M5 csan i

Integrity Verification for Path
Oblivious-RAM (in Ascend)

Ling Ren, Christopher Fletcher, Xiangyao Yu,
Marten van Dijk, Srinivas Devadas

Massachusetts Institute of Technology

HPEC'13

Mir Outline

1.5
prgs JUPL VLI
A -/ CSAIL

« Background

—Ascend secure processor
—Path ORAM

 Motivation

* Integrity verification for Path ORAM

i Privacy & Integrity in Cloud i ccan.

« Context: cloud computing

* Privacy: user’s data not leaked to anyone

* Integrity: computation is done correctly (user gets P(x))

Mir Secure Processors A conn

Address
K | Trusted 165
processor
v
User data decrypted inside Data can be encrypted
and computed in the clear but address cannot
+ Integrity (e.g. Aegis) Integrity?

— Leakage through address/timing/power Privacy?

MiiT Leakage through Addresses

[o

1
' fori=1toN :
L if (x==0) :
. 1
! sum += A[i] | > Address sequence: 0x00, 0x01, 0x02 ...
! else !
| sum += A[0] ! ——> Address sequence: 0x00, 0x00, 0x00 ...

* Previous work [HIDE, NDSS12] has shown access pattern
leakage in practical applications

 Addresses can be monitored by software

Mir Ascend secure processor 5 con

« Existing secure processors (e.qg., XOM, Aegis)
+ Can provide integrity

 Ascend: terminate leakage over above channels
— 1/0O channel: Oblivious RAM

— Timing and power channel ...

Address

)

Data
I Power @ Timing @

iy Oblivious RAM (ORAM) A s

* Hide access pattern
— Read vs. write
— Make all address sequences indistinguishable

* Naive ORAM
— Read/write the entire memory on each access
— Probabilistic encryption = everything always changes
— O(N) overhead, N = # of data blocks (cache lines) in the memory

scan the entire
memory

addr 1)
Ascend «— o
mem[addr] @

IHir Path ORAM

« Path ORAM
— One of the most efficient ORAMs, simple

 External DRAM structured as a binary tree
— Each node contains Z blocks (Z=1 in the example below)

path 0 1 2 3

. DRAM
|
: root
|
ORAM controller | Block3
! /\
Position map | BlockO Block2
|
Stash | PN /\
: dummy dummy dummy Block1
:
|
|

Path ORAM

* Position Map: map each block to a random leaf

* Invariant: if a block is mapped to a path, it must be on
that path or in the stash

— Stash: temporarily hold some blocks

ORAM controller

Stash

Position Map

Block
B0
B1
B2
B3
B4

Path

0

= N N &

(B4, 1)

DRAM

root
(B3, 2)

(BO, 0)

(B2, 2)

dummy

dummy dummy

(B1, 3)

path 0

1 2

3

Mir Path ORAM Operation L

 Access Block 1 PosMap(B1)=3

— Read all blocks on path 3
O(L) = O(log(N))

— Write as many blocks as possible back to path 3

— Remap B1 to a new random path

ORAM controller

|
|
|
Stash dummy : root
(B1,1) (B4,1) | (B3, 0)
|
Position Map ! /\
Block Path I (B0, 0) (B2, 3)
|
B0 0 | /\
B1 3 ; : /d\ : >
ummy ummy ummy ;
B2 3 ;
B3 0 : path 0 1 2 3
B4 1 | 10

Uiy Path ORAM Security L

A random path is read/written on every access

— Extracted from PosMap, which is always random and

fresh due to remapping

* All ciphertexts on the path always change

— Due to probabilistic encryption

11

Mir Recursive Path ORAM L -

 Problem: Position map too large

» Solution: Recursion
— Trade off latency for smaller position map

« Ascend has 3~4 ORAMSs in the recursion

Conmno

Data ORAM

Block Path

Block Path

N~ :

4 GB 93 MB 2 MB 43 KB

12

* Motivation for Path ORAM integrity

* Integrity verification for Path ORAM

13

liT Motivation: Ascend Integrity A% ccun.

Ex(x), P

“ - ” AscendJ
r = P(x)
Ex(r)
Verifyg (s, P || x||7) s = MACk(P [[x [|)

 Certified execution protocol: message authentication
code (MAC) for P, x,r

* Verify the integrity (freshness, authenticity) of external

memory
— Aegis verifies DRAM. Ascend has to verify Path ORAM

14

Mir Another Motivation A conn

 Recursive Path ORAM’s privacy is broken without

integrity verification when attackers can modify ORAM

— Revert PosMap ORAM s to force reuse of old leaf labels 55

 So we need to verify Path ORAM integrity

— To maintain privacy of recursive Path ORAM

— To achieve integrity in Ascend

15

Ul Outline AL eane

* Integrity verification for Path ORAM
—Verify one Path ORAM

— Verify recursive Path ORAM

16

lMlifr Background — Merkle Signature

* General, can be used for any document, any ORAM
 Efficient 0(L) = 0(log(N))
« Security reduced to collision-resistant hash function

Any Document:

Top hash

T~

Hash 4

N

Hash 5

AN

Hash O Hash 1 Hash 2 Hash 3
Chunk 0| |Chunk 1 Chunk 2| |Chunk 3

17

Mii" Merkle Signature for Path ORAM? (2 s

« ORAM hides access pattern

- (pretend to) verify all buckets on a path

- 0(L?) complexity
— Path ORAM 0(L) complexity

BO

Path ORAM

Top hash

BO

B2

B3| |B4

« Combine Merkle tree and Path ORAM tree

free Hash 1 Hash 2
Hash 3 Hash 4 Hash 5 Hash 6
f 1
Bucket 0
|
Path ORAM T
Tree Bucket 1 Bucket 2
Bucket 3 Bucket 4 Bucket 5 Bucket 6

19

Mir Verify one Path ORAM Ey -

O(L)
free Hash 1 Hash 2
Hash 3 Hash 4 Hash 5 Hash 6
T
Path ORAM
Tree Bucket 1

Bucket 3 Bucket 4 Bucket 6

20

MliT Verify Recursive Path ORAMs (iitf.....

* Apply the scheme to every ORAM in the recursion

« Can we do better?
— Hash latency « hash input. Reduce hash input?

Yes, we only need to integrity-verify data ORAM and
the seeds in position map ORAMs.

Pseudorandom generator (PSRG) 1r = G(s)
— Seeds Secretkey K
— Qutput r looks random to anyone who does not know K

[]

Probabilistic encryption based on PSRG
— To encrypt X, choose new s

— Y=0Gg(s)®X ciphertext (s,v) €9 AES counter mode

21

Hash O

Hash 1

128 ~ 512 Bytes

el

Data ORAM

Hash 2

TN

T T~

A

PosMap ORAMs

Hash O

Hash 5 Hash 6

Hash 1

Bucket 0

Bucket 2

Hash 2

TN

Hash 5

Hash 6

Seed 0

64 bits

Seed 2

22

Mir Proof

* Only intuition here, details in paper.

« PosMap ORAMsSs just yield a leaf label for data ORAM

— (block, leaf label) tuple

— If PosMap ORAM returns a wrong leaf label for data ORAM, it will be
detected if compared with the verified leaf in data ORAM

* Verify seeds to thwart the replay attack

(B3, 2)

/\

(BO, 0) (B2, 2)

N N

(B1, 3)
path 0 1 2 3 23

Mir Evaluation A conn

« Setup
— 4 GB ORAM, 128 Byte block, three ORAMs in recursion
— SHA-1 hash and AES-128 encryption

— Built on commodity DDR3

« Our integrity verification adds 17% latency on top of
recursive Path ORAM

— 35% if verifying everything in PosMap ORAMSs

— 3x worse if directly using Merkle signature

24

Uy Contributions AL eane

* Recursive Path ORAM is insecure w/o integrity verification
* An integrity verification scheme with only 17% overhead

« Ascend + verified Path ORAM + certified execution -
privacy and integrity in cloud computing by trusting only
hardware (not trusting any software)

Thank you! Questions?

25

A cann i

Backup

Mir Another Motivation A conn

 Recursive Path ORAM is broken when attackers can
modify ORAM

* Replay attack to distinguish
* Access pattern (1) 0x00, 0x01, 0x02 ... (2) 0x00, 0x00, 0x00
— Find consecutive accesses such that I, = I

— Revert ORam,; from § to §*
— Ifly =1y, guess access pattern (2); otherwise guess (1)

ORam, state ath accessed
ORam, ORam, ! P

§ L") 119
5 (Lo, 1)

27

MliT Verify Recursive Path ORAMs i}l ...,

* Apply the scheme to every ORAM in the recursion

 Can we do better?
— Hash latency o hash input. Reduce hash input?

* Yes, if we follow a slightly relaxed security definition

— An integrity verification for ORAMs is secure, if no
computationally bounded adversaries with the ability to
modify ORAMs can with non-negligible probability (1)
change the output of the ORAM interface without being
detected, or (2) learn anything about the access pattern.

~ddr addr

A d R ORAM
Scen) controller

output

28

MliT Verify Recursive Path ORAMs i}l ...,

Theorem 1. To integrity-verify a recursive Path ORAM, it
suffices to integrity-verify data ORAM and the random seeds
for position map ORAM:s.

encrypty (X) = (5. Gx(s) & X)

* Proof outline
— I the path read and written for ORam; on the j-th ORAM access

19 = PosMap(u)

— [Correctness] Data ORAM stores (address, data, leaf) triplets.

— [Privacy] Modified ciphertexts decrypt into random bits - still
access random paths

X' = Gg(s) @Y’

29

Mir Proof i —

Lemma 1. Given ORamg is authentic and fresh, if 37 where
PosMap’ vields Z?’ £ 19, then the ORAM interface can detect
this when accessing ORamy.

a triplet (b, uj, Z?) must be stored somewhere

access(ORamy. ('.E’), then either:
) block bj 1s not found along path or the stash. and the
ORAM interface knows Z':” 1S wmng
2) block b; 1s found in the x‘rash or on the common mbputh
of path f”:” and path ZD the ORAM interface compares %/
with the leaf label stoled in the triplet and finds l[” # !6
In either case, the ORAM interface can detect that pomtlon
map ORAMs are tampered with.

ID!

30

Mir Proof AL eane

Lemma 2. Given the random seeds are authentic and fresh,
whichever way an adversary tampers with any ORam;, Z;’ IS
indistinguishable from uniformly random for any 1. j.

Y =Gg(s)dX X" = Gg(s)d Y’

31

i Fully Homomorphic Encryption A% e,

+ Perfect privacy. Trust nothing but encryption
— Only the user has key K. Data is never decrypted

- 10° ~ 1018 x slowdown
— No integrity guaranteed

32

