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Abstract—Stochastic Rotation Dynamics (SRD) is a novel
particle-based simulation method that can be used to model
complex fluids [1], [2], such as binary and ternary mixtures [3],
and polymer solutions [4]–[6], in either two or three dimensions.
Although SRD is efficient compared to traditional methods, it
is still computationally expensive for large system sizes, e.g.
when using a large array of particles to simulate dense polymer
solutions. Recently, as the power offered by Graphics Process-
ing Units (GPUs) has risen, General Purpose GPU (GPGPU)
computing has been introduced as an effective way to improve
performance for parallel computation tasks. This work focuses
on the acceleration of SRD simulations using Nvidia’s GPGPU
architecture, CUDA. We find that while the speed improvements
delivered by GPU acceleration vary with the simulation version
and parameters used, our GPU implementation runs around 10
times faster than the CPU version for basic simulations, and up
to 50 times faster for polymers in solution.

Index Terms—CUDA, GPU, SRD, MPCD, parallel computing

I. INTRODUCTION

Computer simulations are widely used in scientific research.
Quite often simulations become computationally intensive
and thus require large cluster computing architectures with
expensive hardware. Even with these powerful computation
resources, large scale simulations of fluids with embedded
objects, such as modeling of red blood cells in flow [7], [8],
or spermatozoa in channels [9], [10], can take up to several
months to obtain satisfactory results.

Compute Unified Device Architecture (CUDA) program-
ming [11]–[13] makes it possible to parallelize a program to
run on the many cores of a GPU. In a GPU implementation,
the program is divided into small parts that run in many
threads independently and simultaneously. Thus it is possible
to accelerate the simulation by parallelizing the computing
tasks on a GPU instead of using expensive computer clusters
[14]–[16].

In this paper we focus on accelerating a novel particle-based
fluid simulation technique called Stochastic Rotation Dynam-
ics (SRD). Also known as Multi-Particle Collision Dynamics
(MPCD), SRD was originally proposed by Malevanets and
Kapral [1], [2]. SRD is an ideal computational tool for solving
the underlying thermo-hydrodynamic equations by providing a
“hydrodynamic heat bath” which incorporates thermal fluctu-
ations and has the correct hydrodynamic interactions between
embedded particles or polymers. The method does not suffer
from instabilities found in methods such as Lattice-Boltzmann,

finite-difference and finite-element approaches [6]. Further-
more, its simplicity has made it possible to obtain analytic
expressions for the transport coefficients [17]–[20], something
that is often very difficult to do for other mesoscale particle-
based algorithms. SRD has been an excellent tool to study
various problems in soft matter physics in the past decade.
Notable applications include polymer solutions [2], [4], [6],
colloids including sedimentation [21], [22], vesicles and star
polymers in shear flow [23], and modeling of swimming of
fish [24], and spermatozoa [10]. In this paper, we show how
this technique can be implemented on the GPU to improve its
performance.

II. THE ALGORITHM

A. The solvent

In the SRD method, the fluid is divided into boxes with side
length l. If we denote the number of boxes in one dimension
with N , and the number of particles in each box with n, there
are nN2 particles in the simulation box in two dimensions.
Each particle has a mass m, coordinate ~r = (x, y), and
velocity ~v = (vx, vy). We can calculate which box a particle
belongs to using its coordinates. Fig. 1 illustrates a sample
simulation grid with the randomly distributed particles and
representative velocity vectors.

Figure 1. Example SRD grid showing the particles, and an embedded polymer.
Particle velocities are shown with arrows.

The dynamics consists of two steps: (i) streaming, and (ii)
collision. In the streaming step, the particles move according
to

x(t+ ∆t) = x(t) + vx(t)∆t
y(t+ ∆t) = y(t) + vy(t)∆t

(1)

where ∆t is the time step.
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In the collision step, we calculate the average velocity of
each box, given by

~U =
1

n

∑
~v(t) . (2)

A rotation matrix for each box is then generated, i.e.,

R =

(
Wxx Wxy

Wyx Wyy

)
=

(
cosα ± sinα
∓ sinα cosα

)
(3)

where α is the rotation angle, and the direction of the rotation
is chosen stochastically. The velocities of the particles are then
updated using

(
vx(t + ∆t)
vy(t + ∆t)

)
=

(
Ux

Uy

)
+

(
Wxx Wxy

Wyx Wyy

)
·
(
vx(t) − Ux

vy(t) − Uy

)
(4)

And the algorithm repeats with the streaming step.
The algorithm conserves mass, energy and momentum [6].

In order to insure Galilean invariance, a grid shift opera-
tion is implemented before the collision step [25]. This is
done by randomly offsetting particle coordinates in the range
[−l/2, l/2] for each collision step. In the simulations presented
in this paper, periodic boundary conditions are used.

B. Embedding of Polymers

We model polymers using a semi-flexible bead-spring
model, using standard fluid particles as the polymer beads.
The total energy of the polymer is given by

U = Uspring + Ubend (5)

where Uspring is the potential that controls stretch-
ing/compression of the polymer backbone given by

Uspring =
k

2

∑(
|~Ri−1 − ~Ri| − `0

)2
(6)

and Ubend is the bending energy that controls the degree of
bending. The bending potential is defined as

Ubend = − κ
`0

∑(
~Ri−1 − ~Ri

)
·
(
~Ri − ~Ri+1

)
|~Ri−1 − ~Ri||~Ri − ~Ri+1|

. (7)

Here ~Ri is the position of the polymer bead i, `0 is the rest
length of the springs, k is the bond spring constant, and κ is
the bending rigidity. Fig. 1 gives an example of how a polymer
is embedded in the SRD simulation grid. In the simulations the
spring potential is kept strong enough to ensure the polymer
length does not change more than one percent, mimicking rigid
bonds. The equations of motion for the polymer are solved
using a Velocity-Verlet scheme [26] for several intermediate
time steps in between consecutive solvent streaming steps
given by Equation 1.

For certain applications, it is also desirable to have non-
crossing polymers. This is implemented with a short-range
repulsive truncated-shifted Lennard-Jones potential [27] be-
tween every point on every polymer. Fig. 2 illustrates the
forces between polymers.

Figure 2. Illustration of forces between node particles between different
polymers.

III. GPU IMPLEMENTATION

A. Initializing the simulation

We use a function on the CPU host for initialization, because
the initialization functions are executed only once and their
execution time is short compared to the full simulation time.
Vector variables in Euclidean space, such as positions and
velocities, are represented as double-precision floating point
coordinates along the x and y axes for the two dimensional
simulations, and with an additional z component for the three
dimensional simulations. For the purpose of simplicity, we
mainly discuss the two dimensional case here, as it is relatively
easy to extend the approach to three dimensional simulations.

The field is divided into boxes. The box structure has the
following properties: a momentum vector, number of particles
inside the box, and the direction of random rotation for that
box for that time step. Each box has multiple particles. The
particle structure has the following properties: a coordinate
vector, a velocity vector, mass, and an integer vector to
record how many times the particle has crossed the periodic
boundaries. We use one array to store the particles and another
array to store the polymers. Although each polymer is an array
of particles, we still use a one-dimensional array to store all
the particles for all polymers, for the convenience of the GPU
implementation, i.e.,

i = ipoly × n+ ipart (8)

where i is the index of the particle in the one-dimensional
array, n is the number of node particles in a polymer, ipoly is
the index of the polymer and ipart is its index in that polymer.

Upon initialization, the arrays of boxes, particles and poly-
mers are stored in the host memory. We then copy these arrays
to global memory using the cudaMemcpy( ) function.
The data stays in the global memory until the simulation is
complete, avoiding having to copy between host and GPU
memory at every time step, which is time consuming.

B. SRD kernels

The particle (solvent) simulation loop is outside the kernel
because each iteration depends on the results of previous iter-
ation, requiring each step to be sequential. For each iteration
of the particle simulation, the following 4 kernel functions



are launched. The first one is kernel_ResetBoxes( ).
It runs with one thread per box. For each box, it resets the
mean momentum and particle count to zero. The second one
is kernel_SumMomenta( ). It runs with one thread per
particle. For each particle, it locates the box in which the par-
ticle belongs, based on the particle’s position and the current
grid-shift. It then adds that particle’s momentum to the total
momentum of the box, and increments the number of particles
in that box. Since the particle to box mapping is unpredictable,
this addition is done using double precision atomic operations
[28]. The following function is kernel_DivideBoxes(
), again running with one thread per box. For each box, it
calculates the mean momentum of the ith box

~ui = ~pi/ci (9)

where ~pi is the total momenta and ci is the counted number
of particles of the ith box. The function also generates the
random direction r = ±1 for the rotation matrix.

Finally, we have the kernel_Collide_Move( ) func-
tion. In this step, we combine the streaming and collision steps
into a single kernel function to save on synchronization and
GPU kernel initialization time. Particles move with their given
velocities during time step ∆t, after which they collide, as
described in Eq (4). Fig. 3 shows the procedure of the GPU
code for the SRD simulations.

Figure 3. Flowchart of the GPU implementation of the SRD algorithm.

C. Polymer kernels

The nature of the polymer’s simulation style
complicates the GPU implementation. The separate,

iterated Velocity-Verlet steps require a separate GPU
kernel. Therefore, kernel_Collide_Move( ) is
split into kernel_Collide( ) and kernel_Move(
). kernel_Collide( ) works on both particles
and polymers. kernel_Move( ) is only used
for solvent particles. A new kernel function called
kernel_MolecularDynamics( ) is created for
polymers. To achieve effective synchronization, we assign
one block to each polymer. This allows us to synchronize the
block between each iteration without terminating the kernel.
In addition, faster shared memory is used for communication
among threads within the same block.

As previously mentioned, the time step for calculating
forces and simulating the movement of the polymer particles is
much smaller than the regular SRD time step. For every small
time step, the forces of every two node particles are calculated
using device function calcForce( ). Since the force on a
particle depends on its location relative to its neighbors, each
thread needs a synchronized view of its neighbors. Each thread
has access to the shared memory handled by other threads
within the same block, and thus the particles in shared memory
are shared. During time steps, we use __syncthreads( )
to synchronize within the block, ensuring a consistent particle
state.

At the beginning of the molecular dynamics time step, we
call the device function calcForce( ) to compute forces.
This is followed by a loop consisting of the movement update
portion of Velocity-Verlet, another force calculation, and then
the velocity update portion. This is repeated as necessary for
the Velocity-Verlet movement step to occupy as much time as
the Eulerian movement step it replaces. Once complete, the
polymers are written back to global memory.

Figure 4. Flowchart of polymer simulation

D. Lennard-Jones algorithm

The kernel_molecularDynamics( ) function only
concerns the interactions between the node particles in
the same polymer. When we wish to use the Lennard-
Jones interaction between polymers, the situation is fur-
ther complicated, due to the large number of particles
(more than can be simulated by a single block) that re-
quire consistent synchronization. As a result, we convert the
kernel_MolecularDynamics( ) function into several
kernel functions and use a host-side loop to handle the small
time step. Intra-polymer forces are calculated normally, and



a separate kernel_Lennard_Jones( ) function handles
the external interactions. In this kernel function, each thread
checks its pair of node particles, and if necessary applies a
force to both. If so, we calculate the forces and use double-
precision atomic operations to update the forces because they
may also be updated by other threads. Fig. 5 illustrates the
polymer kernels with Lennard-Jones algorithm included in the
simulation.

Figure 5. Flowchart of polymer simulation with Lennard-Jones algorithm
included

E. Finalizing the simulation

When the simulation is completed, we need to verify the
results. First, we copy the data from device memory back
to host memory using cudaMemcpy( ). Then we run a
function to compute the total momenta and energy of all the
particles as well as polymers to verify energy and momentum
conservations. Finally, we release the occupied memory on the
GPU using cudaFree( ) function.

IV. PERFORMANCE EVALUATION

During our experiment, we measure the computing per-
formance on the server with two Intel Xeon X5650 CPUs
(2.66GHZ, 12 cores, hyperthread) and two nVidia Tesla C2050
(1.15 GHz, 448 cores) GPUs with Compute Capability 2.0.
Initializing and finalizing time is ignored in both CPU and
GPU evaluations. There are no memory copy operations
during the computation. The overhead of launching kernels
is included in order to get the overall timing results. The CPU
version used as a comparison is a high-performance single-
threaded code, designed to be run in a parallel-experiment
environment. Its performance is primarily memory-bound (in
experiments small enough to fit entirely in CPU cache–less
than 100,000 particles–a 3x speedup is observed), making a
multi-threaded version perform worse on most parameter sets
than this single-threaded version.

A. SRD performance

The speedup of our CUDA code varies for different pa-
rameters in the simulation. The number of boxes in our
2D simulation and the number of particles in each box are
significant. All computations use double-precision floating-
point. One thousand iterations are performed. Fig. 6 shows
the execution time of CPU over GPU, which is essentially
the speedup factor of GPU over CPU, for the simulations
with different grid size and each grid initially contains 9
particles. So the largest case of 500-by-500 grid simulates the
movement of a total of 2.25 million particles. Fig. 7 shows the
same performance comparison for a fixed grid size of 128-by-
128 while varying the number of particles in each grid. The
largest case here is about 4.92 million particles in total. Since
the GPU has a large, high-speed (GDDR5) memory, much
larger simulation case can be executed on the GPU without
significant performance degradation. Both figures show that a
10x speedup is readily achievable by using a single GPU when
compared to the CPU. Further speedup is achievable through
the use of multiple GPUs and also by further optimization of
the GPU code.
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Figure 6. Speedup of GPU over CPU with different SRD grid size
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Figure 7. Speedup of GPU over CPU for SRD with different number of
particles in each grid

We also tested our code in three dimensional cases. Table
I shows the speedup in 3D grids. We can see that the
performance is similar to that of 2D grids.

The total number of the particles increases rapidly with the
grid size and thus we need to pay attention to the maximum
number of blocks we can have in a kernel function. Since



Table I
SPEEDUP OF GPU OVER CPU IN 3D GRIDS

hhhhhhhhhhhParticles per box
Grid size

163 323 643

5 5.03 9.42 12.70
25 5.50 8.42 7.71

our Tesla C2050 has compute capability of 2.0, the maximum
number of x-dimension of thread blocks is 65535, which is
216−1. With 512 threads in one block, the maximum number
of threads we can have is approximately 225 in total. If the
grid size is N3 and we have n particles in one box, the total
number of particles will be nN3 which must be less than
29×

(
216 − 1

)
. This is because the number of particles is much

larger than that of boxes, and in some of the kernel functions
we use one thread for each particle. In order to process larger
grid with more particles in one box, we may let one thread to
handle several particles with a loop inside the kernel. However,
such loops themselves are not run in parallel, so there will be
no contributions of these additional particles.

Some new GPUs have compute capability of 3.0 or higher,
delivering a maximum number of 232−1 thread blocks, which
effectively eliminates the thread limitation.

B. Performance of polymer simulation

As before, the speedup depends on several parameters in the
simulation. Besides the previously mentioned parameters, the
number of polymers and number of particles per polymer are
also important. We test this with the 2D version, with different
number of polymers added and with different number of node
particles per polymer. The execution time is much longer for
both the CPU and GPU, but the speedup is much higher. Table
II shows the speedup with 5 particles per box and grid size
1282. Table III shows the speedup with 5 particles per box
and grid size 2562. We can see that the speedup increases
with the number of polymers and number of node particles
per polymer. This indicates that short-timestep polymer loop
kernel has an even larger advantage over the CPU than the
regular SRD kernels do.

Table II
SPEEDUP OF GPU OVER CPU WITH POLYMERS ADDED IN GRID WITH SIZE

1282

hhhhhhhhhhhhhPolymers
Particles per polymer

32 64 128 256 512

1 4.95 5.20 5.38 6.43 7.29
10 7.47 9.14 13.90 23.57 35.92
20 7.07 10.39 16.37 29.87 44.82
30 6.61 10.83 18.18 32.40 49.17
40 8.06 13.19 24.11 41.39 62.45
50 7.47 12.74 23.70 42.02 63.25

Since the computation tasks of molecularDynamics(
) are intensive and it is well parallelized on GPU, the speedup
result is impressive.

Table III
SPEEDUP OF GPU OVER CPU WITH POLYMERS ADDED IN GRID WITH SIZE

2562

hhhhhhhhhhhhhPolymers
Particles per polymer

32 64 128 256 512

1 9.55 9.61 9.84 10.09 10.10
10 10.61 11.77 13.98 17.63 24.88
20 9.68 11.81 15.63 22.63 32.66
30 9.43 11.69 16.61 25.68 37.76
40 10.17 13.31 19.92 31.92 47.89
50 9.55 13.37 20.19 32.77 49.36

C. Performance with Lennard-Jones algorithm included

While splitting the kernel function solves the synchroniza-
tion issue, it does degrade performance. It is easy to see this
from Table IV. There is only one polymer in the grid, which
means that there is no need to use Lennard-Jones algorithm.
The grid size is 1282 and there are 5 particles in one box.

Table IV
SPEEDUP OF GPU OVER CPU WITH OR WITHOUT LENNARD-JONES

ALGORITHM

hhhhhhhhhhhhhhhSplitting kernels

Particles per polymer
32 64 128

No 9.55 9.61 9.84
Yes 0.64 0.64 0.70

On the other hand, when there are many polymers, this puts
a large load on kernel_Lennard_Jones( ), due to the
necessity of comparing every pair of polymer particles. While
this is a problem for the parallel GPU implementation, it still
handles it better than the CPU implementation, and thus we
are still able to achieve a significant speedup.

Table V shows the speedup with 5 particles per box and
grid size 1282. We can see that the performance is increasing
with the number of polymers and number of node particles
per polymer, again indicating that the GPU favors the polymer
loops.

Table V
SPEEDUP OF GPU OVER CPU WITH LENNARD-JONES ALGORITHM

INCLUDED IN GRID WITH SIZE 1282

hhhhhhhhhhhhhPolymers
Particles per polymer

32 64 128

1 0.64 0.64 0.70
10 5.11 15.51 36.78
20 15.94 34.86 59.00
30 25.69 43.09 55.00
40 32.80 47.86 48.31
50 36.54 43.75 43.75

Compared with Table II which has the same grid size and
number of particles per box, we can see that the speedup is
minorly affected, but still achieves satisfying results. With
the speedup is from 5 up to 43, the simulation is highly
accelerated.



V. CONCLUSIONS

In this paper, we describe the particle-based SRD method
along with modeling of polymers. We implement the algorithm
in CUDA to improve its performance with a GPU, and
compare it directly to the production-ready CPU implemen-
tation. We observe how different parameters, such as grid
size and dimension, particle density, polymer length, and
polymer density affect the comparative performance of both
version. While we see a significant improvement, we could
see further improvements by optimizing our kernel functions,
data structures and even the algorithm itself. For example, in
the Lennard-Jones algorithm, most node particles are outside
of the interaction distance, and could be culled without a full
test, giving a higher density of GPU threads processing real
interactions.

The GPU approach achieves a speedup of 10 times over
the CPU alone for basic SRD simulations, while once poly-
mers are added, it increases up to 60 times, and 40 times
with Lennard-Jones algorithm included. In conclusion, GPU
acceleration is a cost-effective, high-performance computing
method that is well-fitted for simulations in scientific research,
especially for large-scale simulations taking weeks or months
on conventional CPU-based software.
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