
Robust Graph Traversal: Resiliency Techniques for
Data Intensive Supercomputing

Saurabh Hukerikar, Pedro C. Diniz, Robert F. Lucas
Information Sciences Institute

University of Southern California
Marina del Rey, CA 90292

Email: {saurabh,pedro,rflucas}@isi.edu

Abstract—Emerging large-scale, data intensive applications
that use the graph abstraction to represent problems in a
broad spectrum of scientific and analytics applications have
radically different features from floating point intensive scientific
applications. These complex graph applications, besides having
large working datasets, exhibit very low spatial and temporal
locality which makes designing algorithmic fault tolerance for
these quite challenging. They will run on future exascale-class
High Performance Computing (HPC) systems that will contain
massive number of components, and will be built from devices
far less reliable than those used today. In this paper we propose
software based approaches that increase robustness for these data
intensive, graph-based applications by managing the resiliency in
terms of the data flow progress and validation of pointer computa-
tions. Our experimental results show that such a simple approach
incurs fairly low execution time overheads while allowing these
computations to survive a large number of faults that would
otherwise always result in the termination of the computation.

I. INTRODUCTION

Data-intensive applications are an increasingly important
part of High Performance Computing (HPC) workloads. Su-
percomputing systems have traditionally been designed for
maximizing floating point performance. Applications in sci-
ence and engineering span areas such as high energy and
nuclear physics, chemistry and materials, nanotechnology, as-
trophysics, biology. These simulation applications and their
solvers are typically floating point intensive and tend to be
well-structured in terms of control flow and data flow patterns
[1]. The LINPACK benchmark which, solves a dense system of
linear equations, has been used as the yardstick of performance
for HPC systems, and has been used in the TOP500 rankings
[2] over the past two decades. Recently, large-scale, data driven
analysis applications that solve discrete math problems are
becoming increasingly important parts of the supercomputing
workload. These applications tend to use a graph abstraction
for information mining, social network analysis, medical infor-
matics, computational geometry, genomics, pattern matching
and discovery. The Graph500 [3] [4] list reaffirms the growing
importance of this class of workloads.

The challenge of managing resilience is very important to
HPC system designers, application programmers, and users
of future exascale computing systems [5]. Exascale systems
will likely have millions of compute nodes and billions of
processing and memory components. Such numbers increase
the likelihood of faults that cause system level failures. Re-
cently 60% of system failures may be attributed to hardware
failures, of which memory related faults contribute 40% [6].

As VLSI geometries scale in future process technologies, the
reliability of systems is challenged by greater device density,
lower supply voltage, as well as manufacturing variabilities.
Technology scaling beyond 45nm feature sizes show a sig-
nificant increase in the fraction of multi-cell upsets (MCU),
where more than one device or bit are affected. The dramatic
increase in memory capacity needed in future exascale systems
to sustain the data intensive application workloads, and their
massive working sets, suggest that its contribution to system
failures will increase even further. HPC systems today typically
employ ECC memories which offer single bit error correction
and double bit error detection. These will unlikely to be scaled
to handle correction of multi-bit cell upsets because of the
overheads of memory access latency and chip area. There
is also silent data corruption, which escapes hardware-based
detection mechanisms and manifests itself through incorrect
application results, or system failures whose causality is diffi-
cult to trace [7].

Graph problems tend to be very large and sparse, and op-
timization efforts emphasize efficiency in memory bandwidth
and network bandwidth utilization [8]. The algorithms make
non-contiguous, concurrent accesses to global data structures
with low degrees of locality [9], and the data structures
tend to be referenced indirectly and therefore are rich in
pointer arithmetic. These features have important implications
in managing the fault resilience of these applications. First,
pointer-rich data structures are highly sensitive to memory
failures [10]. Even single bit upsets in pointer variables may
lead to invalid references, causing segmentation faults. Second,
the non-contiguous arrangement of graph nodes implies that
node structures that occur in contiguous memory locations may
not necessarily be linked with edges. Therefore, any scheme
that employs redundancy through naive replication of graph
nodes will incur great overheads to the memory and network
bandwidth, given that typical datasets today are of the order
of several terabytes. Third, unlike array based data structures
such as the matrices used widely in scientific applications
that afford the opportunity to incorporate redundancy through
parity or checksums on rows and columns, these graph-based
data structures lack a similar, sufficiently general method for
algorithmic detection and correction of faults. Each of these
suggest that the challenge of managing fault tolerance for these
graph modeled data intensive applications on supercomputing
systems is a significant one.

In this paper, we propose software based resiliency tech-
niques geared towards this class of applications. We propose

Ka
Typewritten Text
978-1-4799-1365-7/13/$31.00 ©2013 IEEE

techniques where we can leverage the node and edge traversal
data flow patterns of graph-based algorithms. When errors are
detected, this allows for a temporal fault tolerance assesment of
the significance of the node address where the error occured.
We also explore the idea of selective duplication of pointer
references through compiler based transformations. Addition-
ally, we also propose compiler driven memory alignment of the
graph node structures and their pointers as a way to validate
pointer arithmetic operations and therefore detect silent data
corruptions on these. These approaches provide resilient graph
traversal since: (i) they allow the application to live with
certain multi-bit errors that are detected but are uncorrectable
by memory ECC schemes without crashing the application
and, (ii) they provide robustness to silent data corruptions in
pointer arithmetic and computation to which such applications
are notoriously sensitive.

The rest of the paper is organized as follows: Section
II describes the fault models and their significance to data
intensive HPC applications. Section III describes the resiliency
techniques while Section IV elaborates their respective imple-
mentation. Section V describes our experimental approach and
section VI surveys related approaches in HPC resiliency.

II. FAULT CHARACTERIZATION

As faults increasingly become the norm rather than the ex-
ception for high performance computing, there are two classes
of faults that are anticipated to be particularly significant [5].
The first are multibit faults that are detectable by hardware
based memory ECC schemes but cannot be corrected, since
these schemes typically offer single error correction and double
error detection. Since the hardware lacks correction capability,
these result in non-maskable interrupts to the operating system
which forces an application crash or the system to shutdown
to prevent further corruption.

The second category of faults that is increasingly important
is silent data corruption. These faults remain undetected by
hardware-based schemes and ultimately manifest themselves
as errors in the program state. The application may complete
but with incorrect results, terminate with unexplained segmen-
tation faults, or simply hang. Exacerbating the situation is
the fact that in data intensive applications, a single fault may
propagate. For example, a massive graph may include vertices
and edges that span across machine nodes and the possibility
of a single error causing a cascading pattern of corruption is
high.

Besides the increasing vulnerability to multicell upsets of
individual devices as process technology scales, the complexity
of memory architectures with the inclusion of 3D die stacked
DRAM and persistent memory is also increasing. This means
that more advanced capabilities for hardware-based detection
and correction of faults will not be without large overheads to
chip area, access latencies and power. Furthermore, tracing the
causality of silent corruptions and containing them before they
lead to errors in the application state, will also be increasingly
challenging.

The software-based resiliency techniques presented here
aim to address each of these modes of faults, keeping in mind
the access patterns of the massive datasets in these graph-
based applications. The proposed techniques seek to provide

low overhead and early detection of silent corruptions in
pointer arithmetic, since these are computations to which these
applications are especially vulnerable. The techniques also
assist in creating application level knowledge on how to react
to the anomalies in application state, both with silent faults and
ECC errors. Additionally, programmer can guide application
recovery or state amelioration through a callback mechanism.
Although the techniques described in the following sections are
for graph-based computations, they are equally applicable to
more generic computations and other complex data structures.

III. RESILIENCY TECHNIQUES

The software-based approach presented here is based on
compiler-generated resiliency that entails simple code exten-
sions and transformations. This is supported by a runtime
engine that controls application execution and termination.

A. Data Flow Progression: Tolerant Signatures

Large-scale, graph applications tend to have a wide data
footprint that does not fit within the memory of single machine
node. Furthermore, the edge-vertex traversals of most graph
algorithms show distinctive patterns. For example, a search
proceeds in a sequence of steps: each step iterates over a set
of boundary vertices and enqueues the unvisited neighbors
to be processed at the next depth. This kernel is a basic
building block used in graph analysis and has similar data
access pattern characteristics as other graph applications. The
nodes tend to be accessed only once (or finite number of times)
per traversal of the graph. Therefore the memory assigned to
the nodes becomes irrelevant (or dead) from the application’s
perspective as the traversal progresses and nodes are dequeued
after being visited. The nodes may continue to remain mapped
in the memory hierarchy and experience a fatal ECC failure, or
even a recoverable memory error. In either case, it is possible
to ignore these errors in an increasing large set of graph
nodes (and hence of memory footprint) as the computation
progresses.

To be able to trace the fault tolerance of data with respect
to the application progress, we introduce a signature word
pattern to every graph node structure. Nodes that have been
traversed are marked as being subsequently tolerant to an
arbitrary number of errors in all the memory associated with
that graph node. To accomplish this, a runtime system must
be aware of the location of the signature word with respect
to the storage layout of the graph nodes and can rely on
word alignment knowledge to efficiently track which memory
regions are incrementally being marked as tolerant.

This makes for a dynamic and application-specific ap-
proach to fault tolerance. In complex and long running graph
analytics applications as the application progresses, an in-
creasingly growing percentage of its dataset is traversed and
becomes tolerant to errors. Figure 1 illustrates this notion with
a sample graph traversal algorithm. This technique of tracking
progress of the data structure traversal is especially useful with
graphs that span petabytes in dataset size and streamed in
to the memory, but whose graph vertices are traversed finite
number of times. The unique feature of this approach is that
it is independent of the starting vertex or any other structural
feature of the graph such as order of individual vertices or how

Fig. 1: Marking Nodes Tolerant: Shaded graph nodes are dynamically marked tolerant using a signature pattern as they become
for the purposes of the current traversal ”dead”

sparse or dense the graph is, and yet allows reasoning about
resiliency based on application level data flow rather than the
physical address mapping in the memory hierarchy.

B. Memory Alignment

Data intensive applications built with complex data struc-
tures tend to be rich in pointer arithmetic and these computa-
tions are especially vulerable to silent corruptions, which may
lead to segmentation fault induced crashes. Worse, faults can
propagate to the end of the computation, leading to incorrect
answers. For the detection of silent pointer corruption, we
propose a scheme that enforces the alignment of the layout of
the storage associated with nodes of a pointer-based data struc-
ture. We place a padding constraint on data structure objects
and their constituent primitive data type elements laying out
the nodes at specific address boundaries. This allows for the
compiler to generate simple code that can detect silent faults
in the pointer address bits during node traversal. This bit-level
error detection and correction is accomplished using simple
instruction sequences and thus with low performance overhead.
This enforced alignment through padding is illustrated in figure
2(a).

C. Pointer Duplication

To complement the alignment approach, we also perform
automatic compiler-based pointer field duplication. This ap-
proach is based on N-modular redundancy fault tolerance
approach where the same computations are performed and
then checked for inequalities among the N copies of the result.
This approach incurs some storage and computation overhead
for storing duplicated pointer fields and replication of the
pointer-arithmetic. This is illustrated in figure 2(b) where the
edge2 pointer in all nodes are the shadow pointers. Through a
simple compiler-driven code transformation, we duplicate all
instructions that perform arithmetic on pointer addresses and
compare the results to ensure that they match. The enforced
address alignment may therefore also provide the means to
choose among unequal result pointer values.

In the case of silent data corruption, detection of the fault
is only part of the approach. One must also provide effective
means for containment of the error and facilitating recovery.
For managing recovery actions, we provide an application level
handler function so that the application programmer has the
ability to determine how to handle the error. The programmer

(b) Field pointer duplication

original edge pointer

duplicated edge pointer

edge 2

edge 1

edge 2

edge 1

edge 2

edge 1

(a) Address alignment

Padding to align node data structure starting address

Fig. 2: Pointer-based Resiliency Techniques: (a) Node Data
Structure Alignment (b) Pointer-field Duplication.

may choose to gracefully terminate the application, or attempt
to recover by attempting to restart the traversal from the
previous level of the graph (repetition may sometimes account
for transient faults), or may even choose to ignore the fault
and isolate the graph node. This offers an effective contain-
ment strategy by ensuring that corruptions do not spread and
cause further errors that may potentially lead to catastrophic
application failure.

IV. IMPLEMENTATION

We now describe the implementation of the resiliency tech-
niques described in Section III which are based on extensions
to library calls and compiler based code transformations and
supported by a runtime engine. The first technique which
tracks the data flow progression during graph traversal specif-
ically targets ECC memory errors that are detected, but may
or may not be recoverable in hardware. The other two tech-
niques (alignment and pointer field replication) target silent
corruptions in pointer arithmetic. These later two techniques
require additional code to proactively check for the alignment
and consistency among duplicate copies of the pointers before
a memory access is made. Also, the code needs to be extended
so that the application is offered the opportunity to contain the
fault and recover state whenever possible. We have automated
these through compiler driven transformations using the ROSE
source-to-source compiler infrastructure [11]. Some of the
techniques described here are also applicable to more generic
computations and data structures, besides pointer arithmetic,
which may be driven by the programmer through preprocessor
directives.

A. Library Extensions and Compiler Transformations

The feature that tracks the progression of graph node traver-
sal is based on runtime memory allocation and is implemented
as an extension to the library call malloc. The extended version
of malloc, rmalloc() is implemented so that every block of
memory allocated contains a special field that is appended to
the block. The field is set with a signature byte sequence when
the block is accessed. In the context of the graph traversal,
as every node structure is accessed, the block of runtime
memory associated with it is set with the signature pattern.
The pattern is set such that it can reflect the count of the
number of times the allocated block was accessed, so that
the library knows when the memory block becomes irrelevant
(and therefore tolerant to errors). Additionally, the extended
version of malloc also inserts padding to align addresses and
automatically duplicates the pointer types.

For the purposes of validation of pointer arithmetic against
silent faults, we use the ROSE compiler, an open source
infrastructure that enables source-to-source program transfor-
mation. It generates the intermediate representation (IR) as an
uniform abstract syntax tree (AST). The source transformation
pass uses a traversal function to discover the statements that
perform the pointer arithmetic. The AST is then transformed
to insert the statements that detect discrepancies in values of
the instruction that perform pointer arithmetic.

For these transformations to be applicable to more general
computations, we also provide #pragma robust. A naive
compiler based replication of all instructions incurs too high

an overhead. Using a directive, the programmer may explic-
itly annotate general computation statements that need to be
duplicated and whose results also need to be compared to
detect possible corruptions. An AST visitor function is used
to gather the statements attached to the nodes encompassed by
the #pragma statement.

The application code is also extended by registering a call-
back function for handling the error containment and recovery
actions. The call back mechanism allows the programmer to
decide the course of recovery: whether to terminate gracefully,
or to restart algorithm from a previous level of the graph or
even ignore a set of nodes from the traversal and resume at
next unvisited neighbor.

t y p e d e f void (∗ ECC ca l lback t)
(void ∗ a d d l o c a t i o n , void ∗ a r g) ;

void e c c r e c o v e r i n i t (ECC ca l lback t cb , void ∗ a r g) ;

B. Runtime Support

For reasoning about the ECC memory errors, our approach
requires runtime support to maintain a mapping of the physical
addresses and address offsets. The runtime is an independent
light-weight process that monitors the state of the graph
application. Upon receiving notification of an uncorrectable
memory error through an interrupt handler, the runtime system
is signaled that an ECC unrecoverable error has occurred at a
specified address. If it discovers that the unrecoverable error is
mapped to a location that has been marked with the signature
sequence and hence irrelevant to the application, it ignores
the error and resumes the application, rather allowing the
application or system to crash.

V. EXPERIMENTAL EVALUATION

The kernel on which Graph500 results are ranked is
Breadth-First Search, a representative graph traversal kernel
on unweighted graphs used in our experiments. The evaluation
platform is an Intel XeonTM 8-core 2.4 GHz machine.

A. Fault Coverage Analysis

The Graph500 benchmark consists of phases that include:
the generation of an edge list, graph construction from edge
list, followed by the traversal kernel. The traversal itself
proceeds in a sequence of steps: each of which iterates over a
set of boundary vertices and enqueues the respective unvisited
neighbors to be processed at the next depth. As the vertices
are visited and dequeued their respective fields is set with a
signature pattern.

Our fault injection tool dynamically sweeps the active
regions of the application’s address space to evaluate which
regions map to nodes that contain the signature byte sequence.
These are the regions that can tolerate an arbitrary number of
ECC errors and the scope of this tolerant memory tracks the
progress of the application, as is evident from figure 3. In the
first phase of graph construction, the percentage of tolerant re-
gions remains at zero. In the traversal phase as the vertices are
visited and then dequeued from the visitor list, their memory
becomes irrelevant to the current state of the application. As

0.000%

10.000%

20.000%

30.000%

40.000%

50.000%

60.000%

70.000%

80.000%

90.000%

100.000%

0.000% 10.000% 20.000% 30.000% 40.000% 50.000% 60.000% 70.000% 80.000% 90.000% 100.000%

%
 A
dd

re
ss
 Sp

ac
e T

ol
er
an

t t
o
Er
ro
rs

% Application Execution Progress towards Completion
nvtx=16384 nvtx=32768 nvtx=65536 nvtx=131072 nvtx=262144 nvtx=524288 nvtx=1048576

Fig. 3: Data Flow Progression: Fault Coverage Analysis

figure 3 reveals, the percentage of address space that becomes
error tolerant progressively increases as application execution
proceeds towards completion. The percentage never reaches
100% as the code sections, stack sections remain in the active
memory for the lifetime of the application and these are not
explicitly error tolerant. However, as the data set size increases,
the fraction of tolerant memory reaches 98% for a graph with
2 million of vertices.

B. Fault Injection Experiments

1) Fault Injection for Data Flow Progression: To evaluate
the effectiveness of the data flow progression technique for
ECC errors, we use dynamic fault injection to inject faults
into the active address space of the application while it is
in execution. For these experiments, we inject one multi-bit
ECC error per application run that raises an ECC failure
interrupt and signals the runtime engine to handle application
recovery or terminate. The runtime looks up the address
mapping and checks for the signature sequence to determine
if the error occurred at a location that the data flow has
progressed beyond and if so, allows application to proceed.
Otherwise the application terminates. For these experiments,
we perform 10, 000 application runs per graph size, so that
the Kronecker generator produces different edge lists whose
layout in memory is different each time. Additionally, the fault
injection is randomized in time and address space location
across application runs. Fig 4(a) depicts the percentage of
application runs that can tolerate an otherwise fatal ECC
uncorrectable error and complete correctly. The figure also
shows the correlation between survivability and graph size.

2) Fault Injection for Silent Data Corruption: In these
experiments, the faults of interest are silent data corruptions
including single-bit flips in memory undetected by ECC as well
as those that occur when there multiple bit flips that ECC is
unable to detect. Possible outcomes include: pointer segmen-
tation fault leading to application crash; the fault manifests
in the data variables such that the application completes but

0.000%

10.000%

20.000%

30.000%

40.000%

50.000%

60.000%

70.000%

80.000%

90.000%

100.000%

16384 32768 65536 131072 262144 524288 1048576 2097152

%�
Sil
en

t�C
or
ru
pt
ion

�O
ut
co
me

s

Graph�Size�(Number�of�Vertices)

Application�Crash

Benign�Faults

Undetected�with�faulty
application�outcomes

Silent�Corruptions
Detected�through�Ptr
Alignment�and
Duplication

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

16384 32768 65536 131072 262144 524288 1048576 2097152

%�
Ex
ec
ut
ion

�Ru
ns
�th

at
�su

rvi
ve

�EC
C�e

rro
rs�

Graph�Size�(Number�of�Vertices)

(a) (b)

0.000%

10.000%

20.000%

30.000%

40.000%

50.000%

60.000%

70.000%

80.000%

90.000%

100.000%

16384 32768 65536 131072 262144 524288 1048576 2097152

%�
Sil
en

t�C
or
ru
pt
ion

�O
ut
co
me

s

Graph�Size�(Number�of�Vertices)

Application�Crash

Benign�Faults

Undetected�with�faulty
application�outcomes

Silent�Corruptions
Detected�through�Ptr
Alignment�and
Duplication

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

16384 32768 65536 131072 262144 524288 1048576 2097152

%�
Ex
ec
ut
ion

�Ru
ns
�th

at
�su

rvi
ve

�EC
C�e

rro
rs�

Graph�Size�(Number�of�Vertices)

(a) (b)

Fig. 4: Graph traversal resiliency techniques: (a) Survival rate
using dynamic tolerant marking for ECC errors; (b) Fault

injection outcomes using alignment and pointer duplication
for Silent Data Corruptions.

produces incorrect results; benign faults that do not manifest
in application outcome; or the application crashes because the
application code was affected leading to illegal control flow.
We are interested in the detection of these faults which can
then initiate our callback mechanism. We evaluate whether our
proposed approach based on memory alignment and pointer
duplication can detect faults in pointer computations. Similar to
the previous set of experiments, we perform 10000 application
runs per graph size and our fault injection tool perturbs the

victim bits and then observes the propagation of the faults.
Figure 4(b) summarizes the results of these experiment runs.

C. Performance Evaluation

We measured the performance overhead of these techniques
as the wall clock execution time difference between the
computation with and without the proposed application code
extensions. We found that the overhead in the time to solution
is 1.2% or lesser for all the graph sizes we evaluated. Besides
the overhead to execution time, the Graph500 benchmark also
uses the metric of Trillion Edges traversed Per Second (TEPS)
which reflects the bandwidth efficiency and the overhead to the
TEPS rating for our techniques is 1.7% or lesser for all the
graph sizes we evaluated. We attribute these low overheads to
the reduced number of additional instructions per traversal step
and to the fact that memory padding also adds a few bytes per
graph vertex to enforce alignment.

VI. RELATED WORK

Traditional supercomputing workloads including simula-
tion applications and linear solvers, widely use Algorithm-
based fault tolerance (ABFT) schemes to detect and cor-
rect errors. These approaches leverage the two-dimensional
structure of matrices by incorporating redundancy at the row
or column-level using checksums for common dense matrix
operations [12] as well as for Cholesky factorization and
LU-decomposition [13]. Other ABFT methods that are based
on the algorithm such as iterative methods including Jacobi,
Gauss Seidel, the conjugate gradient, and multigrid methods
can leverage convergence properties of the algorithm for error
detection and correction [14]. While such ABFT techniques
tend to work well for numerically intensive structured compu-
tations, similar low overhead algorithmic error detection and
correction for relatively complex unstructured graph modeled
search and traversal algorithms tends to be much harder.

Much research has been conducted on the use of software
based checkpoint and restart as a methodology to recover from
failures whether at the node operating system level [15] or
through checkpointing in message passing libraries such as
FT-MPI or OpenMPI. A limitation of these approaches for
data intensive applications is the large performance overhead
incurred due to the volume of globally coordinated state
needed to be captured and restored to/from persistent storage.

In commercial applications, data processing systems that
process massive data sets of crawled documents, web request
logs etc, tend to use the transaction model that performs
atomic updates to a redundant database or storage system.
The MapReduce library [16], used in various data mining and
analytics applications, can handle failures of computational
nodes by having a master node periodically ping the worker
nodes and simply re-executing the entire task assigned to
non-responsive failed node on a different worker node. Such
approaches are complementary to ours, since they wait for
node failure before reacting to any error in the application
state and rely on redundant persistent storage for recovery.

VII. CONCLUSION

In this paper we described a set of software-based,
compiler-driven resiliency techniques for data-intensive appli-
cations that manipulate graph data structures. The approach

presented here leverages the data flow usage patterns and
alignment properties of the graph node data structures, pro-
viding early detection opportunities for fault containment,
amelioration of state or graceful termination before memory
data corruption leads to catastrophic failures. We presented
an experimental evaluation of the use of these techniques for
large scale graph traversal computation. The results reveal that
despite their simplicity, these techniques substantially increase
the computation’s survivability in the presence of undetected
and uncorrectable memory errors and incur very low overheads
to the application performance.

ACKNOWLEDGMENT

This research has been supported by the US Department
of Energy (DoE) under the SciDAC-3 SUPER Research Insti-
tute (Contract Number DE-SC0006844) and Sandia National
Laboratories (Award Number 1315083).

REFERENCES

[1] R. Murphy and P. Kogge, “On the Memory Access Patterns of Su-
percomputer Applications: Benchmark Selection and Its Implications,”
IEEE Trans. Comput., vol. 56, no. 7, pp. 937–945, Jul. 2007.

[2] Top500 Supercomputer Sites. [Online]. Available: http://www.top500.
org/

[3] R. Murphy, K. Wheeler, B. Barrett, and J. Ang, “Introducing the Graph
500,” Cray User’s Group, May 2010.

[4] Graph500. [Online]. Available: http://www.graph500.org/
[5] A. Geist, “What is the monster in the closet?” Talk at Workshop on

Architectures I: Exascale and Beyond: Gaps in Research, Gaps in our
Thinking, August 2011.

[6] S. Michalak, K. Harris, N. Hengartner, B. Takala, and S. Wender,
“Predicting the number of fatal soft errors in Los Alamos national
laboratory’s ASC Q supercomputer,” IEEE Trans. on Device and
Materials Reliability, vol. 5, no. 3, pp. 329–335, Sep. 2005.

[7] S. Mukherjee, J. Emer, and S. Reinhardt, “The soft error problem: an
architectural perspective,” in Proc. of the 11th Intl. Symp. on High-
Performance Computer Architecture (HPCA), 2005, pp. 243–247.

[8] N. Satish, C. Kim, J. Chhugani, and P. Dubey, “Large-scale energy-
efficient graph traversal: a path to efficient data-intensive supercom-
puting,” in Proc. of the Intl. Conf. on High Performance Computing,
Networking, Storage and Analysis, ser. SC ’12. Los Alamitos, CA,
USA: IEEE Computer Society Press, 2012, pp. 14:1–14:11.

[9] D. Bader, G. Cong, and J. Feo, “On the architectural requirements
for efficient execution of graph algorithms,” in Proc. of the 2005 Intl.
Conf. on Parallel Processing (ICPP). Washington, DC, USA: IEEE
Computer Society, 2005, pp. 547–556.

[10] Y. Aumann and M. Bender, “Fault Tolerant Data Structures,” in Proc.
of the 37th Annual Symp. on Foundations of Computer Science (FOCS).
Washington, DC, USA: IEEE Computer Society, 1996, pp. 580–589.

[11] ROSE Compiler Infrastructure. [Online]. Available: http://www.
rosecompiler.org/

[12] K.-H. Huang and J. Abraham, “Algorithm-based fault tolerance for
matrix operations,” IEEE Trans. on Computers, vol. C-33, no. 6, pp.
518–528, 1984.

[13] T. Davies, C. Karlsson, H. Liu, C. Ding, and Z. Chen, “High per-
formance linpack benchmark: a fault tolerant implementation without
checkpointing,” in Proc. of the Intl. Conf. on Supercomputing, 2011,
pp. 162–171.

[14] A. Mishra and P. Banerjee, “An algorithm-based error detection scheme
for the multigrid method,” IEEE Trans. on Computers, vol. 52, no. 9,
pp. 1089–1099, 2003.

[15] J. Duell, P. Hargrove, and E. Roman, “The Design and Implementation
of Berkeley Lab’s Linux Checkpoint/Restart,” Berkeley Lab, Tech. Rep.,
Dec. 2002.

[16] J. Dean and S. Ghemawat, “Mapreduce: Simplified Data Processing on
Large Clusters,” Commun. ACM, vol. 51, no. 1, pp. 107–113, Jan. 2008.

