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Abstract—Statistical information of network traffic flows is
essential for many network management and security applica-
tions in the Internet and data centers. In this work, we propose
an architecture for a dynamically configurable online statistical
flow feature extractor on FPGA. The proposed architecture
computes a set of widely used statistical features of the network
traffic flows on-the-fly. We design an application specific data
forwarding mechanism to handle data hazards without stalling
the pipeline. We prove that our architecture can correctly process
any sequence of packets. Users can dynamically configure the
feature extractor through run-time parameter. The post place-
and-route results on a state-of-the-art FPGA device show that
the feature extractor can achieve a throughput of 96 Gbps for
supporting 64 K concurrent flows.

I. INTRODUCTION

Measuring statistical flow features is the basis of many
network management and security applications. State-of-the-
art solutions for traffic engineering in data center networks
achieve the best performance when per-flow statistics are avail-
able [1]. Statistics of network flows are also essential inputs to
machine learning based traffic classification algorithms. It has
been shown that using statistical flow features greatly improves
the accuracy of machine learning traffic classifiers especially
when classifying P2P applications [2]. Therefore, statistical
flow feature extraction is an essential service of the data plane
of the network.

In recent years, 100 Gbps networking is becoming a stan-
dard. Both the research community and the industry are tar-
geting 400 Gbps networks [3], [4]. The number of concurrent
flows in the networks is massive. Recent research shows
that the number is on the order of millions [5]. Because
of the huge amount of streaming data and the real-time
constraint on packet processing, it is desirable that the network
processing be performed online, in one pass over the data
stream. Therefore statistical feature extraction needs to be an
online service providing high throughput while supporting a
large number of concurrent flows.

Due to its extremely high parallelism and on-chip memory
bandwidth, Field Programmable Gate Array is well suited for
high performance network processing [6], [2], [7]. In this paper
we propose a dynamically configurable online statistical flow
feature extractor on FPGA. The feature extractor computes
a set of widely used flow features on-the-fly. To meet the
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requirements of various applications, the window size for
feature extraction is dynamically configurable. We evaluate
the throughput of our architecture on a state-of-the-art FPGA
device.

We summarize our main contributions as follows:

o Hardware solution for online statistical flow feature
extraction. A prototype implementation using BRAM
achieves a throughput of 96 Gbps while supporting 64
K concurrent flows.

e An application specific data forwarding mechanism to
handle data hazards in the pipelined architecture. The
mechanism ensures the correctness of the architecture
without stalling the pipeline.

o Seamless use of external SRAM to support large number
concurrent flows at the same throughput as the BRAM
based implementation.

The rest of the paper is organized as follows. Section 2
defines our problem. Section 3 reviews the related work in
statistical flow feature extraction. Section 4 describes our
online algorithms and the hardware architecture. Section 5
evaluates the feature extractor. Section 6 concludes the paper.

II. PROBLEM DEFINITION

Table I shows the definition of a representative set of flow
features. The proposed design computes these features on-the-
fly for each flow in the network. In Table I, P; is the packet
information of the i*" input packet of a flow. P; can be packet
size, time stamp, etc. These flow features have been widely
used in recent researches [8], [2], [9]. The feature extraction
is performed within a predefined window for each flow. The
flow features are reported once the extraction is completed.

In online feature extraction, each packet needs to go
through three steps: packet capturing, flow labeling and feature
computation [10]. In packet capturing the necessary header
information is retrieved from the packet. In flow labeling
the retrieved packet information is attached with a flow ID
based on the packet’s 5-tuple information. During the feature
computation, each feature value of the corresponding flow is
updated using the header information of the input packet. We
focus on feature computation in this work. We assume that
packet capturing and packet labeling are handled by preceding
systems.

The proposed design supports a dynamically configurable
parameter, WindowS'ize, to define how many packets should
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TABLE I: List of Statistical Features

Total number of packets N

Sum of the values

i B

N-—-1
Zizg Pi
N

Average value Avgp =

SN (Pi—Avgp)?

Variance of the values Vary, =

N
Maximum value Praz = maz {P;}
€[0,N-1]
Minimum value Pmin = min {P;}
1€[0,N—1]

be processed before reporting the feature values of the flow
identified by the current input FlowID.

III. RELATED WORK

There have been few efforts in measuring network flow
statistics in the research community [10] as well as in the
industry [8].

In [10], the authors propose an open source parallel software
tool for extracting feature values of network flows in real-time.
They implement their algorithm on serial, parallel, pipelined
and hybrid architectures. Through analysis and experiments,
they compare the performance of the four architectures and
provides insight into the parallelized feature extraction in
software. However, they only achieve a throughput of 750
Mbps. This is not sufficient to meet the data rates in current
networks.

Cisco Netflow [8] is a standard network protocol for col-
lecting IP traffic information. It is the most widely used flow
measurement solution at the present time. Netflow has two
drawbacks. First it only reports the flow record when the flow
ends. This prevents it from serving many network security
applications which need to make a decision at an early phase
of the flow. Second, it cannot process every packet on high
bandwidth links. Sampling techniques to handle high speed
links cannot guarantee high accuracy of the flow features.

We are not aware of any prior application specific ar-
chitecture for flow feature extraction which achieves high
throughput, supports large number of flows, and accurately
computes the flow features at the same time.

IV. ALGORITHM AND ARCHITECTURE
A. Algorithms and pipelined architecture

In the proposed design, we store the partial results and
update them based on the input packet information. The partial
results are stored in a Partial Results Table (PRT). Each entry
of this table contains partial results of a flow. The FlowID
is used as the index to access the table.

During feature extraction, the architecture updates the par-
tial results according to the input packet information. Some
of the operations in Table I need to be performed every
time the PRT entry is updated. Other operations only need
to be performed once when the feature values need to be
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Fig. 1: Pipelined architecture of the feature extractor

reported. For average value, Avgp = % , only the sum
operation needs to be performed for every update. The division
only needs to be performed when the feature value needs to
be reported. For variance, we can modify the definition as
Varp = W# Avgpe — Avgd = ZTPZ _
Avg?. In this new equation, only the sum of the squares of the
input value needs to be performed for every update. The square
of Avgp, the division and the subtraction can be performed
only once when the feature value needs to be reported. The
operations of the pipeline stages are shown in Algorithm 1.

We map Algorithm 1 into a 4 stage pipeline as illustrated
in Figure 1. In Stage 1, the input FlowID is used as
the physical address to retrieve the partial result from the
memory. In Stage 2, the partial result associated with the
input FlowlID is updated. In Stage 3, the updated partial
result from Stage 2 is written back into the memory. In Stage
4, one-time operations are performed to complete the feature
extraction. In the proposed architecture the memory read/write
and the computation take one clock cycle each. The Data
Forwarding Unit (DFU) forwards the correct partial results
into the Computation stage. It is discussed in detail in Section
IV-B.

B. Forwarding mechanism

In the online algorithm, each incoming packet updates the
most recent partial results of a flow with the same FlowlID.
Therefore, a data hazard occurs if a packet enters the pipeline
before the previous packet with the same FlowlD has exited
the Memory Write stage. To handle these data hazards, we
design a Data Forwarding Unit (DFU) to forward the correct
partial results into the Computation stage.

1) Single cycle memory access: The architecture of the
DFU for memory with single cycle access latency is shown in
Figure 2. Two comparators determine whether the FlowlIDs
at the Memory Read and the Computation stage match the
FlowID at the Memory Write stage. When no match occurs,



Algorithm 1 Operation for online feature extraction

For a flow identified by a certain FlowlID

Let WindowSize = the window size for feature extraction
Let NumPkts = the number of processed packets

Let M ax/Min = the maximum/minimum PacketIn fo in the
current window

Let Sum = the sum of PacketIn fo since the start of the flow
Let SumSqr = the sum of the squares of PacketInfo since
the start of the flow

Stage 1: Memory Read

1: Retrieve partial results of the FlowID from memory
2: PacketInfoSqr = PacketInfox PacketInfo

Stage 2: Computation

1. if PacktInfo > Max then
2:  Max = PacketInfo
3: end if
4. if PacktInfo < Min then
5. Min = PacketInfo
6: end if
7: NumPkts = NumPkts + 1
8: Sum = Sum + PacketInfo

9: SumSqr = SumSqr + PacketInfoSqr
Stage 3: Memory Write

1: if NumPkts == WindowSize then

22 Max =0

3:  Min = Maximum possible value of PacketInfo

4. NumPkts =0

5 Sum=0

6:  SumSqr =0

7: end if

8: Write Max, Min, NumPkts, Sum, SumSqr back into
memory

Stage 4: Post-Computation Processing

1: if NumPkts == WindowSize then
2. Avg = Sum/NumPkts

3 Var = SumSqr/NumPkts — Avg?
4:  report Max, Min, Sum, Avg, Var
5 Set the FeatureValuesValid flag
6: end if

Multiplexer 1 (MUX 1) forwards the partial results from the
PRT as the output of the Memory Read stage and Multiplexer 2
(MUX 2) forwards the output of the Memory Read stage to the
Computation stage. If a match occurs between the FlowlIDs
of the Memory Read stage and the Memory Write stage,
Multiplexer 1 forwards the partial results from the Memory
Write stage as the output of the Memory Read stage instead of
the partial results from the memory. If a match occurs between
the FlowIDs of the Computation stage and the Memory
Write stage, Multiplexer 2 forwards the partial results from
the Memory Write stage into the Computation stage instead
of the partial results from the Memory Read stage.

2) Multi-cycle memory access: The DFU for memory with
multi-cycle access latency is shown in Figure 3. We assume
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Fig. 2: DFU for single cycle memory access

that the memory can support a read and a write operations in
each cycle. The DFU contains shift registers to store the previ-
ously updated partial results and their associated FlowlIDs. In
each clock cycle, the current partial result and the FlowID at
the Memory Write stage are pushed into the data forwarding
unit, all the entries in the shift registers shift to the end and the
oldest partial result and FlowlID are removed. In each clock
cycle, the FlowID in the Computation stage is compared with
all the FlowlIDs stored in the DFU. If a matching FlowID
is found, then its associated partial result is forwarded into the
Computation stage instead of the partial result returned by the
memory. In the case that multiple matches occur, the partial
result associated with the most recent matching FlowlID is
forwarded. A priority encoder is used to give higher priority
to a more recent FlowID and partial result for generating
the select signal to the multiplexer. Therefore, the multiplexer
always picks the partial result of the most recent FlowlID
among all the matching FlowI Ds.

C. Pipelined PRT access

If we use a single BRAM block to store the PRT, we need
to implement a large BRAM block. On FPGA, a large BRAM
block is configured by concatenating small BRAM blocks. The
long wires significantly increase the routing delay, which in
turn degrades the clock rate.

To increase the clock rate we map the PRT into a pipeline.
An example of the mapping is shown in Figure 4. The PRT
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in the example has 8 entries and is mapped into a two stage
pipeline. Generally, if the pipeline has 2 stages, then the
first M bits of the PRT entry index (i.e. the FlowID of the
flow store in the entry) are used as the stage index. The PRT
entries with the same index are stored in the same stage. The
rest of the bits of the entry index are used as the physical
address to store the entry in that stage. In any stage, when the
first M bits of the input FlowlD match the stage index, the
memory read and write are performed. Since each stage keeps
1/2M of the PRT entries, the access latency in each pipeline
stage is much lower than keeping the entire PRT in a large
BRAM block. The memory access in the pipelined BRAM
takes multiple clock cycles.

D. Proof sketch

In this section, we prove that the proposed DFU can ensure
the correctness of the computation without stalling the pipeline
for any input sequence of FlowlIDs.

1) Single cycle memory access: As described in Section
IV-A, memory read/write and the computation take one clock
cycle each. Therefore during any clock cycle there are 4
packets in the pipeline. So we only need to consider a window
of 4 packets in the input sequence. Let N denote the size of
the number of packets in the input stream. Let P,, denote the
n*" packet in the input sequence, n € [1, N]. For a window of
4 packets, P, through P, _s, there are 3 basic cases in which
data hazard can occur:

e Case 1: P, and P, _1 have the same FlowID.
e Case 2: P, and P,,_5 have the same FlowlID.
e Case 3: P, and P,,_3 have the same FlowID.

Other cases can be viewed as a combination of these cases.
For example, if P,, P,_1 and P, _3 have the same FlowlID,
then this case can be viewed as Case 1 followed by Case 2.
In Case 3, when P, enters the Memory Read stage, P, _3
has already completed the memory write. The updated partial
results are available for P,,. Therefore, Case 3 does not cause
a data hazard.

Figure 5 illustrates how the DFU handles the data hazard in
Case 1. When P, enters the Memory Read stage, the correct
partial results are being updated by P, _; in the Computation
stage. So the partial results returned from PRT are not the
correct data to be used. During this clock cycle no match of
FlowlIDs is detected by the DFU. Therefore, as described
in Section IV-B, the incorrect partial results from the PRT are
forwarded as the output of the Memory Read stage. During the
next clock cycle P, enters the Computation stage and P,
enters the Memory Write stage. The DFU detects the matching
FlowlIDs between the Computation stage and the Memory
Write stage. It then forwards the correct partial results from
the Memory Write stage into the Computation stage. Thus, P,
is processed based on the correct partial results.

The correctness of the computations for Case 2 can be
proved similarly. The DFU directly forwards the partial results
from the Memory Write stage to either Memory Read stage or
Computation stage in one clock cycle. Therefore no stalling
is required.

2) Multi-cycle memory access: In this section we prove
that the DFU introduced in Section IV-B2 can ensure the
correctness of the architecture without stalling the pipeline
regardless of the memory access latency. We assume that
the latency for memory read and write is R and W cycles
respectively.

As described in Section IV-B2, the DFU can make sure
to forward the most recent partial result stored in the shift
registers which has the same FlowID as the input FlowlD
to the Computation stage. Therefore, for a given input, as long
as we store a sufficient number of previously updated partial
results to cover all possible data hazards, the correctness of
the computation can be guaranteed.
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Figure 6 illustrates the processing of R + W + 2 packets.
When P, enters the pipeline, P, _r_w_1 just completes
the memory write. So the partial results updated using the
packets before P,,_pr_y are available to P, at the Memory
Read stage. Therefore data dependencies between F,, and the
packets before P,,_pr_y do not cause data hazards. We don’t
need to store these partial results in the DFU.

Partial results updated using P,,_r_; through P,,_; are not
available to P,, at the Memory Read stage since they are either
in the Memory Read stage or in the Computation stage. We
need to store these partial results in the DFU.

The availability of the partial results updated using
P,_p_w through P,_gr_o depends on the memory. If we
use a general memory with W-cycle write latency, the data
to write into the memory is not available for retrieving until
the operation is completed in W cycles. Using such a device,
the partial results updated using P,_r_w through P,_p_o
cannot be available to P, in the Memory Read stage. We
need to store these partial results in the DFU. If we use the
pipelined BRAM access described in Section IV-C (R = W),
the memory write at each stage takes one cycle. When P,
reads from any BRAM stage all the partial results written
into that stage during the previous clock cycles are available
for retrieving. Therefore, the partial results updated using
P,_gr_w through P,,_pr_» are available to P,. We don’t need
to store these partial results in the DFU.

Given the analysis in this section, we can configure the DFU
as follows to ensure the correctness of the computation:

o For memory with R-cycle read latency and W -cycle write
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Fig. 6: Processing of R + W + 2 packets using memory of
multi-cycle access latency

TABLE II: Clock rate for various partial table sizes

PRT size (# of flows) 32K | 64K | 128K | 256 K
Clock rate (MHz) 250 153 135 89

latency, store the most recent R + W + 1 partial results
and their FlowIDs in the DFU.

o For pipelined BRAM access with R-cycle read latency
and W-cycle write latency (R = W), store the most
recent R + 1 partial results and their FlowIDs in the
DFU.

V. EXPERIMENTAL RESULTS
A. Experimental setup

We implemented the proposed design on FPGA. Our target
device is Virtex-6 XC6SX475 with -2 speed grade. The
implementation uses only on-chip Block RAM for storage.
BRAM can be configured to be single or dual ported with
various word sizes. In the proposed design, each BRAM block
has two Read/Write ports. We use one port as the read port,
and the other as write port to realize concurrent read and
write. All reported results are post place and route results using
Xilinx ISE 14.2.

B. Throughput

Table II shows the clock rate for various PRT size (#
of flows). As the PRT size grows, the clock rate drops
dramatically. This is because of the complex routing in large
BRAM blocks as mentioned in Section IV-C.

Table III shows the clock rates after pipelining the PRT
access using 16 stages. The clock rate for all PRT size is
significantly improved compared with the non-pipeline PRT
access. As shown in Table III, when PRT is small, using 8
pipeline stages achieves higher clock rate than using 16 stages.
When PRT is large, using 16 stages achieves higher clock rate.
This is because as we increase the number of pipeline stages



TABLE III: Impact of pipelined PRT access on clock rate

PRT size (# of flows) | 32 K | 64 K | 128 K | 256 K
8 stages 355 303 200 132
16 stages 291 256 237 220

TABLE IV: Impact of number of bits to represent the input
packet information on clock rate

PRT size (# of flows) | 32K | 64 K | 128 K | 256 K
16 bits 291 256 237 220
12 bits 271 274 236 246
8 bits 259 280 229 247

to decrease the latency in each PRT stage, we need to increase
the width of the priority encoder in the DFU. The wider the
priority encoder, the longer the latency it adds to the DFU.
This lowers the working frequency of the entire pipeline. So
when we increase the number of pipeline stages from 8 to 16:

o For small PRT, the latency in each PRT stage becomes
smaller than the latency in DFU. Due to the increased
latency in DFU, the clock rate drops.

o When the PRT is large, the latency in each PRT stage
stays larger than the latency of each DFU stage. Due to
the decreased latency of each PRT stage, the clock rate
increases.

Therefore, to optimize the throughput, we need a larger num-
ber of stages for a large PRT than for small PRT. Assuming
a minimum packet size of 40 bytes, for supporting 64 k
concurrent flows, the architecture achieves a throughput of 96
Gbps.

We also implemented the architecture using different num-
ber of bits to represent the input packet information. The
results are shown in Table IV. The architecture sustains high
frequency for all the bitwidth in Table IV.

The architecture can also be implemented using external
SRAMs to support a large number of concurrent flows. DDR2
SRAM can work at over 400 MHz with 36-bit data width
and a burst length of 2 [11]. Using a dual ported SRAM
interface, the SRAM controller allows two read and two write
operations per cycle at over 200 MHz. Considering two sets
of SRAM chips and interfaces, we can read and write 144
bits per clock cycle. This memory bandwidth is sufficient to
support the architecture to operate at 200 MHz. If we use
two 72 Mb DDR2 SRAM chips, with a burst length of 2 and
memory address width of 20 bits, we can support up to 1
Million concurrent flows.

VI. CONCLUSION

In this paper, we proposed a pipelined architecture for online
statistical feature extraction. The proposed architecture can
support both functions at a throughput of 96 Gbps while
supporting 64 K concurrent flows using BRAM. If we use
external SRAM, then the number of supported flows can be
increased, bounded only by the capacity of the memory.

The architecture can be extended to perform online heavy
hitter detection [12], [13]. A heavy hitter is a traffic flow whose

activity accounts for more than a pre-defined proportion of the
total activity by all the flows. The PRT can be used to store
the total activity of each traffic flow. The Computation stage
can be extended as the counter for the activity of each traffic
flow. The Post-computation stage can be extended to check
the total activity of each traffic flow against the threshold for
heavy hitter detection.

As future work, we will generalize our assumptions on the
latency of Computation stage and the DFU to multiple clock
cycles. The generalized assumption will enable us to design a
deep pipelined Computation stage, which may achieve higher
throughput than the proposed architecture in this work. We will
also extend our architecture to support sketch based network
measurement applications [14].
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