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« Background

—Ascend secure processor
—Path ORAM

 Motivation

* Integrity verification for Path ORAM



i  Privacy & Integrity in Cloud i ccan.

« Context: cloud computing

* Privacy: user’s data not leaked to anyone

* Integrity: computation is done correctly (user gets P(x))




Mir Secure Processors A conn

Address
K | Trusted 165
processor
v
User data decrypted inside Data can be encrypted
and computed in the clear but address cannot
+ Integrity (e.g. Aegis) Integrity?

— Leakage through address/timing/power  Privacy?



MiiT Leakage through Addresses

[ o

1
' fori=1toN :
L if (x==0) :
. 1
! sum += A[i] | > Address sequence: 0x00, 0x01, 0x02 ...
! else !
| sum += A[0] ! ——> Address sequence: 0x00, 0x00, 0x00 ...

* Previous work [HIDE, NDSS12] has shown access pattern
leakage in practical applications

 Addresses can be monitored by software



Mir Ascend secure processor 5 con

« Existing secure processors (e.qg., XOM, Aegis)
+ Can provide integrity

 Ascend: terminate leakage over above channels
— 1/0O channel: Oblivious RAM

— Timing and power channel ...

Address

)

Data
I Power @ Timing @




iy Oblivious RAM (ORAM) A s

* Hide access pattern
— Read vs. write
— Make all address sequences indistinguishable

* Naive ORAM
— Read/write the entire memory on each access
— Probabilistic encryption = everything always changes
— O(N) overhead, N = # of data blocks (cache lines) in the memory

scan the entire
memory

addr 1)
Ascend «— o
mem[addr] @




IHir Path ORAM

« Path ORAM
— One of the most efficient ORAMs, simple

 External DRAM structured as a binary tree
— Each node contains Z blocks (Z=1 in the example below)

path 0 1 2 3

. DRAM
|
: root
|
ORAM controller | Block3
! /\
Position map | BlockO Block2
|
Stash | PN /\
: dummy dummy dummy Block1
:
|
|



Path ORAM

* Position Map: map each block to a random leaf

* Invariant: if a block is mapped to a path, it must be on
that path or in the stash

— Stash: temporarily hold some blocks

ORAM controller

Stash

Position Map

Block
B0
B1
B2
B3
B4

Path

0

= N N &

(B4, 1)

DRAM

root
(B3, 2)

(BO, 0)

(B2, 2)

dummy

dummy dummy

(B1, 3)

path 0

1 2

3




Mir Path ORAM Operation L

 Access Block 1 PosMap(B1)=3

— Read all blocks on path 3
O(L) = O(log(N))

— Write as many blocks as possible back to path 3

— Remap B1 to a new random path

ORAM controller

|
|
|
Stash dummy : root
(B1,1) (B4,1) | (B3, 0)
|
Position Map ! /\
Block Path I (B0, 0) (B2, 3)
|
B0 0 | /\
B1 3 ; : /d\ : >
ummy ummy ummy ;
B2 3 ;
B3 0 : path 0 1 2 3
B4 1 | 10



Uiy Path ORAM Security L

A random path is read/written on every access

— Extracted from PosMap, which is always random and

fresh due to remapping

* All ciphertexts on the path always change

— Due to probabilistic encryption
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Mir Recursive Path ORAM L -

 Problem: Position map too large

» Solution: Recursion
— Trade off latency for smaller position map

« Ascend has 3~4 ORAMSs in the recursion

Conmno

Data ORAM

Block Path

Block Path

N~ :

4 GB 93 MB 2 MB 43 KB
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* Motivation for Path ORAM integrity

* Integrity verification for Path ORAM
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liT Motivation: Ascend Integrity A% ccun.

Ex(x), P

“ - ” AscendJ
r = P(x)
Ex(r)
Verifyg (s, P || x||7) s = MACk(P [[ x [| )

 Certified execution protocol: message authentication
code (MAC) for P, x,r

* Verify the integrity (freshness, authenticity) of external

memory
— Aegis verifies DRAM. Ascend has to verify Path ORAM
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Mir Another Motivation A conn

 Recursive Path ORAM’s privacy is broken without

integrity verification when attackers can modify ORAM

— Revert PosMap ORAM s to force reuse of old leaf labels 55

 So we need to verify Path ORAM integrity

— To maintain privacy of recursive Path ORAM

— To achieve integrity in Ascend

15



Ul Outline AL eane

* Integrity verification for Path ORAM
—Verify one Path ORAM

— Verify recursive Path ORAM
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lMlifr Background — Merkle Signature

* General, can be used for any document, any ORAM
 Efficient 0(L) = 0(log(N))
« Security reduced to collision-resistant hash function

Any Document:

Top hash

T~

Hash 4

N

Hash 5

AN

Hash O Hash 1 Hash 2 Hash 3
Chunk 0| |Chunk 1 Chunk 2| |Chunk 3
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Mii" Merkle Signature for Path ORAM? (2 s

« ORAM hides access pattern

- (pretend to) verify all buckets on a path

- 0(L?) complexity
— Path ORAM 0(L) complexity

BO

Path ORAM

Top hash

BO

B2

B3| |B4




« Combine Merkle tree and Path ORAM tree

free Hash 1 Hash 2
Hash 3 Hash 4 Hash 5 Hash 6
f 1
Bucket 0
|
Path ORAM T
Tree Bucket 1 Bucket 2
Bucket 3 Bucket 4 Bucket 5 Bucket 6
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Mir Verify one Path ORAM Ey -

O(L)
free Hash 1 Hash 2
Hash 3 Hash 4 Hash 5 Hash 6
T
Path ORAM
Tree Bucket 1

Bucket 3 Bucket 4 Bucket 6
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MliT  Verify Recursive Path ORAMs  (iitf.....

* Apply the scheme to every ORAM in the recursion

« Can we do better?
— Hash latency « hash input. Reduce hash input?

Yes, we only need to integrity-verify data ORAM and
the seeds in position map ORAMs.

Pseudorandom generator (PSRG) 1r = G(s)
— Seeds  Secretkey K
— Qutput r looks random to anyone who does not know K

[ ]

Probabilistic encryption based on PSRG
— To encrypt X, choose new s

— Y=0Gg(s)®X ciphertext (s,v) €9 AES counter mode

21



Hash O

Hash 1

128 ~ 512 Bytes

el

Data ORAM

Hash 2

TN

T T~

A

PosMap ORAMs

Hash O

Hash 5 Hash 6

Hash 1

Bucket 0

Bucket 2

Hash 2

TN

Hash 5

Hash 6

Seed 0

64 bits

Seed 2
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Mir Proof

* Only intuition here, details in paper.

« PosMap ORAMsSs just yield a leaf label for data ORAM

— (block, leaf label) tuple

— If PosMap ORAM returns a wrong leaf label for data ORAM, it will be
detected if compared with the verified leaf in data ORAM

* Verify seeds to thwart the replay attack

(B3, 2)

/\

(BO, 0) (B2, 2)

N N

(B1, 3)
path 0 1 2 3 23




Mir Evaluation A conn

« Setup
— 4 GB ORAM, 128 Byte block, three ORAMs in recursion
— SHA-1 hash and AES-128 encryption

— Built on commodity DDR3

« Our integrity verification adds 17% latency on top of
recursive Path ORAM

— 35% if verifying everything in PosMap ORAMSs

— 3x worse if directly using Merkle signature

24



Uy Contributions AL eane

* Recursive Path ORAM is insecure w/o integrity verification
* An integrity verification scheme with only 17% overhead

« Ascend + verified Path ORAM + certified execution -
privacy and integrity in cloud computing by trusting only
hardware (not trusting any software)

Thank you! Questions?
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A cann i

Backup




Mir Another Motivation A conn

 Recursive Path ORAM is broken when attackers can
modify ORAM

* Replay attack to distinguish
* Access pattern (1) 0x00, 0x01, 0x02 ... (2) 0x00, 0x00, 0x00
— Find consecutive accesses such that I, = I

— Revert ORam,; from § to §*
— Ifly =1y, guess access pattern (2); otherwise guess (1)

ORam, state ath accessed
ORam, ORam, ! P

§ L") 119
5 (Lo, 1)
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MliT Verify Recursive Path ORAMs i}l ...,

* Apply the scheme to every ORAM in the recursion

 Can we do better?
— Hash latency o hash input. Reduce hash input?

* Yes, if we follow a slightly relaxed security definition

— An integrity verification for ORAMs is secure, if no
computationally bounded adversaries with the ability to
modify ORAMs can with non-negligible probability (1)
change the output of the ORAM interface without being
detected, or (2) learn anything about the access pattern.

~ddr addr

A d R ORAM
Scen ) controller

output
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MliT Verify Recursive Path ORAMs i}l ...,

Theorem 1. To integrity-verify a recursive Path ORAM, it
suffices to integrity-verify data ORAM and the random seeds
for position map ORAM:s.

encrypty (X) = (5. Gx(s) & X)

* Proof outline
— I the path read and written for ORam; on the j-th ORAM access

19 = PosMap(u)

— [Correctness] Data ORAM stores (address, data, leaf) triplets.

— [Privacy] Modified ciphertexts decrypt into random bits - still
access random paths

X' = Gg(s) @Y’
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Mir Proof i —

Lemma 1. Given ORamg is authentic and fresh, if 37 where
PosMap’ vields Z?’ £ 19, then the ORAM interface can detect
this when accessing ORamy.

a triplet (b, uj, Z?) must be stored somewhere

access(ORamy. ('.E’), then either:
) block bj 1s not found along path or the stash. and the
ORAM interface knows Z':” 1S wmng
2) block b; 1s found in the x‘rash or on the common mbputh
of path f”:” and path ZD the ORAM interface compares %/
with the leaf label stoled in the triplet and finds l[” # !6
In either case, the ORAM interface can detect that pomtlon
map ORAMs are tampered with.

ID!
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Mir Proof AL eane

Lemma 2. Given the random seeds are authentic and fresh,
whichever way an adversary tampers with any ORam;, Z;’ IS
indistinguishable from uniformly random for any 1. j.

Y =Gg(s)dX X" = Gg(s)d Y’

31



i Fully Homomorphic Encryption A% e,

+ Perfect privacy. Trust nothing but encryption
— Only the user has key K. Data is never decrypted

- 10° ~ 1018 x slowdown
— No integrity guaranteed
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