
GPU-Based Space-Time Adaptive Processing

(STAP) for Radar

Thomas M. Benson and Ryan K. Hersey

Sensors and Electromagnetic Applications Laboratory

Georgia Tech Research Institute

Atlanta, Georgia, USA

Edwin Culpepper

Sensors Directorate

Air Force Research Laboratory

Wright-Patterson AFB, OH, USA

Abstract—Space-time adaptive processing (STAP) utilizes a
two-dimensional adaptive filter to detect targets within a radar
data set with speeds similar to the background clutter. While
adaptively optimal solutions exist, they are prohibitively compu-
tationally intensive. Thus, researchers have developed alternative
algorithms with nearly optimal filtering performance and greatly
reduced computational intensity. While such alternatives reduce
the computational requirements, the computational burden re-
mains significant and efficient implementations of such algorithms
remains an area of active research. This paper focuses on an
efficient graphics processor unit (GPU) based implementation of
the extended factored algorithm (EFA) using the compute unified
device architecture (CUDA) framework provided by NVIDIA.

I. INTRODUCTION

Space-time adaptive processing (STAP) utilizes a two-
dimensional adaptive filter to detect targets within a radar
data set with speeds similar to the background clutter [1]–
[5]. The direct joint-domain STAP implementation applies
the adaptive filter jointly in the spatial (channel) and slow-
time (pulse) domains. While adaptively optimal, the joint-
domain implementation requires more training data than is
practically available and is extremely computationally in-
tensive [2]. Alternatively, rank-reduced post-Doppler STAP
implementations provide nearly optimal performance while
significantly reducing training requirements and the overall
computational burden. Specific post-Doppler STAP algorithms
include the extended factored algorithm (EFA) and the joint-
domain localized (JDL) algorithm [6], [7]. This paper focuses
on implementations of EFA for an airborne radar system.

Incoming data rates for radar platforms can be quite large,
and EFA exhibits substantial computational complexity, so
computational efficiency is an important consideration for
STAP processing. Furthermore, airborne platforms tend to
have size, weight, and power (SWaP) constraints as well as
ruggedization requirements (shock, vibration, etc.) that both
restrict the available hardware that can be effectively deployed
in such environments as well as the relative importance of
computational efficiency (or, relatedly, power efficiency) due
to the non-viability of adding additional hardware.

In this work, we consider the implementation of EFA on
NVIDIA graphics processing units (GPUs) using the compute
unified device architecture (CUDA) framework. GPUs offer
a compelling platform for the implementation of sophisti-
cated sensor processing techniques due to their availability
in ruggedized form factors from multiple vendors and their
relatively high peak-performance to power ratios, as measured

by gigaflops per Watt (GFLOPS/W). Furthermore, modern
GPUs offer very high memory bandwidth for certain mem-
ory access patterns, which is critical for achieving near-peak
performance on many applications. In terms of programma-
bility, GPU software development is typically more complex
than traditional CPU software development, but substantially
less complex than hardware description language (HDL) im-
plementations for field programmable gate arrays (FPGAs),
especially for complicated algorithms. On the other hand,
FPGAs offer several advantages, including potentially lower
power consumption than GPUs for equivalent processing and
generally highly predictable runtimes. Thus, GPUs present a
middle ground between CPUs and FPGAs from the perspective
of programmability and performance per Watt [8].

II. EXTENDED FACTORED ALGORITHM (EFA)

We employ the extended factored algorithm (EFA) in-
troduced by DiPietro [6] with a block training approach to
estimate the required covariance matrices. We introduce EFA
briefly in this section and proceed to describe each of the
steps in greater detail in the following sections. Consider a
radar data set x consisting of M array elements or spatial
channels, L range bins per pulse, and NCPI pulses within
a coherent processing interval (CPI). Thus, from a traditional
radar nomenclature perspective, L and NCPI correspond to the
fast-time and slow-time dimensions, respectively, and NCPI

and M correspond to the temporal and spatial domains,
respectively. Furthermore, consider a data set X where we
have transformed the pulses to Doppler space by applying a
discrete Fourier transform of length ND ≥ NCPI along the
pulse dimension, potentially after having applied a window
function.

Assume P steering vectors of interest with p-th steering
vector v(p) ∈ C

M×1. From the perspective of an EFA
implementation, steering vectors are provided as input that will
ultimately provide the right-hand sides of linear systems to be
solved. The output datacube, y, generated by EFA will have
dimensions P×L×ND. Output value y(p, b, n) is given by ap-
plying an adaptive weighting vector to an associated portion of
X where the weighting vector is computed by solving a linear
system involving the estimated covariance for range bin b and
Doppler bin n. In practice, the covariance will be approximated

as a sum of outer products, R̂(b, n) =
∑

j∈J(b,n) XjX
H
j ,

where Xj is a to-be-defined subset of X in vector form and
J(k, n) is a training set.

Ka
Typewritten Text
978-1-4799-1365-7/13/$31.00 ©2013 IEEE

For EFA, the temporal degrees of freedom for Doppler
bin n will include the immediate Doppler neighborhood of n.
Using the convention from [6], order two processing corre-
sponds to considering three Doppler bins centered on n (i.e.,
n − 1, n, and n + 1). This approach yields three temporal
degrees of freedom, which we indicate with the variable TDOF .
While other values are possible, we consider the TDOF = 3
case throughout this paper for concreteness. Furthermore, we
apply block training in range. Thus, we subdivide the L range
bins into blocks with B range bins per block. For range bins
in a given block Lb, we acquire training data from the two
adjacent blocks (i.e., Lb−1 and Lb+1). Edge cases exist for
the Doppler and training neighborhoods and are addressed in
Section III-B.

III. COMPUTATIONAL ANALYSIS

Prior to considering the GPU implementation, we will first
derive the computational requirements for implementing EFA
by analyzing the following steps independently: (1) Doppler
processing, (2) covariance estimation, (3) linear system solver,
and (4) adaptive matched filter (AMF) weighting. As input to
EFA, we have the data cube x ∈ C

M×L×NCPI and P steering
vectors with v(p) ∈ C

M×1. The output datacube will be given
by y ∈ R

P×L×ND . While complex output is also possible,
we consider the case of converting to the power domain after
applying the adaptive filters.

A. Doppler Processing

Doppler processing maps a data cube x ∈ C
M×L×NCPI

to X ∈ C
M×L×ND through the independent application of

a length ND ≥ NCPI discrete Fourier transform (DFT),
potentially with a Doppler windowing function wD ∈ R

NCPI ,
to each pairing of channel and range bin. The windowing
function is real-valued and corresponds to an element-wise
multiplication in the pulse dimension. The DFT will presum-
ably be implemented using the fast Fourier transform (FFT)
and ND can be chosen such that the FFT is efficient (e.g., by
setting ND to be a power of two). Depending on the memory
layout of the incoming data cube, it may be more efficient to
reorganize the data cube such that the NCPI samples for a
given channel and range bin are stored contiguously and thus
the FFT can be applied to a contiguous array. Assuming that a
window is used, the Doppler processing step requires roughly
O(M · L ·ND · log2 ND) floating point operations (FLOPs).

B. Covariance Estimation

In general, with TDOF temporal degrees of freedom, the
covariance estimation generates a set of L × ND matrices of
dimension (M · TDOF)× (M · TDOF). However, we employ
block training such that a single covariance matrix will be
associated with multiple range bins in a range block. With
block factor B, we have LB = ⌈L/B⌉ range blocks where ⌈x⌉
represents the smallest integer not smaller than x. For simplic-
ity, we assume that B divides evenly into L. Thus, covariance
estimation with block training generates a set of LB × ND

covariance matrices, which reduces the computational burden
of the subsequent linear system solver by a factor of B.

For notational purposes, we use Lb ∈ {0, . . . , LB − 1}
and b ∈ {0, . . . , L−1} to represent indices corresponding to a

range block and a range bin, respectively. For each range block
Lb, we form the matrix Q(Lb, n) ∈ C

(M ·TDOF)×B with rows
corresponding to Doppler samples within the temporal window
for Doppler bin n and all channels thereof and columns
corresponding to the B range bins in block Lb. Per-block
covariance estimates, T(Lb, n), can then be computed via
outer products, i.e.,

T(Lb, n) =
Q(Lb, n)Q(Lb, n)

H

B
.

Finally, for a given range block, the covariance estimate

R̂(Lb, n) is given by a combination of neighborhood training
data. The number of neighboring training blocks can be ad-
justed and certain blocks (i.e., guard blocks) can be excluded,
but for simplicity we consider the mean of the adjacent training
blocks. Therefore, the covariance estimate for range block Lb

and Doppler bin n is

R̂(Lb, n) =
T(Lb − 1, n) +T(Lb + 1, n)

2
.

There are boundary conditions that must be handled for

the edge blocks when computing R̂ and the minimum and
maximum Doppler values when defining Q. The former case is

handled using the two nearest range blocks to generate R̂ (e.g.,

T(1, n) and T(2, n) contribute to R̂(0, n)) and the latter case
is handled by wrapping in Doppler (i.e., −1 wraps to ND − 1
and ND wraps to 0). Both of these boundary approaches
generalize to wider temporal windows and alternative training
strategies.

Furthermore, both the T and R̂ matrices are conjugate
symmetric due to the symmetry associated with the outer
product. There are additionally some redundancies among the
T matrices that can potentially be exploited to reduce the
computational load. We consider those redundancies when dis-
cussing the GPU implementation. The overall computational
complexity ignoring such symmetries is given by O(L ·ND ·
(M · TDOF)

2).

C. Linear System Solver

There are many algorithmic options for solving the linear

systems R̂(Lb, n)w(Lb, n) = v(p). The covariance estimation
matrices are conjugate symmetric and positive semidefinite
by construction. Furthermore, given sufficient training and
linear independence of training data due to the presence of
noise, the covariance estimation matrices are typically positive
definite [1]. Positive definiteness enables additional algorithms,
such as Cholesky factorization or Gaussian (Gauss-Jordan)
elimination with no pivoting requirement. It is not necessary

to form the explicit inverse matrices R̂−1(Lb, n) in order to
solve the linear systems.

For typical parameter sets, the linear system solver step will
be applied to many small linear systems. In particular, there are
LB×ND systems with matrices of dimension M ·TDOF ×M ·
TDOF and P right-hand sides. We explored three options for
solving these systems: (1) utilizing existing GPU-based linear
algebra libraries, (2) applying Cholesky factorization paired
with forward and back substitution, and (3) applying Gauss-
Jordan elimination to an augmented matrix form.

While many high-quality linear algebra libraries exist,
including cuBLAS for NVIDIA GPUs, these libraries typ-
ically focus on solving large linear systems rather than a
large number of small linear systems. However, the so-called
batch mode operations that solve many linear systems are
increasingly being incorporated into such libraries. As of this
writing, cuBLAS includes a batched LU decomposition routine
as well as a batched triangular system solver. However, our
implementation currently achieves higher performance than
that achieved by utilizing the library, partially because we com-
pose additional operations into our kernels. For example, the
combination of neighboring training blocks to form the final
covariance matrices described in Section III-B is performed in
the same kernel that factorizes or solves the system. Thus, in
a custom implementation, the final covariance matrices only
exist in GPU shared memory, which corresponds to a single
read from global memory, whereas utilizing a library requires
an additional read-write cycle to form the input to the library
call. However, as libraries evolve to be more comprehensive,
shifting to library based linear solvers may be ideal, especially
given that libraries typically evolve to exploit new hardware
and would thus partially future-proof the implementation.

The Cholesky-based solution involves factorizing the co-

variance matrices R̂(Lb, n) into L(Lb, n)L(Lb, n)
H and then

applying forward and back substitution as follows:

(1) Solve L(Lb, n)z(p, Lb, n) = v(p) (forward sub)

(2) Solve L(Lb, n)
Hw(p, Lb, n) = z(p, Lb, n) (back sub).

Alternatively, we can form the M ·TDOF ×(M ·TDOF +P)

augmented matrix
[

R̂(Lb, n) | v
]

and apply Gauss-Jordan

elimination to the resulting augmented system matrix. After
applying elimination, the augmented matrix will have the
form [I | w(Lb, n)] where I is the appropriately sized identity
matrix. As a consequence of w(Lb, n) being produced directly
by the Gauss-Jordan elimination process, no additional kernels
are required for that case whereas natural implementations of
the Cholesky factorization case require an additional write and
read of the intermediate L matrices.

In terms of computational complexity, both Cholesky
factorization and Gauss-Jordan elimination have complexity
O((M · TDOF)

3). Gauss-Jordan elimination carries a higher
constant of proportionality and is thus less FLOP efficient.
However, because there are P right-hand sides per linear sys-
tem corresponding to the various steering vectors, the system
solve portions will have computational complexity O(P · (M ·
TDOF)

2) with a lower constant of proportionality for the
Gauss-Jordan solver. Thus, the most FLOP efficient approach
overall depends on the specific values of M , TDOF , and P . Be-
cause we solve for LB ×ND such systems, the computational
complexity of the Cholesky and Gauss-Jordan approaches are
given by O(LB ·ND · ((M · TDOF)

3 +P · (M · TDOF)
2)). In

addition to FLOP efficiency, these approaches correspond to
substantially different memory access patterns, which can in
practice be more important than modest differences in required
operation counts.

D. AMF Weighting

The power domain output y ∈ R
P×L×ND is computed

by applying the adaptive weights to the appropriate elements

from the Doppler processed data cube. Let S(X, b, n) be an
operator that extracts as a column vector the space-Doppler
window corresponding to range bin b and Doppler bin n from
data cube X (i.e., S corresponds to a column from the Q
matrices in Section III-B). Output element y(p, b, n) is then
given by

y(p, b, n) = β(p, Lb, n)
∥

∥w(p, Lb, n)
HS(X, b, n)

∥

∥

2

where

β(p, Lb, n) =
1

√

w(p, Lb, n)Hv(p)
.

Therefore, applying the adaptive weighting involves P × (L+
LB)×ND inner products of length M ·TDOF , plus the squaring
and square root operations involved in the power and normal-
ization calculations, yielding a computational complexity of
O(P · L ·ND · (M · TDOF)).

IV. GPU IMPLEMENTATION DETAILS

We present a very brief introduction to modern Fermi and
Kepler-branded NVIDIA GPU architectures and the associated
CUDA programming model. Additional detail is available in
the CUDA Programming Guide [9] as well as many other
sources. A modern NVIDIA GPU consists of several sym-
metric multiprocessors (denoted SM for Fermi and SMX for
Kepler). Fermi-generation GPUs feature 32 cores per SM
whereas Kepler-generation GPUs feature 192 cores per SMX.
In total, the GPU has hundreds to thousands of cores that
can operate simultaneously. A block of code executed on the
GPU is typically known as a kernel and is written from the
perspective of a single thread with a parameterized thread and
block index. Blocks of threads can be executed on an SM with
multiple blocks used per SM, up to various hardware limits, in
order to minimize memory access latency. Blocks are oriented
into grids and the CUDA driver manages mapping blocks to
specific multiprocessors during run-time. In order to extract
parallelism from a problem, the workload needs to be mapped
to the grids and blocks supported by CUDA.

The memory hierarchy includes multiple cache levels,
shared memory (i.e., fast user-managed memory), constant
memory, texture memory, and the relatively slower global
memory. Fermi and Kepler both include up to 48 KiB of
shared memory per SM∗ that can be used by blocks running
on the SM in order to reduce accesses to the relatively slower
global memory. Both GPU generations include modest-sized
L2 caches of 768 KiB for Fermi and 1536 KiB for Kepler.

Efficient GPU implementations require the exploitation of
massive parallelism in combination with a careful considera-
tion of interactions with the memory hierarchy. In particular,
when possible, low-level shared memory or memory caches
should be utilized in order to minimize latency incurred by
global memory accesses. When global memory access is
required, care should be taken to access memory in a coalesced
fashion when possible. Coalesced memory accesses apply to
memory access patterns meeting certain requirements, such

∗Both GPU generations feature 64 KiB of memory per SM or SMX
with user-configurable combinations of shared memory and device-managed
memory, which can either operate as an L1 cache in the case of Fermi or a
spilled-register cache in the case of Kepler.

TABLE I. DATA CUBE DIMENSIONS AND EFA PARAMETERS USED FOR

BENCHMARKING.

Parameter Variable Value

Spatial channels/elements M 4

Pulses per CPI NCPI 128

Doppler bins ND 256

Range bins L 512

Range bins per training block B 32

Temporal degrees of freedom TDOF 3

Steering vectors P 32

as each thread t simultaneously referencing array location
array[t], so that the memory accesses are contiguous and
can thus exploit the wide data paths to global memory.

While describing our implementation, we will consider
the steps outlined in Section III independently for simplicity,
although it would also be possible for an implementation to
compose the various steps (e.g., by applying multiple steps
within a single kernel). The utilization of shared memory
by CUDA kernels ultimately impacts occupancy and final
performance and thus we consider the specific collection of
input dimensions and parameters shown in Table I when
presenting the following implementation details. For different
parameter sets, the preferred implementations may change,
although we have tried several variations with no substantial
change in the conclusions.

A. Doppler Processing Implementation

The Doppler processing step is fairly straightforward due
to the availability of high-quality FFT kernels provided by the
CUFFT [10] library. The CUFFT library requires that the data
to-be-transformed be stored contiguously in memory. In the
typical case that ND > NCPI , zero padding will be required
prior to initiating the FFTs. Furthermore, the incoming dat-
acube may be stored such that slow-time samples are not stored
contiguously. For our implementation, we assume that the data
cube is stored such that the complex sample for channel m,
range bin b, and pulse n has index (m · NCPI + n) · L + b.
Thus, there is a kernel that implements a corner turn, applies
the windowing, and adds the zero padding prior to invoking
CUFFT. After Doppler processing, the data cube is stored
such that the complex sample for channel m, range bin b, and
Doppler bin n has index (m ·L+b) ·ND+n. Finally, a kernel
reorganizes the data in a manner similar to the MATLAB
fftshift function in order to shift the DC frequency to
the central Doppler bin.

B. Covariance Estimation Implementation

As noted in Section III-B, the covariance matrices are sym-
metric and thus only the upper or lower diagonal elements need
to be computed. However, there are additional redundancies
that can be exploited to further reduce the computational load.
Consider the individual entries of the matrices T(b, n) and
T(b, n + 1) for n < ND − 1. Each matrix entry corresponds
to an inner product of a pair of rows from the associated
Q(b, n) and Q(b, n+1) matrices. Furthermore, the rows from
Q represent a unique pairing of channel and temporal degree of
freedom for the associated Doppler bin. However, because the
temporal windows overlap from one Doppler bin to the next,
the overlapping portion in Doppler corresponds to redundant

entries in T(b, n) and T(b, n + 1). Furthermore, there are
redundancies between T(b, n + 1) and T(b, n + 2) such that
only one in TDOF of the entries in a given T matrix are unique.
Therefore, while the covariance estimation output conceptually
consists of LB ×ND × (M ·TDOF)

2 inner products of length
B, we only need to compute the inner products for unique
entries. Note that while redundancy reduction is an effective
optimization in this case, certain algorithmic changes, such
as incorporating power comparable training (PCT) [11], can
eliminate the redundancies in the sliding temporal window.

Therefore, the implementation for the covariance training
matrices is split into two kernels: the first generates unique
inner products (up to conjugate symmetry) that are needed
by at least one entry in the training matrices and the second
rearranges the results of the first kernel into matrices with
redundant values stored in each matrix for which they are
needed. In particular, the second kernel involves indexing
and memory access, but the only floating point operations
correspond to conjugating entries in the case that the first
kernel calculated the conjugate of the value needed for a
particular matrix entry. The first kernel utilizes thread blocks
with ND threads per block where each thread computes an
inner product over B values. Because there is little reuse of
data within a thread block, no shared memory is used for the
covariance estimation implementation.

C. Linear System Solver Implementation

For the nominal case of Hermitian positive definite covari-
ance matrices, matrix decompositions can be implemented us-
ing any of QR decomposition, LU decomposition, or Cholesky
decomposition. Furthermore, Gauss-Jordan elimination can be
applied to the augmented system matrix presented in Sec-
tion III-C without a pivoting requirement. While we imple-
mented both the Cholesky and Gauss-Jordan based approaches,
Gauss-Jordan elimination proved more efficient for our partic-
ular parameter set and thus the following description focuses
on the Gauss-Jordan case. In addition, we explored utilizing
batched matrix decompositions from existing libraries (e.g.,
batched LU decomposition from cuBLAS), but we achieved
higher performance with custom kernels, partially because
we compose additional operations into the kernel as will be
described shortly.

The covariance matrices have dimension (M · TDOF) ×
(M · TDOF), or 12 × 12 for our benchmark parameter set.
Thus, with single precision complex floating point entries, each
covariance matrix requires 1152 bytes of storage. Similarly, the
P steering vectors, each with M · TDOF entries, require 3072
bytes of storage for a total footprint of 4224 bytes. Because
most of these entries will be accessed repeatedly, they are
stored in shared memory with one thread block managing a
single covariance matrix and set of steering vectors.

Furthermore, the covariance matrix for a given range block
is the average of the training matrices from the adjacent
blocks, so that the required memory accesses and averaging are
performed as part of the Gauss-Jordan and Cholesky kernels
with the resulting covariance matrix being written directly
into shared memory. Therefore, the final covariance matrices
are never written to global GPU memory, whereas utilizing
an existing library would require an intermediate kernel to

compute the covariance matrices and write the result to global
memory as input for the library call. Finally, although the
covariance matrix is conjugate symmetric and thus only a
portion of the matrix needs to be stored, we allocate the
full 4224 bytes of shared memory to support natural indexing
within the algorithm implementations.

Thread blocks consist of (M · TDOF)/BT × (TDOF + P)
threads, where BT is a thread blocking factor to be described
shortly, and each thread block performs Gauss-Jordan elimi-
nation on a single augmented matrix. The load balancing in
this case is not ideal. While the threads managing the steering
vectors have operations to apply at each step, the threads
managing the covariance matrix have uneven workloads – in
fact, the threads for the upper triangular portion of the co-
variance matrix are not necessary due to conjugate symmetry.
Therefore, this thread allocation strategy works best in cases
where the number of output beams is large relative to the
number of channels and temporal degrees of freedom. Similar
asymmetric thread workloads exist for Cholesky factorization
as well, at least for natural thread mappings.

The thread blocking strategy utilizes a single thread to
manage BT rows of data, which increases opportunities for
instruction level parallelism, improves load balancing, and
increases the effective use of available registers. Occupancy
corresponds roughly to the utilization efficiency of the avail-
able GPU resources on a given symmetric multiprocessor (SM)
and can be limited by register utilization, total number of
blocks, total number of threads, or shared memory utilization.
In our case, if BT = 1, then occupancy is always limited by
the total number of available threads on a given SM (i.e., 1536
and 2048 for Fermi and Kepler generation NVIDIA hardware,
respectively). As BT increases, more blocks can be assigned
per SM, which requires storing more augmented matrices and
thus shared memory can become a bottleneck. In practice, we
choose BT empirically based on achieved performance with
BT = 3 for our current implementation.

D. AMF Weighting Implementation

An adaptive weighting vector for a given steering vector
and Doppler bin is invariant within its range block and thus
the weights can be stored in shared memory and applied to an
entire range block. Therefore, our thread grid has dimension
ND × LB with B threads per block and each thread in turn
applies the adaptive weighting vectors for all beams of a given
range bin. This strategy requires storing (M · TDOF) × P
complex values per block (3072 bytes in our case) in shared
memory. Furthermore, each thread stores M · TDOF elements
from X locally in registers and applies the P adaptive weight-
ing vectors to this local vector to generate P output elements
of y. While this approach features few threads per block, the
use of registers and shared memory minimizes the need for a
large number of threads per SM, which primarily serve to hide
global memory access latency.

V. RESULTS

We present performance results using the parameters given
in Table I on NVIDIA Tesla M2090, Tesla K20c, and Quadro
3000M GPUs. Several relevant performance metrics are given
in Table II for each of the GPUs. For the M2090 and K20c

TABLE II. PERFORMANCE SPECIFICATIONS FOR MEASURED GPUS.
ALL REPORTED VALUES ARE THEORETICAL PEAKS. GFLOPS

CORRESPONDS TO SINGLE PRECISION GIGAFLOPS PER SECOND AND THE

THERMAL DESIGN POWER (TDP) IS USED AS A SURROGATE FOR POWER

DRAW.

GPU Model GFLOPS Memory BW TDP GFLOPS/Watt

M2090 1331 177 GB/s 250 W 5.32
K20c 3519 208 GB/s 225 W 15.64

Q3000M 432 80 GB/s 75 W 5.76

TABLE III. AVERAGE RUNTIMES (IN MILLISECONDS) FOR EACH

STAGE OF EFA ON ALL TARGET GPUS.

M2090 K20c Q3000M

Doppler Processing 0.30 ms 0.24 ms 0.80 ms

Covariance Estimation 0.82 ms 0.52 ms 2.24 ms

Linear System Solves 1.21 ms 0.88 ms 5.20 ms

Adaptive Weighting 1.75 ms 1.31 ms 7.69 ms

Total 4.07 ms 2.95 ms 15.93 ms

results, error correction (ECC) is enabled for memory, which
decreases the available bandwidth. These three platforms
demonstrate the differences between the Fermi generation
(M2090, Q3000M) and Kepler generation (K20c) GPUs as
well as the differences between server-class hardware with
high power utilization (M2090 and K20c) and mobile hardware
with more modest power requirements (Q3000M). Further-
more, the Q3000M and M2090 are different variations of the
Fermi architecture, offering compute capabilities of 2.1 and
2.0, respectively. The Q3000M is available in an embedded
form factor from several vendors with support for varying
levels of ruggedization.

All of the following results were obtained using CUDA
5.0 with driver version 310.44 and code generated according
to the highest supported compute capability (i.e., 2.0, 2.1, and
3.5 for the M2090, Q3000M, and K20c, respectively). The
reported timings correspond to the average values obtained
by processing 32 data sets. Although the same CUDA code
is compiled and used for testing on all platforms, the code
was originally developed and tuned for performance on the
M2090 and thus may be slightly performance-biased toward
that platform.

The execution times associated with the various processing
stages for all evaluated GPUs are shown in Table III. Figure 1

0 10 20 30 40 50 60 70 80 90 100

M2090

K20c

Q3000M

Percent of run−time associated with a given processing stage

Doppler

Cov. Estimation

Linear System Solves

Adaptive Weighting

Fig. 1. Breakdown of relative execution time among EFA stages on each of
the evaluated GPUs.

depicts the same data in normalized bar chart form. Several
observations can be made from the resulting data. Firstly,
although the linear system solves may be expected to consume
the most computational time due to their cubic scaling, the
cubic growth is in terms of M · TDOF , which for this case is
relatively modest. In particular, M · TDOF < B, so adaptive
weighting features a higher workload than the system solver.
Moreover, the RMB rule, named after the authors who ob-
served it, implies that training over approximately 2·M ·TDOF

samples corresponds to a roughly 3 dB performance loss under
certain assumptions [12]. Thus, we would expect the inequality
M · TDOF < B to hold for other parameter sets in order to
prevent performance loss.

Secondly, the Q3000M results in several cases seem to be
inconsistent with the specifications shown in Table III. Relative
to the M2090, the Q3000M has approximately one-third and
one-half of the peak GFLOPS and memory bandwidth values,
respectively. While Doppler processing and covariance estima-
tion fall within the performance range implied by the specifi-
cation differences, both the linear system solver and adaptive
weighting steps are more than four times slower on the
Q3000M than the M2090. We have not definitively determined
the cause of this discrepancy, but it is notable that the Q3000M
features 48 cores per SM with some scheduler differences
and thus will interact with block sizes and instruction-level
parallelism differently than the M2090. Finally, although the
K20c offers approximately three times more peak theoretical
GFLOPS than the M2090, the observed performance increase
for these kernels ranges from 1.3x to 1.5x. As noted above,
the thread block sizes and blocking factors have been tuned to
optimize performance on the M2090, but have not yet been re-
tuned specifically for the K20c and Q3000M. However, mem-
ory performance is a major factor in the K20c results. Although
the K20c triples the peak theoretical GFLOPS performance
relative to the M2090, the memory bandwidth increases by a
modest 18%. Thus, memory bound kernels can be expected
to achieve improvements more consistent with the relative
memory bandwidth rather than the relative peak floating point
performance.

We now shift to considering the efficiency of the imple-
mentations on the various platforms in terms of performance
per Watt. While we do not have exact floating point operation
counts for all of the kernels from which to calculate the
percentage-of-peak performance, we can instead calculate the
data sets per second that each platform can process and use
the thermal design power (TDP) as a surrogate for power
consumption from which to compute data sets processed per
second per Watt. While the power draw for a given device
may be substantially below TDP† (e.g., in the case that the
implementation does not achieve near-peak utilization), our
metric allows us to roughly compare the available platforms.
Using this approach, we obtain data sets per second per Watt
values of 0.98 for the M2090, 1.51 for the K20c, and 0.84
for the Q3000M. Thus, the M2090 and Q3000M offer similar
performance per Watt, especially given that we expect to im-
prove performance on the Q3000M via kernel parameter tun-
ing. The Kepler-generation K20c offers substantially improved

†The TDP does not correspond to maximum power draw, but rather to the
amount of power the cooling system should be able to dissipate for nominal
applications. Thus, it is possible that power draw could exceed TDP.

performance per Watt relative to the previous generation Fermi
hardware, which highlights a major advantage of utilizing
commodity hardware with rapid upgrade cycles.

VI. CONCLUSIONS

We have demonstrated that high-performance GPU-based
STAP implementations for radar processing are feasible. These
implementations can be deployed on multiple devices with
varying overall performance characteristics, power require-
ments, and ruggedization capabilities. Furthermore, the newer
generation Kepler NVIDIA GPUs were shown to offer substan-
tially improved performance per Watt relative to the previous
Fermi generation with no source code modifications required.

Many of the implementations for specific processing stages
depend heavily upon utilizing shared memory in order to
optimize performance. As a result, performance is rather
sensitive to changes in parameters, especially the number of
channels, output beams, and temporal degrees of freedom. In
some cases, implementations would likely change for different
parameter sets, although we have tested variations in output
beam counts with no substantive changes in the relative per-
formance conclusions. Modifications motivated by parameter
changes could range from simply changing a blocking factor
to redesigning the entire shared memory utilization strategy.
Considering optimized implementations for a wider range of
both parameter sets and hardware devices, especially if such
implementations can be generated automatically, represents a
fruitful area for further research.

REFERENCES

[1] W. L. Melvin and J. A. Scheer, Eds., Principles of Modern Radar:

Advanced Techniques. SciTech Publishing, 2013, ch. 10.

[2] W. Melvin, “A STAP overview,” Aerospace and Electronic Systems

Magazine, IEEE, vol. 19, no. 1, pp. 19–35, 2004.

[3] J. R. Guerci, Space-Time Adaptive Processing for Radar. Norwood,
MA: Artech House, 2003.

[4] R. Klemm, Principles of Space-time Adaptive Processing, ser. IEE
Radar, Sonar, Navigation and Avionics Series, 12, I. of Electrical En-
gineers, Ed. Institution for Engineering and Technology, 2002.

[5] ——, Space-Time Adaptive Processing: Principles and Applications,
ser. IEE Radar, Sonar, Navigation and Avionics 9, I. of Electrical En-
gineers, Ed. Institution for Engineering and Technology, 1998.

[6] R. DiPietro, “Extended factored space-time processing for airborne
radar systems,” in Signals, Systems and Computers, 1992. 1992 Confer-

ence Record of The Twenty-Sixth Asilomar Conference on, vol. 1, 1992,
pp. 425–430.

[7] H. Wang and L. Cai, “On adaptive spatial-temporal processing for
airborne surveillance radar systems,” Aerospace and Electronic Systems,

IEEE Transactions on, vol. 30, no. 3, pp. 660–670, 1994.

[8] M. Bales, T. Benson, R. Dickerson, D. Campbell, R. Hersey, and
E. Culpepper, “Real-time implementations of ordered-statistic CFAR,”
in Radar Conference (RADAR), 2012 IEEE, 2012, pp. 896–901.

[9] NVIDIA, “NVIDIA CUDA C programming guide: Version 5.0,”
NVIDIA Corporation, Tech. Rep., 2012, available as of this writing
at http://docs.nvidia.com/cuda/pdf/CUDA C Programming Guide.pdf.

[10] ——, “CUFFT library,” NVIDIA Corporation, Tech. Rep., 2012,
available as of this writing at http://docs.nvidia.com/cuda/pdf/CUDA
CUFFT Users Guide.pdf.

[11] T. Selee, K. Bing, and W. Melvin, “STAP application in mountainous
terrain: Challenges and strategies,” in Radar Conference (RADAR), 2012

IEEE, 2012, pp. 824–829.

[12] I. S. Reed, J. D. Mallett, and L. E. Brennan, “Rapid convergence rate in
adaptive arrays,” Aerospace and Electronic Systems, IEEE Transactions

on, vol. AES-10, no. 6, pp. 853–863, 1974.

