
1

Integrity Verification for Path Oblivious-RAM
Ling Ren, Christopher W. Fletcher , Xiangyao Yu, Marten van Dijk and Srinivas Devadas

MIT CSAIL, Cambridge, MA, USA
{renling, cwfletch, yxy, marten, devadas}@mit.edu

Abstract—Oblivious-RAMs (ORAM) are used to hide memory
access patterns. Path ORAM has gained popularity due to its
efficiency and simplicity. In this paper, we propose an efficient
integrity verification layer for Path ORAM, which only imposes
17% latency overhead. We also show that integrity verification
is vital to maintaining privacy for recursive Path ORAMs under
active adversaries.

I. INTRODUCTION

Privacy and integrity are two huge concerns in cloud storage
and cloud computing. Privacy requires that an adversary not
learn any information about the user’s sensitive data. Integrity
in storage outsourcing requires that the user’s data is not
tampered with; and in computation outsourcing it requires that
the correct program is correctly executed on the correct input
as the user requests.

In both applications, even if the data is encrypted, access
patterns can leak a significant amount of information [1], [2].
Goldreich and Ostrovsky proposed Oblivious-RAM (ORAM)
algorithms [3] to hide the memory access pattern. There has
been significant follow-up work that has resulted in more
efficient ORAM schemes [4], [5], [6], [7], [8], [9], [10], [11],
[12], [13]. In this paper, we focus on a recent construction
called Path ORAM [14], [15] for its simplicity and efficiency.

An interesting application of ORAM is to improve the
security level of secure processors in cloud computing. Most
previous secure processors—including Intel TXT [16], eXe-
cute Only Memory (XOM) [17], [18], [19] and Aegis [20],
[21]—do not prevent leakage from memory access patterns.
Ascend [22] is a recently-proposed secure processor that uses
recursive Path ORAM to conceal the memory access pattern.
Ascend as described in [22] assumes only passive adversaries
monitoring the Path ORAM and the pin traffic, and therefore
cannot provide integrity of its computation.

In this paper, we show that recursive Path ORAMs without
integrity verification cannot maintain privacy under active
adversaries. Then we present an efficient integrity verification
scheme for (recursive) Path ORAM, which adds only 17%
latency overhead. With our mechanism and certified execution
as described in [23], we can achieve both privacy and integrity
in cloud computing by only trusting Ascend hardware and not
the program or the server.

The rest of the paper is organized as follows: Section II
reviews Path ORAMs. Section III examines Path ORAM
security under active adversaries. Section IV and V present
our integrity verification scheme for single and recursive Path
ORAMs. We evaluate our proposed scheme in Section VI.
Extentions and related work are discussed in Section VII.
Section VIII concludes the paper.

Level L = 3

Level 2

Level 1

Level 0

Leaf 0 Leaf 7Leaf 5

External memory

ORAM interface

Path to leaf 5 Z = 4 blocks

Stash stores up to C blocks

Stash

Position map: address → random leaf

Address
Leaf

1 2 3 …

5 7 0 …

Fig. 1. A Path ORAM for L = 3 levels. Numbers indicate the steps (from
Section II) to access a block mapped to leaf 5.

II. PATH ORAM

We briefly decribe Path ORAM below. Readers can refer to
[15] for details.

Path ORAM organizes the physical external memory as a
binary tree (Figure 1), where each node is a bucket that can
hold up to Z data blocks. The root of the tree is referred
to as level 0, and the leaves as level L. All the blocks are
encrypted with probabilistic encryption. If a bucket has less
than Z blocks, the remaining space is filled with encrypted
dummy blocks.

A client makes requests to Path ORAM via a trusted ORAM
interface. A client is the user in the cloud storage scenario,
and is the secure processor in cloud computing. The ORAM
interface is made up of two main structures, a position map
and a stash. The position map is a lookup table that associates
each data block with a leaf in the ORAM tree. The stash is a
memory that can hold a small number of data blocks at a time.
The external ORAM tree stores an (address, data, leaf) triplet
for each block (with address 0 reserved for dummy blocks).

Path ORAM invariant. At any time, each data block in
Path ORAM is uniformly randomly mapped to one of the 2L

leaves in the ORAM tree via the position map; if a block b is
currently mapped to leaf l, then b must be stored either (i) on
the path from the root to leaf l, or (ii) in the stash (see Figure
1). We also refer to the path from the root to leaf l as path l.

Path ORAM operations. When the client requests a block
b with address u, the ORAM interface performs the following
operations:

1) Look up the position map with u, yielding leaf label l.
2) Read all the buckets along path l. Decrypt all blocks and

add all real blocks to the stash.
3) Return b on a read or update b on a write.

Ka
Typewritten Text
978-1-4799-1365-7/13/$31.00 ©2013 IEEE

2

4) Replace l with a new random leaf l′ (update the position
map).

5) Evict (after probabilistic encryption) as many blocks as
possible from the stash to path l. Fill any remaining space
on the path with dummy blocks.

We will refer to Step 2–5 as access(ORam, l). The path read
and write (step 2 and 5) should be done in a data-independent
way (e.g., from the root to the leaf).

Due to probabilistic encryption, the ciphertexts of all the
blocks on path l will change. The only information revealed
to an observer on access(ORam, l) is the leaf label l. Step 4
guarantees that whenever a block is accessed, the old leaf label
l is replaced by a new random leaf l′. So on each access,
an observer only sees that a random path is read and written
regardless of the address sequence actually requested.

Recursive Path ORAMs. The position map is usually too
large, especially for a processor’s on-chip storage. Recursive
Path ORAMs can address the problem, where we store the
original position map of ORam0 in a second ORAM ORam1.
This trick can be repeated with however many ORAMs needed.
We call ORam0 data ORAM and all the other ORAMs position
map ORAMs.

To be concrete, we give an example with a 2-level recursive
ORAM {ORam0,ORam1}. Suppose each block in ORam1

stores k entries of ORam0’s position map. The steps to access
a block b with address u0 are as follows:

1) Look up ORam1’s position map with u1 = bu0/kc + 1,
yielding leaf label l1.

2) Perform access(ORam1, l1), yielding leaf label l0. Update
l0 to a new random label l′0 in ORam1.

3) Perform access(ORam0, l0) to obtain block b. During the
operation update the leaf label in b’s triplet to l′0.

III. PATH ORAM SECURITY UNDER ACTIVE
ADVERSARIES

Before describing our integrity verification scheme, we first
point out that integrity verification is vital not only to the
correct output of the ORAM interface, but also to the security
of recursive Path ORAMs under active adversaries.

Specifically, we show how an active adversary can launch a
replay attack by tampering with the Path ORAM and forcing
the ORAM interface to behave differently under the following
two access patterns: (a) repeatedly accessing the same data
block, and (b) accessing different data blocks.

We use a 2-level recursive ORAM {ORam0,ORam1} as an
example. The adversary first initializes l∗0, l

∗
1 and P to ⊥. Then

for each ORAM access:
1) The ORAM interface performs access(ORam1, l1) first.

If l1 = l∗1 , go to step 3); otherwise go to step 2).
2) Set P to be path l1 in ORam1 and l∗1 = l1. Carry out

access(ORam1, l1) honestly. When the ORAM interface
performs access(ORam0, l0), set l∗0 = l0 and act honestly.
Wait for the next ORAM access and go back to step 1).

3) Return P to the ORAM interface. The ORAM interface
then performs access(ORam0, l

′
0). If l′0 = l0, guess access

pattern (a); otherwise, guess access pattern (b).
Let Li be the height of the ORami tree (i = 0, 1). Given

a transcript of random leaf labels, for any two consecutive
labels, l1 = l∗1 happens with 2−L1 probability. If the transcript

is long (on the scale of 2L1), then with high probability the
adversary can find l1 = l∗1 somewhere in the transcript. Then
in step 3), the ORAM interface gets P , the snapshot of path l1
before the last path write-back operation (rather than the latest
version of path l1). In this case, if the same block is accessed,
the ORAM interface must get the same leaf label l′0 = l∗0 from
the snapshot. However, if a different block is accessed, l′0 = l∗0
happens with only 2−L0 probability. Therefore, the adversary
distinguishes memory access pattern (a) from (b) with non-
negligible (actually quite high) probability.

A lesson from this attack is that integrity verification cannot
be done in the background. In other words, the ORAM
interface cannot speculatively access ORami before verifying
the leaf label it gets from ORami+1. Security breaks when the
ORAM interface exposes the replayed label (l′0 in the attack).

A single Path ORAM (non-recursive) is not vulnerable to
this attack because its position map is securely stored within
the ORAM interface. Thus a random path, obtained from the
on-chip position map, is read and written on each access.

IV. INTEGRITY-VERIFYING A SINGLE PATH ORAM
Our goal is to verify that data retrieved from Path ORAM

is authentic, i.e., it was produced by the ORAM interface,
and fresh, i.e., it corresponds to the latest version the ORAM
interface wrote.

A naı̈ve solution is to store a Merkle tree [24] in external
memory, where each bucket in the ORAM tree corresponds to
a leaf of the Merkle tree. We note that this scheme would work
with any kind of ORAM, and similar ideas are used in [25]. To
verify a bucket, the ORAM interface loads its corresponding
path and siblings in the Merkle tree and checks the consistency
of all the hashes. This scheme has large overheads for Path
ORAM, because all the (L+ 1) buckets on a path have to be
verified on each ORAM access.

To reduce the integrity verification overhead, we exploit the
fact that the basic operation of both the Merkle tree and Path
ORAM is reading/writing paths through their tree structures.
This idea was first introduced in our prior work [26]. We
present an improved version here.

We create an authentication tree that has exactly the same
structure as Path ORAM (shown mirrored in Figure 2). Let
Bi be the i-th bucket in the ORAM tree, and hi be the
corresponding node in the authentication tree. At a high level,
each hash in the authentication tree depends on its two children
as well as the corresponding bucket in the Path ORAM tree,
i.e., hi = hash(Bi||h2i+1||h2i+2). (Note B2i+1 and B2i+2

are the two children of bucket Bi). The root hash h0 is
stored inside the ORAM interface and cannot be modified by
an adversary. Similiar to a Merkle tree, the security of the
proposed scheme can be reduced to the collision resistance of
the hash function.

However, initially both the ORAM tree and the authentica-
tion tree contain random bits due to the uninitialized memory
state, so the hash will not match. One solution is to initialize
the authentication tree at start time, which involves touching
every node in both trees at least once. To avoid initialization,
we add two one-bit child valid flags to each bucket Bi—
labeled f i

0 and f i
1 and stored in external memory along with Bi

(except f0
0 and f0

1)—representing whether or not the children

3

B3 B4 B6Level 2

Level 1

Level 0

B5

h0 , f0 , f1

Level 0

Level 1

Level 2 h5 = H(B5) h6 = H(B6)h3 = H(B3) h4 = H(B4)

A
u

th
e

n
ti

ca
ti

o
n

 T
re

e

Stash

h0 (stored inside ORAM interface)

 Read/Write

P
at

h
 O

R
A

M
O

R
A

M

In
te

rf
ac

e

Processor pins

Leaf 0 Leaf 1 Leaf 2 Leaf 3

B1 , f0 , f1 1 1

h2

B2 , f0 , f1 2 2

0 0

h1

hi = H(Bi | f0 | f1 | f0 Λ h2i+1 | f1 Λ h2i+2), i = 0, 1, 2i i i i

B0

Fig. 2. Integrity verification of a single Path ORAM.

of bucket Bi have been initialized. Now we can exclude the
uninitialized children from the hash input: if bucket Bi has
been touched before, hi should match

hash(Bi||f i
0||f i

1||f i
0 ∧ h2i+1||f i

1 ∧ h2i+2) (1)

where ‘∨’ and ‘∧’ are logical OR and AND operators, respec-
tively. The leaf hashes only depend on the corresponding leaf
buckets (they have no children or child valid flags).

We say a non-root bucket Bi is reachable, denoted as
reachable(Bi) = 1, if and only if the corresponding child
valid flags equal 1 in all the buckets on the path from the
root bucket to Bi. The root bucket B0 is special since it has
no parent. We let reachable(B0) = f0

0 ∨ f0
1 and initialize

f0
0 = f0

1 = 0. Conceptually, the child valid flags indicate
a frontier in the ORAM/authentication trees that have been
touched at an earlier time. We maintain the invariant that all
reachable buckets have been written to in previous ORAM
accesses, and their corresponding hashes in the authentication
tree should match Equation (1). On each access, only the hash
values for reachable buckets need to be checked.

Now we describe the steps of an ORAM access with the
proposed integrity verification scheme. Following Figure 2, we
give an example access to a block mapped to path l = 2. The
ORAM interface performs the following operations:

1) ORAM path read: read buckets B0, B2 and B5 into the
stash, and child valid flags f2

0 , f2
1 .

2) Read the hashes on path l = 2 and the sibling hashes,
i.e., h1, h2, h5 and h6.

3) Compute reachable(B0) = f0
0 ∨ f0

1 , reachable(B2) =
f0
1 and reachable(B5) = f0

1 ∧ f2
0 . Let J be the set

of reachable buckets on the path, i.e., J = {j|j ∈
{0, 2, 5} s.t. reachable(Bj) = 1}.

4) ∀j ∈ J , compute h′j as in Equation 1.
5) If ∀j ∈ J , h′j = hj , the path is authentic and fresh!
6) Update child valid flags: f2′

1 = f2
1 ∧reachable(B2), f2′

0 =
1, f0′

1 = 1 and f0′
0 = f0

0 ∧ reachable(B0).
7) ORAM path writeback: write back bucket B0, B2, B5,

and f2′
0 , f2′

1 as the new child valid flags for B2.
8) Re-compute h5, h2 and h0; write back h5 and h2.

All data touched in external memory is shaded in Figure 2.
We emphasize that both the hashes along the path of interest

and the sibling hashes should be read into the ORAM interface,
so that in Step 4 the hashes can be computed in parallel. In
summary, on each ORAM access 2L hashes (along the path
and the sibling) need to be read into the ORAM interface and
L hashes (along the path) need to be updated in the external
authentication tree.

Suppose each bucket contains M bits of ciphertext (includ-
ing the randomness used in probabilistic encryption). When
building Path ORAM on DRAM, buckets are usually aligned
to DRAM access granularity of D bits (a typical value of
D is 64 bytes = 512 bits). Then, the remaining space in an
aligned bucket is Q = dM/De ·D −M . Suppose the hash is
V bits long. The remaining space in a bucket can contain up
to t = bQ/V c hashes. The implementation depends on t:

1) If t ≥ 2, we store with each bucket Bi its two child hashes
(i.e., h2i+1 and h2i+2). In this case, integrity verification
does not add storage or communication overhead on top
of Path ORAM.

2) If t = 1, we pack hi along with each bucket Bi. On a
path read, the sibling hashes need to be fetched into the
ORAM interface, adding 1 extra read per bucket. On a
path write-back, only the hashes on the path of interest
are updated, without extra memory accesses.

3) If t = 0, we pack the child hashes with each bucket (as
in the t ≥ 2 case). This adds D bits storage per bucket,
and 1 read and 1 write per access.

Obviously, t ≥ 2 is the ideal situation. Given M,D, V we can
tune parameters (e.g., the block size of position map ORAMs)
to make t = 2 (see Section VI).

V. INTEGRITY-VERIFYING RECURSIVE PATH ORAMS

A direct solution is, of course, to apply the above scheme for
a single ORAM to every ORAM in the recursion. As noted
before, integrity verification for position map ORAMs is on
the critical path: the ORAM interface has to verify that all the
hashes match before reading the next ORAM. The latency of
evaluating a hash function (e.g., SHA-1) often depends on the
length of the input. In this section, we show that the input to the
hash can be significantly reduced for position map ORAMs,
if we use a slightly relaxed but still strong enough security
definition for integrity verification.

Definition 1. An integrity verification scheme for ORAMs
is secure, if no computationally bounded adversary with the
ability to modify ORAMs can with non-negligible probability
(a) change the output of the ORAM interface without being
detected, or (b) learn anything about the memory access
pattern.

The above security definition is weaker than that of hash
trees in the sense that it does not require detecting modifica-
tions to ORAMs that do not change the output of the ORAM
interface. The definition is still sufficiently strong because
under such modifications the client still receives the correct
data from the ORAM interface.

Our main theorem relies on the use of seeds in probabilistic
encryption schemes based on pseudorandom functions.

encryptK(X) = (s,GK(s)⊕X)

4

where G =
{
GK : {0, 1}|s| → {0, 1}|X|

}
is a family of

pseudorandom functions indexed by key K. The length of the
key K is the security parameter. To encrypt a message X , the
encryption module feeds a seed s to GK , and then XORs the
output (as a one-time pad) to X . The ciphertext is the seed s
together with the one-time padded string Y = GK(s)⊕X .

The pseudorandomness of GK guarantees that GK(s) is
indistinguishable from truly random strings. The security of
the encryption also requires that the ORAM interface reuses
the same seed with at most negligible probability (if the same
seed is used in both GK(s)⊕X1, GK(s)⊕X2, then X1⊕X2

would be revealed to the adversary). This can be guaranteed
by using s = BucketCtr||BucketID, where BucketCtr is
a 64-bit counter that is incremented on each access and is
initialized to 0 when a bucket is first accessed.

Given Definition 1, we make the following key observation.

Theorem 1. To get a secure integrity verification scheme
for recursive Path ORAMs, it suffices to integrity-verify data
ORAM and the seeds for position map ORAMs.

Proof outline. The proof of the theorem is based on two
insights. First, data ORAM stores (address, data, leaf) triplets.
If the ORAM interface gets the wrong leaf label from corrupted
position map ORAMs, it can detect that in data ORAM.
Second, since the seeds s are integrity-verified, an adversary
cannot steer the ORAM interface to re-using the same seed
with the same key. If the seeds in position map ORAMs are
fresh and authentic, any ciphertext produced by an adversary
will decrypt into random bits. In that case, the ORAM interface
will behave indistinguishably—always accesssing a random
path in each ORAM—and the adversary cannot learn anything
about the access pattern. We will prove these two insights as
lemmas.

Consider a recursive Path ORAM with H levels
(ORami)

H−1
i=0 , where ORam0 is the data ORAM. From a

client’s view, the ORAM interface takes in a sequence of
addresses u = (uj)

m
j=1, and outputs a sequence of blocks

b = (bj)
m
j=1, where m is the total number of accesses, and

is polynomial in the security parameter. From an observer’s
view, the ORAM interface exposes a leaf label (accesses a
path) for each ORAM in the recursion. Let lij be the path
read and written for ORami on the j-th ORAM access, where
i ∈ {0, 1, · · · , H − 1}, j ∈ {0, 1, · · · ,m}.

We can regard all the position map ORAMs combined
as PosMap, which takes the address sequence u as input,
and returns to the ORAM interface a sequence of leaf labels
l0 = (l0j)

m
j=1 for accessing the data ORAM. For convenience,

we denote l0 = PosMap(u) as the correct leaf labels re-
turned by the original (unmodified) position map ORAMs, and
l0′ = PosMap′(u) as the leaf labels returned by the modified
position map ORAMs.

Lemma 1. Given ORam0 is authentic and fresh, if ∃j where
PosMap′ yields l0′j 6= l0j , then the ORAM interface will detect
this when accessing ORam0.

Lemma 2. Given the seeds are authentic and fresh, whichever
way an adversary tampers with any ORami, 1 ≤ i ≤ H − 1,
from the view of the adversary li′j is computationally indistin-
guishable from uniformly random for any i, j.

Proof of Lemma 1: We show that the ORAM interface
can detect the first time (the smallest j) that l0′j 6= l0j ,
which is sufficient to prove the lemma. Since data ORAM is
authentic and fresh (it is integrity-verified using the method in
Section IV), the Path ORAM invariant guarantees that a triplet
(bj , uj , l

0
j) is stored somewhere along path l0j in the ORam0

tree or in the stash. If due to the wrong output of PosMap′, the
ORAM interface performs access(ORam0, l

0′
j), then either:

1) block bj is not found along path l0′j or the stash, and the
ORAM interface knows l0′j is wrong;

2) block bj is found in the stash or on the common subpath
of path l0′j and path l0j , the ORAM interface compares l0′j
with the leaf label stored in the triplet and finds l0′j 6= l0j .

In either case, the ORAM interface detects that the position
map ORAMs have been modified.
Proof of Lemma 2: First note that lH−1′j , the path read/written
in the smallest ORAM, is stored securely inside the ORAM
interface, so it is uniformly random.

Leaf labels for the other ORAMs, li′j (i < H − 1),
are produced during the execution of PosMap′. Suppose the
original leaf label lij is part of a block X in ORami+1. By
[X] we denote the restriction of X to the bits that represent
the leaf labels for ORami; this excludes the address and leaf
for X itself in the triplet X . At any time, [X] is uniformly
random1 because it always contains fresh leaf labels. (Recall
that whenever a leaf label is used in ORAM operations, it will
be replaced with a new random one). So the same restriction
of the ciphertext [Y] = [GK(s)⊕X] = [GK(s)]⊕ [X] is also
uniformly random, and statistically independent from [GK(s)].
An adversary can change Y to Y ′. Since Y ′ only depends on
Y , [Y ′] and [GK(s)] are also statistically independent. The
seed s is authentic and fresh, so the ORAM interface decrypts
Y ′ into X ′ = GK(s)⊕ Y ′. Now we have GK(s) is computa-
tionally indistinguishable from uniformly random strings and
is statistically independent from [Y ′], so the resulting [X ′] and
li′i (one of the leaf labels in [X ′]) are also indistinguishable
from uniformly random strings.

Lemma 1 states that the ORAM interface can detect any
wrong leaf label it gets from PosMap′ when it accesses the
authentic and fresh data ORAM. Note that Lemma 1 does not
preclude the possibility that PosMap′, though modified, still
gives the correct leaf label l0j . We emphasize that the client
will still get the authentic and fresh data from the ORAM
interface in this case.

Lemma 2 states that as long as the seeds are verified, the
paths accessed for each ORAM in the recursion by the ORAM
interface will be computationally indistinguishable from uni-
formly random, regardless of how an adversary tampers with
the rest of the contents in position map ORAMs. In the proof
of Lemma 2, it is important that the seeds are verified. If s
can be tampered with, then X ′ may not be GK(s)⊕ Y ′. The
attack in Section III takes advantage of this security hole.

Combining the two lemmas completes the proof of Theorem
1 and the security of our proposed scheme.

1In practice, [X] may be generated by some pseudorandom number
generator. Then statistical independence in the proof becomes computational
independence, and the lemma still holds.

5

1500

2500

3500

4500

12 36 60 84 108

R
ec

u
rs

iv
e

P
at

h
 O

R
A

M

La
te

n
cy

 (
C

yc
le

s)

Position map ORAM block size

hit latency w/o IV ready latency w/o IV

hit latency with IV ready latency with IV

Fig. 3. Integrity verification overhead for 8GB recursive Path ORAMs using
different position map ORAM block size. Each Path ORAM in the recursion
uses Z = 3 and 50% dummy blocks.

VI. EVALUATION

We evaluate our integrity verification assuming Path ORAM
is implemented on commodity DRAM. We use DRAMSim2
[27], a publicly available, open source JEDEC DDRx memory
system simulator, which models memory controllers/channels,
DRAM banks/ranks. Assuming data ORAM is 8 GB with 50%
utilization (resulting in 4 GB working set) and has a 128-byte
block size, the best configuration in [26] uses Z = 3 and a 32-
byte block size for position map ORAMs, which we take as the
baseline. Following [26], we assume four independent channels
and use DRAMSim2’s default DDR3 micron configuration
with 16-bit device width, 1024 columns per row in 8 banks,
and 16384 rows per DRAM-chip. We also assume CPU
frequency is 4× that of DDR3. We use the SHA-1 hash (160
bits) and assume an 80-cycle latency of hashing 512 bits and
a 50-cycle encryption/decryption latency.

[26] has explored the design space of recursive Path ORAMs
without integrity verification. With integrity verification, the
optimal configuration of recursive Path ORAMs differs from
what’s proposed in [26]. We can tune position map ORAM
block size to make space for the two child hashes in each
bucket. Figure 3 gives the latency overhead of integrity-
verifying recursive Path ORAMs with different position map
ORAM block sizes. Hit delay is the latency to return data
(when path reads for all ORAMs and decryption finish); ready
delay is the time until Path ORAM can be accessed again
(when path write-back for all ORAMs finish). With integrity
verification the optimal position map block size is 80 bytes.
It increases hit delay by 17.4% and ready delay by 16.9%,
compared with the baseline. If we continue using a 32-byte
position map block size, integrity verification increases hit
delay by 26.3% and ready delay by 20.7%.

Theorem 1 enables us to reduce the hash input for position
map ORAMs, from the entire bucket to just a seed, besides
two child hashes. If we use 128-bit seeds and SHA-1 hash,
the reduced hash input is 128 + 2 × 160 = 448 bits, less
than the 512 bit SHA-1 input chunk, so we pay only one
SHA-1 latency regardless of the bucket size in position maps
ORAMs. Without this optimization, 80-byte blocks with Z =
3 will form 240-byte buckets. Adding two child hashes, the
hash input is at least 280 bytes (more than 4 × 512 bits). It
would take at least 240 cycles to hash them. This would add
160 × 2 = 320 cycles (there are 2 position map ORAMs),
which is a 15% additional latency overhead for hit delay and
9% for ready delay.

VII. DISCUSSION AND RELATED WORK

A. Child Valid Flags

In our integrity verification scheme (Section IV) we propose
using child valid flags to avoid initializing the authentication
tree. This trick is also important for distinguishing real blocks
from dummy blocks in the Path ORAM tree. Define Path
ORAM utilization to be the ratio between the number of
real blocks and the number Z · (2L+1 − 1) of total blocks
in ORAM. Experiments in both [14] and [26] have shown
that the utilization of Path ORAM should not be set too high.
Otherwise we will need either a very large stash or lots of
dummy accesses. However, if initially the external ORAM tree
contains random bits, these random bit strings, interpreted as
ciphertexts, may decrypt into legitimate-looking real blocks.
So Path ORAM begins with an unpredictable utilization. This
problem looms large when dummy blocks are just identified
with a special address (e.g., all zero) as in [26]: in this case,
almost all random ciphertexts will decrypt into real blocks.

The child valid flags can address this problem and avoid
the need for initialization. We stored the child valid flags
along with each bucket. When a path is accessed, the ORAM
interface reads the path from the root towards the leaf. Before
reading bucket Bi, it first computes reachable(Bi) in the same
way as Step 3 in Section IV. As soon as it finds an unreachable
bucket, the rest of the path must be unreachable and does not
need to be read. The ORAM interface updates the child valid
flags on the path write-back as it does in Section IV.

B. Extending Theorem 1 to Other Encryption schemes

In the proof of Lemma 2 and Theorem 1, we restrict the
probabilistic encryption schemes to those based on pseudo-
random functions and one-time pads. In practice, we can use
AES counter mode. We can also extend our proof to any prob-
abilistic encryption schemes that have the desired property:
any ciphertexts produced by the adversary will decrypt into
random bits. It requires an encryption scheme to have some
verified randomness to defeat the replay attack in Section III.
For example, we can use the following keyed AES:

encryptK(X) = (AESK(K ′), AESK′(X))

where K ′ is a random key (playing the role of a seed) and is
verified.

C. Extending Theorem 1 to Background Evictions

For the original Path ORAM proposed in [14], [15], each
ORAM in the recursion always returns results with a public
and pre-determined latency and this is implicitly assumed in
the proof of Theorem 1.

But Path ORAM has a probability of stash overflow. [15]
proves that the overflow probability is negligible for Z ≥ 8.
To prevent stash overflow for small Z, which has better
performance, [26] proposes background eviction. Background
eviction slowly empties the stash using dummy accesses. It
does not affect security since dummy accesses are indistin-
guishable from real accesses: both read/write random paths.
However, background eviction introduces a timing channel

6

to Path ORAM. Path ORAM now returns results with an
uncertain latency, depending on the state of the stash.

With background eviction, Theorem 1 is still correct: it still
guarantees that the ORAM interface yields the correct output
and that an adversary cannot learn anything about the access
pattern. But an active adversary may be able to ‘slown down’
Path ORAMs, if it can turn some dummy blocks into real
blocks to increase ORAM utilization. A higher utilization will
cause more dummy accesses and increase the average latency
of Path ORAM when background eviction is used.

If we want to include “correct latency” in Definition 1, we
can simply use a larger Z without background eviction. An-
other solution is to issue dummy accesses at a fixed rate, which
eliminates the timing channel of Path ORAM. The advantage
of this approach is that we can still use the aggressive settings
if dummy rate is set appropriately; the downside is that we no
longer have the guarantee that the stash will never overflow.

D. Related Work
Merkle trees (or hash trees) were proposed in [24] as a

means to efficiently verify and update the signature of large
documents. Aegis is the first secure processor to provide
integrity verification for normal insecure memory (DRAM).
It adopts the efficient memory integrity verification scheme
proposed in [28], where the hash tree is cached. However,
such optimizations were based on the locality in neighboring
memory accesses, and therefore do not work for Path ORAM
because Path ORAM shuffles the memory and always accesses
random locations throughout the entire memory.

VIII. CONCLUSION

We have proposed an efficient integrity verification method
for Path ORAM. Our integrity verification only increases Path
ORAM latency by 17%.

REFERENCES

[1] M. Islam, M. Kuzu, and M. Kantarcioglu, “Access pattern disclosure on
searchable encryption: Ramification, attack and mitigation,” in Network
and Distributed System Security Symposium (NDSS), 2012.

[2] X. Zhuang, T. Zhang, and S. Pande, “HIDE: an infrastructure for
efficiently protecting information leakage on the address bus,” in
Proceedings of the 11th ASPLOS, 2004.

[3] O. Goldreich and R. Ostrovsky, “Software protection and simulation on
oblivious rams,” in J. ACM, 1996.

[4] R. Ostrovsky and V. Shoup, “Private information storage (extended
abstract),” in STOC, 1997, pp. 294–303.

[5] R. Ostrovsky, “Efficient computation on oblivious rams,” in STOC,
1990.

[6] I. Damgård, S. Meldgaard, and J. B. Nielsen, “Perfectly secure oblivious
RAM without random oracles,” in TCC, 2011.

[7] D. Boneh, D. Mazieres, and R. A. Popa, “Remote oblivious
storage: Making oblivious RAM practical,” Manuscript,
http://dspace.mit.edu/bitstream/handle/1721.1/62006/MIT-CSAIL-
TR-2011-018.pdf, 2011.

[8] M. T. Goodrich, M. Mitzenmacher, O. Ohrimenko, and R. Tamassia,
“Privacy-preserving group data access via stateless oblivious RAM
simulation,” in SODA, 2012.

[9] E. Kushilevitz, S. Lu, and R. Ostrovsky, “On the (in)security of hash-
based oblivious RAM and a new balancing scheme,” in SODA, 2012.

[10] P. Williams and R. Sion, “Round-optimal access privacy on outsourced
storage,” in CCS, 2012.

[11] M. T. Goodrich, M. Mitzenmacher, O. Ohrimenko, and R. Tamassia,
“Practical oblivious storage,” in CODASPY, 2012.

[12] E. Shi, T.-H. H. Chan, E. Stefanov, and M. Li, “Oblivious ram with
o((logn)3) worst-case cost,” in Asiacrypt, 2011, pp. 197–214.

[13] E. Stefanov, E. Shi, and D. Song, “Towards practical oblivious RAM,”
in NDSS, 2012.

[14] E. Stefanov and E. Shi, “Path O-RAM: An Extremely Simple Oblivious
RAM Protocol,” Cornell University Library, arXiv:1202.5150v1, 2012,
arxiv.org/abs/1202.5150.

[15] E. Stefanov, M. van Dijk, E. Shi, C. Fletcher, L. Ren, X. Yu,
and S. Devadas, “Path O-RAM: An Extremely Simple Oblivious
RAM Protocol,” Cornell University Library, arXiv:1202.5150v2, 2013,
arxiv.org/abs/1202.5150, to appear in CCS 2013.

[16] D. Grawrock, The Intel Safer Computing Initiative: Building Blocks for
Trusted Computing. Intel Press, 2006.

[17] D. Lie, J. Mitchell, C. Thekkath, and M. Horowitz, “Specifying and
verifying hardware for tamper-resistant software,” in Proceedings of
the IEEE Symposium on Security and Privacy, 2003.

[18] D. Lie, C. Thekkath, and M. Horowitz, “Implementing an untrusted
operating system on trusted hardware,” in Proceedings of the Nineteenth
ACM Symposium on Operating Systems Principles, 2003, pp. 178–192.

[19] D. Lie, C. Thekkath, M. Mitchell, P. Lincoln, D. Boneh, J. Mitchell, and
M. Horowitz, “Architectural Support for Copy and Tamper Resistant
Software,” in Proceedings of the 9th Int’l Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS-
IX), November 2000, pp. 168–177.

[20] G. E. Suh, D. Clarke, B. Gassend, M. van Dijk, and S. Devadas,
“ AEGIS: Architecture for Tamper-Evident and Tamper-Resistant
Processing,” in Proceedings of the 17th ICS (MIT-CSAIL-CSG-
Memo-474 is an updated version). New-York: ACM, June
2003. [Online]. Available: http://csg.csail.mit.edu/pubs/memos/Memo-
474/Memo-474.pdf (revised one)

[21] G. E. Suh, C. W. O’Donnell, I. Sachdev, and S. Devadas,
“Design and Implementation of the AEGIS Single-Chip Secure
Processor Using Physical Random Functions,” in Proceedings of the
32nd ISCA’05. New-York: ACM, June 2005. [Online]. Available:
http://csg.csail.mit.edu/pubs/memos/Memo-483/Memo-483.pdf

[22] C. Fletcher, M. van Dijk, and S. Devadas, “Secure Processor Architec-
ture for Encrypted Computation on Untrusted Programs,” in Proceed-
ings of the 7th ACM CCS Workshop on Scalable Trusted Computing,
Oct. 2012, pp. 3–8.

[23] C. W. Fletcher, “Ascend: An architecture for performing secure
computation on encrypted data,” in MIT CSAIL CSG Technical
Memo 508 (Master’s thesis), April 2013. [Online]. Available:
http://csg.csail.mit.edu/pubs/memos/Memo-508/Memo-508.pdf

[24] R. C. Merkle, “Protocols for public key cryptography,” in IEEE Sym-
posium on Security and Privacy, 1980, pp. 122–134.

[25] J. R. Lorch, J. W. Mickens, B. Parno, M. Raykova, and
J. Schiffman, “Toward practical private access to data centers
via parallel oram.” IACR Cryptology ePrint Archive, vol. 2012, p.
133, 2012, informal publication. [Online]. Available: http://dblp.uni-
trier.de/db/journals/iacr/iacr2012.html#LorchMPRS12

[26] L. Ren, X. Yu, C. Fletcher, M. van Dijk, and S. Devadas, “Design
space exploration and optimization of path oblivious ram in secure
processors,” in Proceedings of the Int’l Symposium on Computer
Architecture, June 2013, available at Cryptology ePrint Archive, Report
2012/76.

[27] P. Rosenfeld, E. Cooper-Balis, and B. Jacob, “Dramsim2: A cycle
accurate memory system simulator,” Computer Architecture Letters,
vol. 10, no. 1, pp. 16 –19, jan.-june 2011.

[28] B. Gassend, G. E. Suh, D. Clarke, M. van Dijk, and S. Devadas,
“Caches and Merkle Trees for Efficient Memory Integrity Verification,”
in Proceedings of Ninth International Symposium on High Performance
Computer Architecture. New-York: IEEE, February 2003.

