
Efficient Parallel Runtime Bounds Checking
with the TAU Performance System

John C. Linford,
Sameer Shende, Allen D. Malony

ParaTools, Inc.
Eugene, OR

{jlinford,sameer,malony}@paratools.com

Andrew Wissink
U.S. Army Aviation Development Directorate - AFDD

NASA Ames Research Center
Moffett Field, CA

andrew.m.wissink@us.army.mil

Abstract—Memory errors, such as an invalid memory access,
misaligned allocation, or write to deallocated memory, are among
the most difficult problems to debug because popular debugging
tools do not fully support state inspection when examining
failures. This is particularly true for applications written in
a combination of Python, C++, C, and Fortran. We present
a tool that can help identify and debug memory errors in a
multi-language program at the point of failure. Integrated in
the TAU Performance System R©, this debugging tool allocates
pages of protected memory immediately before and after dynamic
memory allocations. Accessing these “guard pages” raises an
error signal that causes TAU to capture performance data at
the point of failure, store detailed information for each frame
in the callstack, and generate a file that may be sent to the
developers for analysis. The tool works on parallel programs,
providing feedback about every process regardless of whether it
experienced the fault, and is useful to both software developers
and users experiencing memory error issues as the file output
may be exchanged between the user and the development team
without disclosing potentially sensitive application data. This
paper describes the tool and demonstrates its application to
the multi-language CREATE-AV applications Kestrel and Helios.
Since those codes are export controlled, we present results
from an analogous code written specifically for testing but with
structure and content derived from Helios and Kestrel. The
analogous performance and debugging data closely match the
data obtained from the CREATE-AV codes.

I. INTRODUCTION

Modern software often incorporates components written
in different languages. These can be native languages (e.g.
C, C++, Fortran), scripting or interpreted languages (e.g.
Python, Java) or other high-level domain-specific languages.
For instance, scientific software often uses scripting languages
such as Python to drive high-level operations while apply-
ing lower-level libraries written in C, C++, and Fortran for
the compute-intensive numerics. Use of this multi-language
paradigm facilitates modular software and enables exchange
of software between different development groups. However,
it also introduces a number of debugging and memory man-
agement complexities.

Memory errors – such as an invalid array index, misaligned
allocation, or read/write to deallocated memory – are among
the most difficult problems to debug. These errors often
manifest long after an erroneous line of code has executed,
causing inexplicable corruptions and crashes that debuggers
cannot unravel. Worse, the program may appear to execute
successfully, leading the user to believe that a corrupt result

is reliable. Memory errors are not only harder to isolate in
multi-language applications, but are more likely to occur due
to different array indexing schemes, type sizes, or other inter-
language inconsistencies. Memory debuggers like DUMA [1],
Guard Malloc [2], Electric Fence [3], and PageHeap [4]
generate core files when such an error occurs, but these files
contain limited debugging information about the program ex-
ecution status, memory profile, process call stack, and system
resources in use at the time and point of failure. Without
the broader multi-language context, it can be impossible to
correctly identify the cause of failure from core files alone.
Valgrind’s Memcheck [5] is highly effective for detecting
memory errors but incurs enormous runtime overhead (30x
or more), making it impractical for long-running programs.
AddressSanitizer [6] is a fast memory error detector with an
average slowdown of only 2x, but it is only applicable to pure
C/C++ applications.

We present a runtime bounds checking (RBC) tool that can
help identify and debug memory errors in a multi-language
parallel program at the point of failure. Integrated in the
TAU Performance System R© [7], this debugging tool intercepts
all dynamic memory allocation calls and allocates pages of
protected memory immediately before and after the allocated
bytes. Accessing these “guard pages” raises a signal that is
handled by TAU. TAU then captures performance data at the
point of failure, stores detailed information for each frame
in the callstack, and generates a file that may be shipped
back to the developers for further analysis. The performance
data includes time spent in code regions, I/O statistics, and
communication and synchronization statistics. The tool works
on parallel programs, providing feedback about every process
regardless of whether it experienced the fault. The memory
errors detected include:

1) Accesses beyond the top or bottom of an array, e.g.
the Nth index of an N-element array in C/C++ or the
0th index of a Fortran array,

2) Mismatched allocation/deallocation functions, e.g. al-
locate with malloc and deallocate with C++ oper-
ator delete,

3) Accesses to a deallocated memory block,
4) Incorrect alignment requests in routines like

posix_memalign,
5) Memory leaks.

The guard page approach is not new [1]–[4], however
this is the first example of a tool that uses this approach to

Ka
Typewritten Text

Ka
Typewritten Text
978-1-4799-1365-7/13/$31.00 ©2013 IEEE

generate a complete performance and debugging analysis of
applications written in multiple languages. Furthermore, the
generated callstack profiles do not contain any of the faulty
application’s memory core, so it is safe to share these files with
developer teams even when the faulty application is processing
proprietary or sensitive inputs. The runtime overhead of this
tool is only 3-4x since invalid memory accesses are checked
in hardware. Compared to binary rewriting memory debuggers
like Valgrind that slow an application by 30x or more, the
guard page approach is highly efficient.

II. DESIGN AND IMPLEMENTATION

TAU is a powerful tool for program performance analysis
and runtime debugging that works well with multi-language
parallel programs. TAU can isolate faults by capturing the
signal associated with a fault and recording the program call-
stack. When an error is detected, TAU manages a graceful exit
of the program while generating files containing performance
and callstack information for every process in the parallel
application. These files are self-contained, portable, and can be
analyzed without access to the executing machine or program
inputs. This approach works well for numerical errors (e.g.,
division by zero) and was used in [8] to identify and resolve
bugs in the CREATE-AV Helios [9] and Kestrel [10] project
codes.

This work extends these debugging capabilities with an
RBC module that records the source location associated with
an invalid memory operation and memory allocation infor-
mation in the application profile. In the event of an error,
TAU will orchestrate a graceful application shutdown, or if the
user has requested it, TAU will attempt to resume application
execution at the point of failure. When the application termi-
nates (with or without error), TAU generates detailed profiles
of the program callstack and program performance for every
process and thread in the application. TAU’s library wrapping
and preloading features make it possible to debug memory
errors in dynamically linked applications without changing the
application source code or recompiling.

Detecting memory errors efficiently requires runtime obser-
vation of memory accesses without modifying the source code
and without incurring high overheads. The general approach
is to “wrap” allocation and deallocation routines such as
malloc, calloc, free, the Fortran keywords ALLOCATE
and DEALLOCATE, and the C++ new and delete operators.
TAU’s RBC module achieves this via a wrapper interposi-
tion library containing customized versions of the allocation
and deallocation routines. These customized versions take
precedence over the system’s implementation and perform
the additional checks and bookkeeping required for RBC.
For dynamic executables, the wrapper interposition library is
dynamically preloaded at runtime. For static executables, the
wrapper interposition library must be linked to the application.

The allocation functions in the wrapper library allocate a
page of memory before and/or after an allocation request and
use the CPU’s memory management unit (MMU) to protect
that page from access. If the program accesses the protected
page, a memory fault traps to a signal handler that accesses
the program counter and attempts to translate the PC value to
a source location via debugging symbol information. TAU will
also associate the violating page reference with the memory al-

Figure 1. Allocation alignment when followed by guard page.

Figure 2. Allocation alignment when proceeded by guard page.

location request. It records the source location associated with
the invalid operation and the memory allocation information
in the profile file. Translating addresses of code residing in
dynamic shared objects (DSOs) requires special care as address
offsets are used in DSOs. TAU maintains its own address map
to identify the full name of the shared object as well as the
executable and the routine name. If debugging symbols have
been stripped from the program, hexidecimal addresses will
be listed in the profile instead of source line numbers and file
names.

When the application experiences a memory error it is
critical to diagnose the problem with respect to the executing
context. Merely reporting the text output of the execution is
rarely sufficient to fix the problem. The developers need to
understand the nature of the exception, where it occurred,
how long the program executed, and the routines invoked
prior to the error. This requires a full view of the execu-
tion state, particularly one that might come from a multi-
language program, to gain a better insight into the program’s
layered workings. In addition, system information such as the
operating system kernel version, the extent of heap memory
utilization, number of cores, and other application specific
parameters are important in fully documenting the error.

To gather this info, we use TAU’s call stack capture
module [8] to unwind and record the call stack of each thread
of execution. Context specific information such as the calling
routine name, file name, and where available, the source line
number for each frame in the program’s call stack are recorded
in the profile. This occurs at runtime, automatically interposing
with the application to generate diagnostics so that addresses of
useful program information are extracted and mapped before
the program terminates and that information is lost. The result
is a complete picture of the application’s execution at the time
of failure.

A. Memory Alignment

The allocation functions in the wrapper library allocate
a “guard page” of memory before and/or after an allocation
and use the MMU to protect that page from access. If the
program accesses the guard page, TAU is alerted via an error
signal. This enables fast array bounds checking, but it brings
hardware constraints. For example, in order to detect invalid
accesses beyond the end of an array, that array must end on the

Figure 3. Gaps between the allocation and its guard pages occur when the
allocation size is not a multiple of the word size.

Figure 4. User-specified alignments may create gaps between the allocation
and its guard pages.

Figure 5. Gaps occur when the allocation size is not a multiple of the page
size and guard pages are placed both before and after the allocation.

boundary of the guard page, which is a word-aligned address.
That is, the starting address of the array must be the address
of the guard page minus the array size as shown in Figure 1.
Similarly, placing the guard page at the beginning of the array
forces the array to begin on a page boundary as in Figure 2.

These forced alignments can create gaps between the array
boundaries and the guard pages where detecting invalid ac-
cesses is expensive. Since most CPUs can only access memory
on a word boundary, memory allocations must be at least
word aligned and may be placed on coarser boundaries for
performance reasons. Therefore, if the application makes a
memory allocation using a size that is not a multiple of the
word size then there is a gap between the end of the array
and the guard page, as in Figure 3. Additionally, allocations
made with explicit alignment specifications via functions such
as memalign and valloc can cause a gap even if the array
size is a multiple of the word size. This is shown in Figure 4.
And finally, if both ends of the array are protected and the
array size is not a multiple of the page size then there is a gap
between the end of the array and the beginning of the guard
page as in Figure 5.

B. Gap Protection

Protecting the gap from invalid accesses is challenging
because accessing the memory in the gap will not trigger the
signal handler and the gap size may be significant. Most x86
and PowerPC systems use 4K pages (SPARC systems support
8K pages) and the gap size may be as large as the page
size minus one byte. Note that Linux hugepages may be up
to 256M in size but enabling hugepages doesn’t change the
default pagesize. The same is true for Solaris large pages, so
though the gap may be relatively large it will not exceed the
minimum page size on the system even in the presence of large
pages.

In order to maintain good runtime performance, we opted
for a compromise between coverage and performance. Invalid
writes are detected by dynamically checking the contents of
all gaps. TAU’s allocation functions fill the gap memory with

a known bit pattern, which the user may specify by setting
an environment variable. When a TAU event is triggered (e.g.
a code region is entered or exited), TAU checks all gaps to
see if the values in the gap have changed. If so, TAU records
a range of line numbers in the application profile indicating
where the invalid write likely originated. TAU cannot directly
detect invalid reads from the gap under this scheme, but since
dynamic allocations must be initialized before being read, it
is likely that TAU will detect an invalid write to the gap
before the invalid read occurs. Also, by choosing a sufficiently
unlikely pattern, gap reads will lead to a program crash which
will trigger the TAU signal handler and produce profile files
containing the same data as would have been recorded if
the invalid read had been detected immediately. Even if the
program does not crash, a sufficiently unlikely fill value will
produce program results that are clearly incorrect.

To improve TAU’s coverage of the memory protection
gaps, we considered a gap protection scheme similar to that
used in Valgrind’s Memcheck [5]. TAU has binary rewriting
capabilities [11], [12] that could make this feature possible.
However, we soon realized that the runtime overhead of
this approach is too costly for long running applications.
Memcheck dynamically checks every memory operation for
correctness, which provides excellent coverage but at the cost
of orders of magnitude runtime performance slowdown. Future
work may pursue this approach for use with short-running
applications.

C. Statically- and Dynamically-linked Applications

TAU’s RBC module supports both dynamically- and
statically-linked executables. Statically linked applications en-
able memory debugging by passing the -optMemDbg flag
to the TAU compiler script used to compile the applica-
tion. For example, a Fortran application will compile with
tau_f90.sh -optMemDbg foo.f90. This will cause
the compiler script to statically link the agent library to the
application so that memory allocation and deallocatin function
calls invoke the corresponding instrumented function.

Dynamically linked applications may enable memory de-
bugging at runtime by launching the application with the
tau_exec tool and passing the -memory_debug flag to
tau_exec, or by passing -optMemDbg to the TAU compiler
as if it were a statically linked application. Launching with
tau_exec has the distinct advantage that the application need
not be recompiled.

D. Overhead Control

Our guard page approach allocates at least two full pages of
memory per allocation call, so there is the potential for severe
memory overhead. To counter this, we have implemented user-
adjustable thresholds for the size of the allocation and the
number of allocations instrumented. These thresholds are set at
runtime to allow iterative tuning of the execution parameters
in the debugging environment. Users control the size of the
memory allocations that should be instrumented by setting
environment variables to specify a range of checked allocation
sizes. If an allocation is made which falls outside that range
then TAU will not allocate the additional protected pages above
and below the allocation, but simply passes through to the
system call. The default behavior is to assume that there are

no limits on the size of the allocation. Since protecting both
ends of the array is most effective when gap protection is
enabled, the default behavior is to protect only the upper end
of the array. Which ends of the array are protected is controlled
by setting environment variables. The default behavior is to
allocate guard pages after each allocation, but not before.

E. Mismatched or Invalid Allocation/Deallocation

A mismatched allocation/deallocation pair occurs when
memory is allocated with one class of function but deallocated
with another. For example, if memory is allocated with a
call to malloc then it must not be deallocated with the
C++ delete[] operator. To detect mismatch bugs, TAU
records which allocation function was used to make each
allocation. When memory is to be deallocated, TAU checks
the compatibility of the allocation function with the called
deallocation function. If the functions are incompatible, TAU
records the source location of the mismatched call in the profile
file.

TAU also checks the arguments of the allocate/deallocate
functions for correctness. For some implementations of the
POSIX library it is legal to call malloc with a size of zero,
but this is often a bug. By default, TAU will record calls to
malloc with zero-size in the profile file as bugs. The user
may set an environment variable to disable this feature.

F. Detecting Accesses to Deallocated Memory

Once a block of memory has been deallocated then ad-
dresses in that block must not be referenced until they are
reallocated. To detect invalid accesses to deallocated memory,
the user may set an environment variable to a nonzero value to
enable free memory protection. When this feature is enabled,
deallocated memory is not returned to the free memory pool
but instead is protected by the MMU so that reads or writes in
the deallocated block will be detected by TAU. Guard pages
for the allocation are deallocated to reclaim memory. This
feature is disabled by default since it can incur high memory
overhead.

III. ANALYSIS

TAU’s new runtime bounds checking features work seam-
lessly with TAU’s traditional performance measurement and
analysis workflow. To demonstrate this, we conducted a per-
formance evaluation of the CREATE-AV codes Helios [9] and
and Kestrel [10]. Helios performs high-fidelity modeling of
rotorcraft aero and structural dynamics, while Kestrel is a high-
fidelity, full vehicle, multi-physics analysis tool for fixed-wing
aircraft. Both Helios and Kestrel use a multi-language software
architecture consisting of components performing different
parts of the multi-disciplinary application – computational fluid
dynamics (CFD), computational structural dynamics (CSD),
six degree of freedom dynamics (6DOF), etc. The different
components are written in different languages (Fortran90, C,
and C++) integrated through a high-level Python-based infras-
tructure. Further details on the implementation and validation
of Helios and details of prior work integrating TAU with Helios
are covered in [9].

We executed the two CREATE-AV codes using tau_exec
with the -memory_debug option on Riptide, an IBM iDat-
aPlex at the MHPCC DSRC. We used the PToolsRTE 0.7

Figure 6. The application profile shows exclusive time in seconds across
Python, C++, and Fortran.

Figure 7. The Context Event Window in ParaProf shows the callpath leading
to the invalid memory access.

Figure 9. Application performance under various performance analysis and
debugging configurations.

Python environment, which supports both pyMPI and mpi4py
executions under TAU. Because Helios and Kestrel are export
controlled codes who’s results require special permission for
public release, we instead present results from an analogous
code written specifically for testing but with structure and
content derived directly from Helios and Kestrel. The anal-
ogous performance and debugging data closely match the data
obtained from the CREATE-AV codes.

TAU records the performance characteristics of the appli-
cation in a performance profile on each application run. The
profile can be analyzed with ParaProf, TAU’s profile visual-
ization tool, as shown in Figure 6. If a fault occurred during
the run, ParaProf will display it in the context event window
as shown in Figure 7 and record the application backtrace.
The amount of dynamic memory allocated at the start and end
of each frame is listed in the context event window. Figure 8
shows the application backtrace across Python, C++, C, and
Fortran, including methods invoked by mpi4py and MPI.

Figure 8. Shown in ParaProf, the application backtrace is gathered when a memory error is encountered. More than one backtrace may be recorded. The
callpath from Python to C++ to Fortran90 is clearly shown. Right clicking on a backtrace entry shows the application sourcecode. The line of code that caused
the memory error has been identified and highlighted.

Figure 9 shows the runtime overhead of using RBC on
128 nodes with each node executing two threads. The mean
application run time is shown as exclusive time spent in the
“.TAU Application” region. From top to bottom, the first (blue)
bar shows run time without any instrumentation or debugging
features enabled. The second bar (red) shows run time with
memory leak detection enabled, but without guard pages. This
incurs an average of 28.53% runtime overhead. The third bar
(green) show run time with guard pages and memory leak de-
tection, incurring approximately 106% overhead. The forth bar
(purple) shows time with TAU source-based instrumentation
and leak detection, and the fifth (orange) bar shows time with
source-based instrumentation, guard pages, and leak detection
for a maximum overhead of 263%. With all of TAU’s memory
debugging features enabled this application is 3.6x slower.
Compared to popular binary rewriting memory debuggers that
slow an application by 30x or more [5], TAU’s RBC module
is highly efficient.

IV. RELATED WORK

The guard page design presented here is similar to that
used in [1]–[4]. These tools use static or dynamic library
interposition to intercept memory allocation and deallocation
calls and allocate protected pages of memory before or after
an allocation. When a guard page is accessed, the tool dumps
the program core. Core files are unwieldy and contain lim-
ited information about the program execution status, memory
profile, process call stack, and system resources in use at the
time and point of failure. Without the broader multi-language
context, it can be impossible to correctly identify the cause of
failure from core files alone.

Valgrind’s Memcheck [5] is a dynamic analysis tool that
verifies every memory read or write at runtime. This approach
is highly effective for detecting memory errors but incurs
enormous runtime overhead, making it impractical for long-
running programs. Programs running with Memcheck are often
30-50x slower, but the diagnostic output from Memcheck is
more informative than a simple core file.

Tools like AddressSanitizer [6] and Dr. Memory [13] use
shadow memory methods to isolate memory bugs. These

methods have proven highly effective with AddressSanitizer
achieving good coverage with only 2-3x runtime overhead. Dr.
Memory incurs 10-15x runtime overhead on average. Shadow
memory methods require binary instrumentation with the best
performance coming from customized compilers. Therefore
these methods are difficult to apply to multi-language applica-
tions involving both interpreted and compiled languages like
Python and Fortran.

Debugging mixed language parallel programs that use
Python is a daunting task. Commercial debuggers such as
TotalView [14], DDT [15], and open source debuggers such
as gdb [16] excel at generating backtraces for compiled ex-
ecutions. It is difficult if not impossible at this time to stop
a program at a breakpoint, and move up or down the frames
traversing Python and C boundaries in the same debugger, and
examining and invoking Python routines and data structures.
Python level entities are visible to performance evaluation tools
that operate at the Python interpreter level. By merging the
backtrace operations traditionally in the debugging domain
with performance introspection, we create a hybrid tool ca-
pable of diagnosing fault information based on performance
instrumentation. Extensive work has been done in the area of
callstack unwinding and sampling-based measurements in the
TAU [7], DyninstAPI [11], and HPCToolkit [17] projects.

V. SIGNIFICANCE TO THE DOD
When application software experiences a runtime failure

or performance problem it is important for concise informa-
tion about the error to be communicated to the development
team. Current solutions are inadequate, particularly for multi-
language applications that use a mix of Python, Fortran, C,
and C++. This leaves a gap in communication between users
experiencing bugs and/or performance issues and the code
development team.

This project delivers a tool that consolidates the execution
data required for diagnostic purposes by utilizing techniques
for comprehensive measurement in the presence of memory
errors. The goals of the project are twofold: first, to develop a
runtime fault reporting tool to assist with debugging multi-
language applications, and second, to close the loop with

developers for more rapid turnaround of bug fixes. Absent
any errors, the tool will report diagnostic information to users
about the computational performance, memory usage, and IO.
Such information is useful for understanding the computational
characteristics of an application and for planning computing
requirements.

The new runtime bounds checking tool addresses security
concerns by avoiding the need for the user to provide the
problem geometry and inputs to the development team di-
agnosing problems. The diagnostic file contains only runtime
information so it is more easily exchangeable to members of
the development team that may not have the requisite permis-
sions to see the problem data. This is particularly important for
the large amount of classified or proprietary work that takes
place within the DoD. The extensions to the TAU Performance
System described in this paper - simplified assessment of
error diagnostics coupled with I/O and memory inspection for
un-instrumented and instrumented applications - expand the
available capabilities, allowing users to ask questions such as:

• Does the application exhibit memory access viola-
tions?

• When and where do these memory violations occur?
• What is the heap memory usage in the application?
• What is the nature (read/write) of the violation and

what is its source location?
• Which processes or threads experienced an error?
• Were there any memory leaks in the application?
• What was the level of nesting of the callstack?
• What was the routine name, source file name, line

number and module name at the fault location?
• What were the performance characteristics of the

application prior to the fault?

VI. CONCLUSION

Debugging memory errors in parallel, multi-language pro-
grams is a daunting task. Exceptional errors can lead to
program failures with little information to deduce causes. More
pernicious memory errors lead to wrong program results. We
have presented a runtime bounds checking tool, developed
inside the TAU Performance System R©, that efficiently detects
and records many common memory errors including out-of-
bounds memory references made by an application. This is
achieved via a scheme of runtime replacement of memory calls
with versions that perform bounds testing with relatively low
CPU overhead. The tool generates valuable diagnostic informa-
tion to help debug why the program crashed and highlight the
first location of the invalid memory access. It shows the source
location associated with each read or write access violation
together with other profile data such as the heap memory usage
and the extent of memory allocation and deallocation. The tool
works well in parallel and multi-threaded programs and was
successfully applied to the CREATE-AV Kestrel and Helios
projects to check potential memory access violations. It is
freely available in the TAU Performance System and licensed
under a BSD style license.

ACKNOWLEDGMENT

This work was supported by the DoD High Performance
Computing Modernization Program (HPCMP) User Productiv-
ity Enhancement, Technology Transfer and Training (PETTT)
program and through support provided by the Air Vehicles
Element of the Computational Research and Engineering for
Acquisition Tools and Environments (CREATE-AV) Program
sponsored by the HPCMP.

REFERENCES

[1] H. Aygün, “D.U.M.A. - Detect Unintended Memory Access,”
http://duma.sourceforge.net/, May 2013.

[2] Apple Corp., “Guard malloc manual page,” https://developer.apple.com,
March 2009.

[3] B. Perens, “efence – electric fence malloc debugger,”
http://linux.die.net/man/3/efence, 1999.

[4] Microsoft Corp., “Gflags and pageheap,” http://msdn.microsoft.com,
July 2013.

[5] J. Seward and N. Nethercote, “Using Valgrind to detect undefined value
errors with bit-precision,” in Proceedings of the USENIX’05 Annual
Technical Conference, Anaheim, CA, USA, April 2005.

[6] K. Serebryany, D. Bruening, A. Potapenko, and D. Vyukov, “Address-
sanitizer: A fast address sanity checker,” in USENIX ATC 2012, 2012.

[7] S. Shende and A. Malony, “The TAU Parallel Performance System,”
International Journal of High Performance Computing Applications,
vol. 20, no. 2, pp. 287–311, 2006.

[8] S. Shende, A. Malony, J. Linford, A. Wissink, and S. Adamec, “Isolating
runtime faults with callstack debugging using TAU,” Proc. HPEC 2012
Conference, 2012.

[9] A. Wissink and S. Shende, “Performance evaluation of the multi-
language Helios rotorcraft simulation software,” in Proceedings of
the DoD High Performance Computing Modernization Program Users
Group Conference. IEEE Computer Society, 2007.

[10] S. A. Morton, B. Tillman, D. R. McDaniel, D. R. Sears, and T. Tuckey,
“Kestrel – a fixed wing virtual aircaft product of the CREATE program,”
in Proceedings of the DoD High Performance Computing Moderniza-
tion Program Users Group Conference. IEEE Computer Society, 2009.

[11] A. R. Bernat, K. Roundy, and B. P. Miller, “Efficient, sensitivity resistant
binary instrumentation,” in Proceedings of the International Symposium
on Software Testing and Analysis (ISSTA), Toronto Canada, July 2011.

[12] D. Barthou, A. Charif Rubial, W. Jalby, S. Koliai, and C. Valensi,
“Performance tuning of x86 OpenMP codes with MAQAO,” in Tools
for High Performance Computing 2009, M. S. Müller, M. M. Resch,
A. Schulz, and W. E. Nagel, Eds. Springer Berlin Heidelberg, 2010,
pp. 95–113.

[13] D. Bruening and Q. Zhao, “Practical memory checking with dr. mem-
ory,” in Code Generation and Optimization (CGO), 2011 9th Annual
IEEE/ACM International Symposium on, 2011, pp. 213–223.

[14] “Memory debugging challenges: How to identify and resolve memory
bugs in parallel and distributed applications.” Rouge Wave Software,
5500 Flatiron Parkway, Suite 200, Boulder, CO 80301, USA, White
Paper, January 2013.

[15] M. O’Connor, “Parallel debugging is easy,” Allinea Software, White
Paper, 2008.

[16] “GDB: The GNU project debugger,” http://www.gnu.org/software/gdb/,
April 2013.

[17] L. Adhianto, S. Banerjee, M. Fagan, M. Krentel, G. Marin, J. Mellor-
Crummey, and N. R. Tallent, “HPCToolkit: Tools for performance anal-
ysis of optimized parallel programs.” Concurrency and Computation:
Practice and Experience, vol. 22, no. 6, pp. 685–701, 2010.

