5]. DCSC reduces the space complexity from
O(n) to O(nnz) but still allows column-wise random access.
Besides, we use Coordinate (COO) storage format with the
space complexity of O(nnz) for the second source matrix
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Fig. 4. Intra-Block Column-by-Column SpGEMM Algorithm

block B which allows sequential access in the algorithm [3].

III. 3D-STACKED LIM BASED SPGEMM DESIGN

In this section we will introduce the mapping the SpGEMM
algorithm to the 3D stacked LiM hardware. As illustrated in
Fig. 3, DRAM dies and an enhanced LiM layer are stacked
vertically. To compute each resulting matrix block, we transfer
the entire two source matrix blocks to the LiM layer through
the TVS link. The dense, short, and fast TSVs are able to
transfer the two source matrix blocks to the LiM layer in a few
clock cycles. To match the high throughput requires building
the efficient dedicated hardware on the LiM layer that can
perform equivalently high performance SpGEMM operations.
Next we will first introduce the naive hardware mapping of the
SpGEMM algorithm and then the details of the smart CAM
based LiM design.

A. Naive Hardware Mapping of SpGEMM on LiM Layer

In most software implementations of the column-by-column
algorithm, a heap (priority queue) of size nnz(B(:, i)) is used
to construct the column C(:, i) using the multiway merge [5].
It stores one nonzero element for each intersected columnA,
and repeatedly extracts the minimum row index element for
computation and then inserts the next non-zero element from
the same column [5]. To map the algorithm to the hardware
on the LiM layer, one can implement the heap array using
the SRAM FIFO [12]. However, in a typical dual-port SRAM
design, the heap insert (or delete) operations required to
extract-min incur uncertain delay, resulting in a complicated
datapath pipeline design. Alternatively, one can replace the
SRAM arrays with the shift registers which allows one-cycle
heap operation but at the expense of the hardware cost [21].
In our approach we try to avoid the use of heap to eliminate
both of its latency and cost overhead by slightly revising
the algorithm and directly assembling the resulting column
C using a content addressable memory (CAM) hardware
structure. As we will describe in detail next, the CAM structure
is similar to the sparse accumulator (SPA) used in the current
Matlab algorithm [24]. However, while SPA uses the space and
time complexity of O(n), our CAM structure only uses space
O(nnz) and time complexity of O(flops), thus being more
hardware-friendly in terms of overall cost and performance.

B. Smart CAM-Based SpGEMM LiM Design

The approach stems from the observation that the numerical
values of the non-zero elements are always accompanied with
their row and/or column index information, and the SpGEMM
operations involve intensive index matching operations. Such
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Fig. 6. SpGEMM-CAM Functional Architecture.

unique algorithm characteristics match well to the CAM
architecture, in which each word has an embedded comparator
and data is associated with a key, rather than an address.

Customized CAM design. A CAM is a memory that
implements a parallel comparison or matching function using
dedicated comparison circuitry [23], [18]. It offers a single cy-
cle throughput by simultaneously comparing the input search
data against a table of stored data, and returns the address (or
the active wordlines) of the matched data. We customize the
CAM structure for assembling the resulting matrix C in the
column-by-column SpGEMM algorithm. The CAM array is
used to construct one resulting column C at a time and it is
composed of three parts: an index CAM array to store the row
index of each resulting non-zero element; a data SRAM array
to store its numerical value; and a set of control and arithmetic
logic sitting around the CAM array. There is no need to store
the column indices as they are always the same at a time.

In implementation we revise the column-by-column algo-
rithm by processing the intersected columns of block A one
column after another sequentially until the computation of a re-
sulting column C is finished. Fig. 6 shows the proposed CAM
architecture and the fundamental CAM operations. Assuming
a new arithmetic operation is finished which multiplies a non-
zero element (rowA, valA) with its intersected valB , it results
in an intermediate non-zero element C, valC = valA× valB ,
with row index rowC the same as rowA. Next, CAM first
compares rowC with all the existing index array entries. If it
successfully finds an existing index (e.g., index2) that matches
with rowC , it indicates that valC should contribute to the
same numerical data value2. In this situation, the matched
CAM matchline will automatically activate the corresponding
wordline of the data array, reading out value2, accumulating
with valC , and writing back to the same location. However, in
a different scenario where the CAM fails to match the input

rowC with any of the existing index array entries, a mismatch
signal will be triggered, which will then activate the CAM
decoder (a sequencer) to move its pointer forward by one
step, and store rowC and valC as a new CAM entry. Fig. 5
shows the CAM operations to compute the third column of the
example matrix C, which eventually involves three mismatch
operations and one match operation.

Horizontal CAM and vertical CAM. The proposed CAM
block is used to assemble one resulting matrix column at a
time. In a parallel implementation it requires implementing
multiple CAM blocks on the LiM layer, one for each column
and each CAM block is labeled with the corresponding column
index for identification purpose. Therefore, for each multipli-
cation result, we first need to select the right CAM block based
on its column index. To achieve this, we implement another
orthogonal (vertical) CAM which stores the column indices of
the all the existing (horizontal) CAM blocks and compare them
with the incoming column index simultaneously, identifying
the right one in one cycle. Eventually the resulting CAM
system comprises multiple horizontal CAM blocks and one
vertical CAM block, further improving the throughput.

Overall SpGEMM LiM architecture Fig. 7 presents the
overall diagram of a single SpGEMM core which multiplies
the source matrix block A and B, and assembles the resulting
matrix block C. As we can see, besides the vertical and
horizontal CAM blocks that we described above for assem-
bling the resulting matrix C, there are also another two LiM
blocks, that is, LiM-1 and LiM-2 for the storage and accessing
of the source matrix A and B, respectively. As matrix B is
stored in the COO format, its accessing logic as in LiM-2 is
simply a sequential counter. Overall the LiM-2 outputs the row
index (rowB), which serves as the intersected column index
to search in matrix block A (colA); as well as the column
index (colB), which is the same as colC and to be stored
into the vertical CAM. Matrix block A as in LiM-1 is in
the DCSC format, and it involves five data arrays which are
called AUX, JC, CP, IR and NUM, respectively [5], requiring
smarter logic-in-memory accessing strategies. For example,
the AUX and CP arrays always access two consecutive entries
simultaneously, the difference between which indicates the
range of entries to check in their next data arrays (i.e., JC
and IR). Therefore we implement them using our previous
proposed parallel access memory, which allows to read out
two adjacent SRAM entries in one clock cycle without too
much overhead [28]. The JC array stores the non-zero column
indices, and the access of which requires to search (access
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Fig. 7. Functional Diagram for a Single SpGEMM Core

and compare) the data entries in a pre-determined range
sequentially until the required column index is found. To
achieve this, it has a comparator integrated with the memory
array. If a hit is returned from the comparator, it indicates
that the input column index is found, and then the CP entry
at the same location will be automatically activated, which
points to the location of the intersected non-zero elements of
that column. Otherwise, it continues to search in the JC array
until the required column index is found or the end of the
array is reached. Eventually LiM-1 outputs the row indices
of the intersected elements A (rowA) if they exist, serving
also as rowC , and to be stored into the horizontal CAMs.
LiM-1 and LiM-2 also produce the numerical values valA and
valB , which are multiplied by a floating-point multiplication
unit (fp-mult) and the result (valC) is stored into the SRAM
part of the horizontal CAMs. Moreover, LiM-1 also produces
an enabling signal (cam en) when the intersected elements
are successfully found, and activates the CAM-based LiM-3
which is disabled otherwise. Similarly, each horizontal CAM
is also controlled by an enable signal and only one of them is
activated each time to minimize the power consumption.

The proposed LiM-1 and LiM-2 blocks appear like ordinary
SRAM blocks and provide a “dense” view of the sparse source
matrices, which produce the intersected non-zero elements
to the arithmetic unit continuously; but essentially they have
dedicated logic operations integrated in the memory abstrac-
tion, aiming to identify the intersected non-zero elements
and perform necessary computation before returning the data.
The CAM-based LiM-3 block is also tightly integrated with
the enhanced logic functionalities, including a read-modify-
write unit for CAM match operations as well as a sequential
access decoder for CAM mismatch operations. Eventually it
can assemble one multiplication result at a cycle, significantly
improving the throughput compared with the original heap
based implementations, as we will evaluate in Section IV

LiM design automation framework. The actual LiM
implementation is a large design tradeoff problem that involves
both application and architectural parameters. Moreover, the
fine grained memory-logic-mixing design further increases
the design complexity. LiM is originated from sub-20nm
pattern construct based design [22], from which we have
developed a LiM synthesis tool that can efficiently synthesize
the LiM blocks including both of the memory and the logic
functionalities in one shot [29]. This method facilitates the fast

design space exploration and automated hardware generation.

C. 3D-Stacked DRAM System Modeling

To fully take advantage of the TSV-based 3D DRAM,
we exploit the fine-grained rank-level 3D die-stacked DRAM
architecture [9], which re-partitions the DRAM arrays by
allowing individual memory banks to be stacked in a 3D
fashion. And we used CACTI-3DD, a 3D die-stacked DRAM
modeling tool to explore 3D DRAM design space in terms
of area, power and bandwidth [9]. The design details can be
found in another accompanying work [27]. Here we exploit
one of the optimal 3D-DRAM design points, that is, a 8 Gb
3D-stacked DRAM system composed of four stacked DRAM
dies [2], [13]. Each DRAM die implements 16 banks of DDR3
DRAM and each has a separate 2 KB active row buffer. The
banks within a 3D vertical rank share the 512-bit data TSV
bus [9]. The selected 3D-DRAM design offers 350 GB/s
memory bandwidth at 50% of area efficiency while consuming
12 Watts of power, serving as a suitable 3D-DRAM system
to accelerate the proposed CAM-based SpGEMM design that
balances the performance and cost.

IV. ANALYSIS AND RESULTS

In this section, we will evaluate the proposed CAM-
based SpGEMM implementation based on the 3D DRAM-
LiM stacked architecture, and compare with the conventional
designs. The benchmark matrices are from the University of
Florida sparse matrix collection [10].

CAM design evaluation. The high throughput of a CAM
comes at the cost due to its internal parallel comparisons.
Therefore, it is important to keep the CAM size as small as
possible to save area and power. Fortunately, the sparsity of the
matrix allows to use very small-size CAM blocks. Fig. 8 plots
the required maximum entries of a horizontal CAM from the
SpGEMM experiments of 15 different benchmark matrices.
We see that most matrices only require CAM with less than
64 entries and their sizes further decrease when the block
dimension gets smaller. This is reasonable as theoretically the
horizontal CAM size is determined by the number of non-
zero elements per column of the resulting matrix block. To
better understand the statistical distribution of the CAM sizes,
we simulate near one hundred of benchmark matrices. Fig. 9
(a) and (b) plot the distribution histograms for the maximum
horizontal and vertical CAM sizes required to calculate the
non-zero matrix blocks. Note the y-axis in logarithm scale is
the statistical count of the matrix blocks. We see the CAM
size statistics follow an exponentially declining trend. This
experiment demonstrates that the CAM-based method imposes
little demands for the embedded-memory storage on the LiM
layer, making this approach feasible.

In Fig. 10 we compare the CAM design performance with
the naive heap-based implementation with both CSC and
DCSC formalizations. We measure the cycles per flop, which
is defined as the average clock cycles per arithmetic operation
and less cycles per flop indicates higher utilization of the
computational resources and higher throughput. We see that
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the CAM design consumes about one order of magnitude
less cycles per flop compared with SRAM-based heap design
due to its one-cycle matching capability. While shift register-
based heap design is much more efficient than SRAM-based
design, it still performs worse than CAM. It is also noticed
that the use of DCSC format has an adverse effect on the
performance as it requires an extra search in the JC array
due to its doubly compressed nature [5]. However, in our CAM
design, the JC array search latency can be overlapped with
the CAM operation as we process the intersected columnA
sequentially, which allows us to proceed the DCSC access to
the next intersected columnA simultaneously when we process
the current one. This co-optimization of the algorithm and
hardware delivers extremely high computing throughput.

Data format and block dimension evaluation. Next we
analyze the sparse data storage format and block dimension
choices. Fig. 12 shows that SpGEMM with smaller-size blocks
has increasing data traffic between the LiM layer and the
DRAM dies. If we decompose a matrix into NB×NB blocks,
it is easy to derive that the total data traffic is proportional to
NB . Therefore we see a scaling of two of the data traffic when
we scale the block size (b-size) from 32K×32K, 16K×16K,
to 8K × 8K. On the other hand, the smaller block dimension
saves SRAM and CAM storage on the LiM layer as a trade-
off. One way to alleviate the burden of both is to exploit a
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more efficient data storage format. As seen in Fig. 12, DCSC
data format turns out to be effective especially for a finer 2D
decomposition where the blocks get smaller and sparser.

An overhead cost associated with the 2D block decompo-
sition is the storage and the access of the block meta data
that contains the DRAM address information of each non-zero
block. Due to the sparsity of the source matrices, many blocks
after decomposition are empty and require no operations.
Therefore, the meta data itself can be stored in an extra sparse
matrix of size NB ×NB . Fig. 11 plots the meta data storage
requirement under different data formats. We see that the CSC
and DCSC formats are equally superior to the COO format,
which implies that the meta data matrix is not as sparse as the
data matrix and it is not necessary to use the DCSC format to
avoid its adverse effect on the accessing latency.

Performance and energy evaluation. Next we evaluate
the performance and energy efficiency of the 3D LiM-based
SpGEMM. We run Intel Math Kernel Library (MKL) Sparse
Basic Linear Algebra Subprograms (BLAS) Routines on In-
tel Xeon machines for comparison [1]. We use the Sniper
multi-core simulator integrated with McPAT and the modified
USIMM DRAM simulator for system power evaluation [7],
[16], [8], [11]. Fig. 13 presents the comparison of FLOPS
(FLoating-point Operations Per Second) of the two systems
where we vary the block dimension of the 3D LiM implemen-
tations and the thread counts in Intel MKL implementations.
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We see that the 3D-LiM performance decreases with the
decreasing block dimensions due to the scaling factor of NB in
TSV traffic, and the performance of the software implementa-
tion increases with the increasing thread counts. However, the
3D-LiM performs better in all simulated sceneries. Fig. 14
demonstrates that the proposed 3D LiM design achieves up to
three orders of magnitude power efficiency improvement for
a wide variety of benchmark matrix simulations.

V. CONCLUSION

This paper presents a 3D DRAM-LiM stacked hardware
primitive that targets at accelerating SpGEMM-based sparse
graph problems. The novelty lies in a 3D-stacked DRAM
which offers high bandwidth and low latency data transfer via
TSV and a stacked LiM layer that is customized to the partic-
ular problem through a fine-grain integration of logic, CAM
and SRAM. In addition, we revise the algorithms to match
the underlying hardware and adapt the necessary modeling
and design framework tools. The result is a transparent, power
efficient hardware-accelerated device for notoriously memory-
bound problems. This paper demonstrates that recent cutting-
edge IC design advances create opportunities to build an
extremely energy, power and performance-efficient computing
platform to accelerate data intensive computing.
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