Evaluating Energy Efficiency of Floating Point
Matrix Multiplication on FPGAs

Kiran Kumar Matam
Computer Science Department
University of Southern California
Email: kmatam@usc.edu

Abstract—Energy efficiency has emerged as one of the key
performance metrics in scientific computing. In this work, we
evaluate the energy efficiency of floating point matrix multipli-
cation on the state-of-the-art FPGAs. We implement a modular
design parameterized with the problem size and the type of on-
chip storage. To understand the efficiency of our implementations,
we estimate the peak energy efficiency of any matrix multipli-
cation implementation. Our on-chip matrix multiplication core
achieves up to 7.07 and 2.28 GFlops/Joule for single and double
precision arithmetic, respectively. Our implementations sustain
up to 73% and 84% of the peak energy efficiency for single
and double precision arithmetic, respectively. Using an optimal
on-chip matrix multiplication core, we also model and estimate
the energy efficiency of large-scale matrix multiplication using
external DRAM. Our designs for large-scale matrix multiplication
achieve energy efficiency of 5.21 and 1.60 GFlops/Joule for single
and double precision, respectively.

I. INTRODUCTION

State-of-the-art FPGAs offer high operating frequency,
unprecedented logic density and a host of other features.
As FPGAs are programmed specifically for the problem to
be solved, they can achieve higher performance with lower
power consumption than general-purpose processors. There-
fore, FPGA is a promising implementation technology for
computationally intensive applications such as signal, image,
and network processing tasks [10], [5].

Floating point matrix multiplication is one of the key ker-
nels in scientific computing. It is used as a building block for
many fundamental linear algebra kernels. Several architectures
and algorithms [2], [15] for floating point matrix multiplication
have been proposed over the years. Among them, linear array
architectures with simple layout can map suitably on to the
FPGA [16]. On a state-of-the-art device they can achieve up
to 300 GFlops/sec for single precision and are also scalable
[16]. Several linear array architectures have been proposed [3],
[15] to optimize for latency, throughput, and area. However,
they have not explored the design space for energy efficiency.

Power is a key metric in scientific computing today. The
total system power is a major component of cost and avail-
ability. In this work, we explore the design space of floating
point matrix multiplication on FPGAs. Next, we determine
an upper bound on the energy efficiency of any matrix mul-
tiplication implementation. To understand the efficiency of
our implementations, the sustained energy efficiency of our

This work has been funded by DARPA under the grant number HR0011-
12-2-0023.

U.S. Government work not protected by U.S. copyright

Hoang Le and Viktor K. Prasanna

Ming Hsieh Department of Electrical Engineering

University of Southern California
Email: {hoangle, prasanna} @usc.edu

implementations is compared with the peak energy efficiency
of the device. Using a given floating point cores, we also model
and estimate the energy efficiency of the large-scale matrix
multiplication using external DRAM. This paper makes the
following contributions:

1) A parameterized floating point matrix multiplication
implementation. Parameters are problem size, and
type of memory on FPGA (Section III).

2) Evaluation of the effect of using various types of
storage available on FPGA on the energy efficiency
of the floating point matrix multiplication (Section
IV-D).

3) An upper bound on the energy efficiency of any ma-
trix multiplication implementation on a given target
device (Section III-A).

4) Implementations which can sustain up to 73% and
84% of the peak energy efficiency for single and dou-
ble precision arithmetic, respectively (Section IV-D).

5) A model and an estimate of the energy efficiency
of large-scale matrix multiplication using external
DRAM (Section V). For 8K x8K matrix multiplica-
tion, we estimate an energy efficiency of 5.21 and
1.60 GFlops/Joule for single and double precision,
respectively.

The rest of the paper is organized as follows. Section
IT covers the background and related work. Section III de-
scribes the architecture and algorithm used in the work. It
also describes the architecture used to estimate the peak
energy efficiency of any matrix multiplication implementation.
Section IV presents the experimental results and performance
evaluation. Section V presents the model and energy efficiency
estimation results for large-scale matrix multiplication using
external DRAM. Section VI concludes the paper.

II. BACKGROUND AND RELATED WORK
A. Background

Given two matrices A, B of size n xn, the product AB, de-
noted C, is defined as: C; ; = >} A; xBrj, 1 <4,j <n.
In this paper we consider the well known three nested loop
O(n?) complexity algorithm only. In the rest of the paper
we denote matrix multiplication, single precision, and double
precision as MM, SP, and DP, respectively.

Many architectures and algorithms have been proposed to
compute the product matrix C' [3], [15]. In this work, we
adapt the Algorithm 1 proposed in [6], as it can be efficiently
implemented on a linear array architecture.

Ka
Typewritten Text
U.S. Government work not protected by U.S. copyright

/0

/ Port

A~——> —> —> ———— —>
B—> —> —> ———— —>
C«—— PE, «— PE, «—----<«— PE,
Control
) —>| —> — — — — —>|
Logic
FPGA

Fig. 1: Overall linear array MM architecture
B. Related Work

To the best of our knowledge, there has been no previous
work targeted at exploring the design space for energy effi-
ciency of floating point MM on FPGAs. Most of the prior
work has mainly focused on optimizing the latency and the
area of the design.

In [15], [16], we developed scalable algorithms considering
various design parameters such as the amount of bandwidth,
on-chip storage, configurable slices available. Considering sev-
eral resource constraints such as the size of on-chip memory,
the number of PEs, we derived algorithms achieving optimal
latency.

Floating point MM on a linear array architecture was
considered in [3]. They presented a master-slave scheduling
algorithm for block matrix multiplication. A bit-level algorithm
for 8-bit fixed-point numbers was implemented on FPGAs in
[1]. A disadvantage of this architecture is that it requires an
I/O bandwidth that is proportional to the problem size. This
requirement limits the scalability of the algorithm. In [7],
FPGAs were used as accelerators when computing floating
point MM. In this context, they proposed a optimization for
resource utilization and increasing clock frequency.

In [11], we showed that the latency and the energy effi-
ciency of the MM on FPGAs are superior to those of DSPs
and embedded processors. FPGA-based linear array algorithms
for fixed-point MM are shown in [6]. These algorithms achieve
optimal latency of O(n?) using n PEs.

In this paper, we extend the work in [6] to support floating
point MM. We explore the design space of floating point MM
and compare the sustained energy efficiency with the peak
energy efficiency of any MM implementation. We then model
and estimate the energy efficiency of large-scale MM using
external DRAM.

III. ARCHITECTURE

In this work we adapt the architecture and algorithm
proposed in [6] for floating point matrix multiplication. This
algorithm achieves an optimal latency of O(n?) using n PEs
for n x n matrix multiplication. The amount of storage within
each PE is linearly proportional to the problem size. Also the
layout is simple as all the inter-connections are localized and
are within a PE or in between adjacent PEs only. Fig. 1 shows
the overall architecture. Fig. 2 shows the architecture of a PE.

Algorithm 1 shows the operations performed by each PE.
PEj, 1 < j < n, denotes the j" PE from the left.
PE; computes the j'" column of C. In the k' iteration,
k" row of A and k" column of B traverse in order from

From
PE PE; To
+1 PEj+1
Ain A_reg —=>A
B;, BU Bout
BM
BL
C auxiliary array
of size n
To Gy él F
rom
PE,, i
C té j+1
o Output transfer array of size n LC,,

Fig. 2: PE of linear array MM architecture

PE, to PE,. PE; computes A;; x By ; and accumulates
in C;; which is stored in Cbuf array, which is used to
store intermediate output values. After the output elements are
computed, each PF; transfers them to PE;_; using CObuf
array. As the output transfer of one MM can be overlapped with
the computation of another MM, this architecture can perform
MM when input matrices are given one after the other in a
streaming fashion.

The algorithm performs n x n matrix multiplication in n?+
2n cycles using 3 I/O ports and n processing elements, each
having a multiplier, an adder, 4 registers, and 2 local memories
of n words. In this work, we carefully pipeline the architecture
to increase the frequency.

Algorithm 1 Operation of each PE

1: {During t =1 to n}

2: for all j, 1 < j < n, do in parallel do

3: PEj shifts data in BU right to PE; 4
4: end for

5: {During t = n + 1 to n* + n}

6: for all j, 1 < j <mn, do in parallel do

7: PEj shifts data in A, BU right to PE; 1
8: if BU = By, ; then

9: copy it into BL or BM (alternatively)
10: end if
11: if A_reg = A, then
12: Ci,j = CZ',]' =+ Ai,k X Bk,]'
13: (Bk,; is in either BM or BL)
14: (Cs,5 is in Cbuf)
15: end if
16: end for

17: {During t = n® 4 1 to 2n*}

18: for all j, 1 < j < n, do in parallel do
19: PEj; stores input Cp, in CObuf
20: end for

21: {During t = n* + 1 to n*> + n}

22: PEj; output data C ; to PE;_

23: {During t = n* +n+1 to 2n® 4+ n}
24: PE; output data CObuf to PE;_;

A. Minimal Architecture

The energy efficiency of any MM implementation is upper
bounded by the inherent peak performance of the platform.
This depends on the target device and the IP cores used

to perform the arithmetic operations. We measure this peak
energy efficiency by using a “minimal” architecture for the
processing element under ideal conditions. Thus, we ignore
all the overheads such as memory energy, I/O, access to
memory, cache and other buffers that may be employed by
an implementation. This minimal architecture performs only
multiplication and addition as these are the basic operations
in any MM design. The other components such as routing,
memory will only increase the energy consumption. Such a
minimal architecture is shown in Fig. 3.

We use this peak energy efficiency as an upper bound on
the performance of any algorithm and architecture for MM
and compare the sustained performance of an implementation
against this bound. Note that as the FP cores improve, we can
expect a corresponding increase in the sustained performance
of our algorithm and the architecture for MM. Also note that
this peak performance bound also applies to any other floating
point based computations (matrix vector product, matrix de-
composition, etc.) that employ the above floating point cores.

IV. EXPERIMENTS AND EVALUATION
A. Implementation Details

The architecture was implemented in Verilog, using Xilinx
ISE 14.4, with Virtex-7 XC7VX690T with -3 speed grade as
the target. Xilinx floating point addition and multiplication
cores [12] were used in our implementation. We used non-
blocking interface, maximum latency and maximum DSP
usage as configuration options when generating these cores.
These cores are IEEE-754 compliant with some minor de-
viations. As we are interested in the power consumed by
the architecture, we considered only the dynamic power in
our experiments. After the post place and route we measured
the power using Xpower estimator [14]. All our results are
reported at operating frequencies unless otherwise mentioned.
We used 50% toggle rates in all our experiments, which is the
worst case for arithmetic-intensive modules [13].

B. Performance Metric

We consider energy efficiency as the metric for perfor-
mance evaluation. Energy Efficiency is defined as the number
of operations per unit energy consumed. When multiplying
two n X n matrices using well-known three nested loop MM
algorithm, energy efficiency is given by 2n3 /energy consumed
by the design. Energy of the design = time taken by the design
X average power dissipation of the design. Alternatively
Energy efficiency of the design is Power efficiency (number
of operations per second/Watt).

C. Peak Energy Efficiency

The minimal architecture described in Section III-A is used
to estimate the peak energy efficiency of any MM implemen-
tation. Based on the experiments using the implementation
details mentioned in Section IV-A, this minimal architecture
can operate at a maximum frequency of 581 MHz (405 MHz),
consumes 120 mW (297 mW) when operating at maximum
frequency, and occupies 299 slices (748 slices) for single
precision (double precision) arithmetic.

Energy efficiency for this design is given by 2x
Sfrequency/power consumed by the design. For identifying the

B

n

4
B reg

[C reg]

[AB_reg|
|

CW

out

Fig. 3: Architecture of a minimal PE

frequency at which this design achieves peak energy efficiency,
we measured the power consumed by the design at intervals of
50 MHz in the range of 1 to maximum frequency. Peak energy
efficiency is observed at 550 MHz and 400 MHz frequency for
single and double precision arithmetic, respectively. The peak
energy efficiency at 50% toggle rate is 9.70 GFlops/Joule
(2.72 GFlops/Joule) for single precision (double precision)
arithmetic.

D. Performance Results

In this subsection we discuss the experiments with the
floating point MM design described in Section III. We de-
note the architecture using BRAM and Distributed RAM as
BRAM-based architecture and Dist.-RAM based architecture,
respectively. We consider matrix sizes in powers of two till the
largest possible MM design that can fit on the target FPGA.
As the Cbuf array (partial results array) is read and written
in a round robin fashion, matrix column size should be greater
than the latency of the floating point addition so that the C; ;
(partial result) from Cbuf array is read after it is updated
with the partial output value (A; ; x By ;). So we chose the
minimum matrix size such that it is greater than the latency
of the floating point addition.

For 512 x 512 single precision (128 x 128 double preci-
sion) BRAM-based architecture, post place and route results
show that our implementation achieves 279 GFlops/sec (67
GFlops/sec) and consumes 39 W (30 W) of dynamic power
when operating at peak frequency of 274 MHz (264 MHz),
occupies 99,585 slices (67,125 slices), uses 2,560 DSPs
(1,792 DSPs) and 1,024 18 Kb BRAMs (256 36 Kb BRAMs).

For an n x n MM, the number of operations performed
is 2n3. The proposed architecture completes it in n? + 2n
cycles. The total amount of local memory is 2n? elements, the
number of arithmetic units is n. The number of 10 pins is three
times the data width of the elements. So asymptotically energy
consumed by the arithmetic units is O(n?), where unit energy
is assumed to be consumed for performing a floating point
operation. Energy consumed by the memory units is O(n?),
where unit energy is assumed to be consumed in a cycle for
a unit of storage. As all the communication is in between the
adjacent PEs or in between the components within the PEs
only, energy consumed for communication is O(n?), where
unit energy is assumed to be energy for transferring a word
of data within a PE or between adjacent PEs. Total energy
consumed by the design is sum of the computation, memory,
and communication energy. Therefore, as the problem size
grows, the energy efficiency is O(1/n); energy consumed by
the memory limits the scalability of the design.

—#-Energy efficiency of BRAM-based architecture
—o—Energy efficiency of Dist. RAM-based architecture

8
i EE—
2 ° - o~
S5
G a T~

3

2 T T T T T

16 32 64 128 256 512
Matrix size
Fig. 4: Energy efficiency of single precision MM

24
3 _
3 22 _ —
2
)
o I
(V)

18
32 64 128
Matrix size

Fig. 5: Energy efficiency of double precision MM

Il Arithmetic units = Dist. RAM memory ® 10 '~ Routing

100%

80%

40%

60%
20%

0% -+

16 32 64 128
Matrix size
Fig. 6: Power profile of single precision Dist.-RAM based
architecture

Il Arithmetic units = Block RAM memory ™ IO « Routing

Matrix size

Fig. 7: Power profile of single precision BRAM-based archi-

tecture

Il Arithmetic units = Dist. RAM ® 10 . Routing

100%
75%
50%

25%

0% -+

32 64 128
Matrix size

Fig. 8: Power profile of double precision Dist.-RAM based
architecture

11 Arithmetic units = Block RAM ® 0 «# Routing

100% ARANANANNNNANY
75%
50%
25%
0% -

32 64 128
Matrix size

Fig. 9: Power profile of double precision BRAM-based archi-
tecture

Fig. 4 shows the energy efficiency of SP floating point
MM designs. Fig. 6 shows the power profile for SP Dist.-
RAM based architecture designs. As the matrix size grows the
percentage of energy consumed by the memory components
increases. Hence this limits the scalability of the design.

Fig. 7 shows the power profile for single precision BRAM-
based architecture designs. For the BRAM-based architecture,
each PE requires two 18 Kb BRAMs for all the considered
problem sizes. Therefore, the amount of storage used increases
linearly for the considered problem sizes. As the matrix size
increases, percentage of memory utilized in a BRAM increases
while the IO power remains constant. Thus, we can observe the
scalability of the BRAM-based architecture designs for energy
efficiency. However as the matrix size grows, asymptotically
the number of BRAMs used is O(n?) and memory energy is
O(n*). So as the matrix size increases the energy consumed
by the memory limits the scalability of the BRAM-based
architecture designs.

Fig. 5 shows the energy efficiency of DP floating point MM
designs. Fig. 8 and Fig. 9 show the power profile for DP Dist.-
RAM based architecture designs and BRAM-based architecture
designs, respectively. Similar to single precision MM, memory
energy limits the scalability of the double precision Dist.-RAM
based architecture designs. For the double precision BRAM-
based architecture designs, for n>64, increase in the routing
complexity decreases the energy efficiency.

Our designs achieve up to 73% and 84% of the peak
energy efficiency for single and double precision arithmetic,
respectively. As the architecture is simple with each PE having
two memory modules, a multiplier, and an adder, the design
maps naturally to the target FPGA.

V. LARGE-SCALE MATRIX MULTIPLICATION

Algorithm 2 Block Matrix Multiplication Algorithm

1: {Matrices A and B are read in to on-chip memory in blocks of size
m X m}

2: for i =1 to n/m do

3 for j =1 ton/m do

4 Initialize output block C(z,j) to 0

5 for k =1 to n/m do

6: Read block A(%, k) from DRAM

7.

8

9

Read block B(k, j) from DRAM
Perform matrix multiplication on A(¢, k) and B(k, j) blocks
Add the output to C'(¢, j)

10: end for

11: Write C'(¢,7) to DRAM
12: end for

13: end for

A. Architecture

Large-scale matrix multiplication can be efficiently per-
formed using tiled/blocked matrix multiplication. Detailed
procedure for tiled/blocked matrix multiplication is shown
in Algorithm 2 [4]. In our design, the tile (or core) size is
chosen to maximize energy efficiency. Due to limited amount
of on-chip memory on FPGAs, external DDR3 SDRAMs are
utilized to store the input matrices and the product matrix. The
overall architecture for performing large-scale MM is shown
in Fig. 10.

There are 2 SDRAM banks, one to store the input matrices
A, B, and the other to store the product matrix C. Each

DDR3
64 bit: 256 bit: 64 bits (SP’
SDR{\M 1 its Memory its FIFO| 1 its (SP)
(Matrices A Controller 1 128 bits (DP)
and B)
I A, Fé
(=]
‘ Control Unit }4—» (&)
=
I =
DDR3 its
64 bits 64 bits 32 bits (SP)
SDRAM 2 PO Mtemory <;i FIFO|2 i
(Matrix C) ontrofic] 64 bits (DP)
FPGA

Fig. 10: Large-scale matrix multiplication architecture

SDRAM bank is controlled by a memory controller, which
handles communication with the high-speed interface of the
DDR3. We chose to implement DDR3 SDRAM utilizing the
maximum allowed burst length of 8 to ensure maximum data
throughput.

The major drawbacks of DDR3 SDRAM are the long
access latency and the periodic refreshes (required to retain
the content of the SDRAM). Both of these issues can be
alleviated by taking advantage of the intrinsic high bandwidth
of SDRAM, combined with the use of a suitable FIFO (First In
First Out) queues. FIFOs are required to connect (or synchro-
nize) producers and consumers with different data rates. In our
case, FIFO 1 synchronizes the reading of input matrices A, B
from DDR3 memory to the MM core. FIFO 2 synchronizes the
writing of product matrix C' from the MM core to the DDR3
memory.

The control unit coordinates the operation of the entire
design. As the timing of the operations in MM can be pre-
determined, control unit can be implemented using several
counters. During a block operation, the partial results are kept
in the MM core and are accumulated with the results in the
next iteration. Once a block operation finishes, the product sub-
matrix C is streamed out from the MM core to FIFO 2, and
is written into the DDR3 eventually. During the streaming out
process, the inputs of the next block iteration can be streamed
in.

B. Implementation on FPGAs

DDR3 SDRAM memory is organized in pages, each of
size 8 KB. Data within the same page can be accessed at
the peak bandwidth offered by the DDR3 SDRAM (about 6.4
GB/sec); this is called page hit. The input data should be
arranged based on their access order to maximize the page hit
rate. As mentioned in Section III, our MM core accepts input
matrix A in column major order and input matrix B in row
major order. Therefore, matrices A and B are stored in the
external SDRAM in column and row major, respectively.

Current DDR3 SDRAM chips are available in 1 GB, 2 GB,
4 GB and 8 GB sizes. These chips have 8 K refresh cycles
(NRre), 50.625 ns refresh cycle time (T'r¢), and 64 ms refresh
interval (Trgy). The minimum burst refresh time is Trpr =
Trco X Npe. Let F be the operating frequency of our MM
core. The number of clock cycles required to refresh SDRAM
iS Neycles=TrEF X F. During the refresh time, the first FIFO
needs to have enough data to feed to the MM core. Therefore,
FIFO 1 must be able to store at least L, = 2 X Neyeles

elements (a pair of {A and B elements} is required by the
MM core per cycle). Depending on the block size and the
target FPGA device, these FIFOs can be implemented using
either on-chip BRAM, off-chip SRAM, or a combination of
both. Let W denote the data width (32 for SP and 64 for DP).
The size of SRAM needed to implement this FIFO is

Sspam = Lpmin X W =Tre X Npe X F x 2 x W

If F = 300 MHz, then Ssran = 50.625 ns x 8K x 300M x
2 x W = 243K x W bits. Hence, the size of SRAM needed
to implement FIFO 1 is 7.78 Mb and 15.55 Mb for single and
double precision, respectively.

On the other hand, FIFO 2 only requires to store the entire
partial result C; ;, in the worst case. The size of SRAM needed
for FIFO 2 is m2 x W. Thus , the size of this FIFO is 2 Mb
for single precision (with m = 256) and 1 Mb for double
precision (with m = 128).

C. Energy Efficiency Estimation

The total power consumption of the design can be com-
puted as:

Prryt =Peore + PipDR3y) + P(DDR3—Ctrtn) T P(FIFO))
+ P(ppR3,) + P(DDR3—Ctris) + P(r1r0.) + Pou

The power consumption of SRAM is estimated using the
on-chip BRAM of FPGA, whereas the power consumption of
the external DDR3 SDRAM is calculated using Micron DDR3
power calculator [9] for 1 GB target chip. With this chip, our
design can handle matrices consisting of 256 M and 128 M SP
and DP elements, respectively.The DDR3 memory controllers
can be implemented using Xilinx Memory Interface Generator
(user interface mode). We assume that the power consumption
of the control unit is negligible as it is a simple state machine.
We use 256 x 256 (128 x 128) MM architecture operating at
300 MHz (250 MHz) as on-chip MM core for single precision
(double precision) arithmetic. Based on these, we obtain the
following power consumption values:

P.ore = 21.61 W (for 256 x 256 SP MM)
P.ore = 28.67 W (for 128 x 128 DP MM)
Ppprs, = Popr3, = 1.3 W
Prrro, = 2.40 W (for SP MM)
Priro, = 617 mW (for 256 x 256 SP MM)
Prrro, = 4.77 W (for DP MM)
Prrro, = 308 mW (for 128 x 128 DP MM)

Ppprs—ctri, = Pppr3—ciri, = 1.5T W

The time taken by the design is given by the time taken to
compute one output block x the number of output blocks.
Sequence of events over time for computing one block of
output matrix is shown in Fig. 11. The time taken to compute
one output block is ((n/m) x (m? + 2m))/F. So the time
taken by large-scale MM design is ((n/m)> x (m?+2m))/F.
Energy efficiency can be calculated as follows:

Energy efficiency = 2n®/(Pyrar X time)

Energy efficiency = (2n® x F)/(Pyar % (n/m)? x (m? 4 2m))

Time = 1 m?+2m+1 (n/m-1)(m?+2m)+1 (n/m)(m?+2m)+1
A oo Cx o i
. . E . 1

3 = : s = N

~ | | Q =
: a Asoll,1),By,4(1,J) : : : Ay oll, n/m), By, (n/m,J) G CyollJ)

= ! ! !
S || Agoll2),Boof1) ; ; E Agoll, n/m), By o(n/m,) : Coolhd)
: FIFO 1 : b FIFO 1 : FIFO 2

C,(1J) = C,(1.J) + A, (1) x By (1,)

c,1d)

C auxiliary array

C(lJ) = C(1,J) + A(l,1) x B(1,J)

On-chip MM core

K=n/m
For computing C(1,J) =5 A(l,K)xB(K,J)
K=1

CO;(1,J) = C;/{1,J) + A (l,n/m) x By j(n/m,)

C,(1J)

C auxiliary array
C(l,J) = C(1,J) + A(l, /im) x B(n/m, J)

Coy(LJ)

C transfer array

On-chip MM core
i=m j=m k=m
ALKB(KI)=S S SA, {1, K)xBy (K1)

i=1j=1 k=1

Fig. 11: Timing diagram of large-scale MM

Using the above equation for 8192 x 8192 MM, the energy
efficiency is 5.21 and 1.60 GFlops/Joule for SP and DP,
respectively.

D. Performance comparison

We compare our estimated energy efficiency of large-
scale MM on FPGAs with the energy efficiency of floating
point MM on C2075 GPUs. C2075 GPU has 448 cores,
each operating at 1.15 GHz frequency, and 6 GB of GDDRS5
SDRAM memory. The peak floating point performance for the
device is 1.03 TFlops/sec and 515 GFlops/sec for single and
double precision, respectively. Power consumed by the floating
point MMs on GPU has been reported in [8]. For SK x8K MM,
the energy efficiency values are 3.51 and 1.65 GFlops/Joule
for single precision and double precision, respectively. Single
precision MM on FPGAs is 1.48x more energy efficient than
that on GPUs. Double precision MM on GPUs is 1.03x more
energy efficient than MM on FPGAs.

VI. CONCLUSION

In this work we explored the energy efficiency of floating
point matrix multiplication on FPGAs. Memory power con-
sumption limits the scalability of the designs. We proposed
a minimal architecture to estimate the peak energy efficiency
of any matrix multiplication implementation. As the layout is
simple our implementations can achieve up to 73% and 84%
of the peak energy efficiency for single and double precision
arithmetic, respectively. We also extended our on-chip matrix
multiplication core to estimate the energy efficiency of the
large-scale matrix multiplication using external DRAM. In
the future, we plan to study optimizing memory energy for
improving energy efficiency of matrix multiplication designs.

REFERENCES
[1] A. Amira and F. Bensaali. An FPGA based parameterizable system for
matrix product implementation. In IEEE Workshop on Signal Processing
Systems, pages 75-79, 2002.

[2] J. Choi, D. W. Walker, and J. J. Dongarra. PUMMA: Parallel univer-
sal matrix multiplication algorithms on distributed memory concurrent

computers. Concurrency: Practice and Experience 6.7: 543-570, 1994.

Y. Dou, S. Vassiliadis, G. K. Kuzmanov, and G. N. Gaydadjiev. 64-
bit floating-point FPGA matrix multiplication. In Proceedings of the
ACM/SIGDA FPGA, pages 86-95, 2005.

G. H. Golub, and F. V. L. Charles. Matrix computations. Vol. 3. JHU
Press, 2012.

J. R. Hess, D. C. Lee, S. J. Harper, M. T. Jones, and P. M. Athanas.
Implementation and evaluation of a prototype reconfigurable router. In
proc. of IEEE FCCM, 1999.

J. W. Jang, S. B. Choi, and V. K. Prasanna. Energy-and time-efficient
matrix multiplication on FPGAs. IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, 13.11: 1305-1319, 2005.

Z. Jovanovi, and V. Milutinovic. FPGA accelerator for floating-point
matrix multiplication. IET Computers & Digital Techniques 6.4: 249-
256, 2012.

K. Kasichayanula, D. Terpstra, P. Luszczek, S. Tomov, S. Moore, G. D.
Peterson. Power aware computing on GPUs. In Application Accelerators
in High Performance Computing (SAAHPC), pp. 64-73, IEEE, 2012.
Micron DDR3 SDRAM System-Power
http://www.micron.com/products/support/power-calc.

(3]

[4]

[5]

(6]

(71

(8]

[9]

Calculator,
[10] I S. Uzun, A. Amira, and A. Bouridane. FPGA implementations of fast
Fourier transforms for real-time signal and image processing. In IEEE
Proceedings of Vision, Image and Signal Processing, Vol. 152, No. 3,
June 2005.

R. Scrofano, S. Choi, and V. K. Prasanna. Energy efficiency of FPGAs
and programmable processors for matrix multiplication. In Proceedings
of FPT, pages 422-425. IEEE, 2002.

Xilinx LogiCORE 1P Floating—Point Operator
http://www.xilinx.com/support/documentation/ip_documentation/
floating_point/v6_0/ds816_floating_point.pdf.

(1]

[12] v6.0,

[13] Xilinx Power Tools Tutorial, http://www.xilinx.com/support/

documentation/sw_manuals/xilinx11/ug733.pdf.

[14] Xilinx XPower Estimator User Guide, http://www.xilinx.com/support/

documentation/user_guides/ug440.pdf.
[15] L. Zhuo and V. K. Prasanna. Scalable and modular algorithms for
floating-point matrix multiplication on FPGAs. In Proceedings of 18th
IPDPS, page 92. IEEE, 2004.
L. Zhuo and V. K. Prasanna. Scalable and modular algorithms for

floating-point matrix multiplication on reconfigurable computing sys-
tems. IEEE TPDS, 18(4):433448, 2007.

[16]

