
Re-Introduction of Communication-Avoiding

FMM-Accelerated FFTs with GPU Acceleration

M. Harper Langston, Muthu Baskaran, Benoı̂t Meister, Nicolas Vasilache and Richard Lethin

Reservoir Labs Inc.

New York, NY 10012

Email: {langston,baskaran,meister,vasilache,lethin}@reservoir.com

Abstract—As distributed memory systems grow larger, com-
munication demands have increased. Unfortunately, while the
costs of arithmetic operations continue to decrease rapidly,
communication costs have not. As a result, there has been
a growing interest in communication-avoiding algorithms for
some of the classic problems in numerical computing, includ-
ing communication-avoiding Fast Fourier Transforms (FFTs).
A previously-developed low-communication FFT, however, has
remained largely out of the picture, partially due to its reliance
on the Fast Multipole Method (FMM), an algorithm that typically
aids in accelerating dense computations. We have begun an
algorithmic investigation and re-implementation design for the
FMM-accelerated FFT, which exploits the ability to tune precision
of the result (due to the mathematical nature of the FMM)
to reduce power-burning communication and computation, the
potential benefit of which is to reduce the energy required
for the fundamental transform of digital signal processing. We
reintroduce this algorithm as well as discuss new innovations
for separating the distinct portions of the FMM into a CPU-
dedicated process, relying on inter-processor communication for
approximate interactions, and a GPU-dedicated process for dense
interactions with no communication. 1

I. INTRODUCTION

Communication, particularly global communication, is
growing to be the most significant part of the cost of com-
putation, especially as costs of arithmetic operations decrease
more quickly than those for communication [1]. Significant
effort has been made to generate new communication-avoiding
algorithms for many matrix-based operations [2], and we have
identified reduced-communication Fast Fourier Transforms
(FFTs) as an area with potentially significant impact.

Many mature implementations of the FFT exist, including
Netlib’s FFTPACK, based on [3], containing a variety of
Fortran FFT codes. In recent years the Fastest Fourier
Transform in the West (FFTW) [4], based on the Cooley-Tukey
algorithm, has been shown to provide the fastest implementa-
tion on a variety of platforms [5]. For parallel implementations,
the classic six-step framework for computing the FFT involves
three global MPI_Alltoall calls [6], [7], [8]. As efforts
to reduce communication loads and energy consumption have
attracted greater attention (e.g. [2], [9]), reducing the number

1Sponsored by Defense Advanced Research Projects Agency, Microsys-
tems Technology Office (MTO). Program: Power Efficiency Revolution for
Embedded Computing Technologies (PERFECT). Issued by DARPA/CMO
under Contract No: HR0011-12-C-0123. The views expressed are those of the
authors and do not reflect the official policy or position of the Department of
Defense or the U.S. Government. Distribution Statement “A” (Approved for
Public Release, Distribution Unlimited).

of all-to-all calls in the parallel FFT has been an area of
renewed interest. The SC’12 Best Paper Finalist [10] utilizes
oversampled convolutions and localized FFTs coupled with a
demodulation process to reduce the globalized communication
load to a single step, significantly increasing the speed and
decreasing the power consumption for a large-scale 1D FFT.
However, [10] references an older low-communication FFT
[11], which gained little traction upon its introduction, largely
due to what we see as two main reservations at the time. Firstly,
the high performance computing machinery necessary for such
large-scale FFTs was not as mature, so the performance gain
from lower communication was not as appealing. Secondly,
[11] relies heavily on the Fast Mutipole Method (FMM) [12]
algorithm, which may have caused hesitation due to its initial
perceived complexity.

The first of these two concerns has clearly been answered
by the excitement with which [10] was received while the
FMM is now an established algorithm with a strong body of
literature, being named one of the most important algorithms of
the 20th [13] and 21st centuries [14]. We have therefore turned
to reintroducing the older algorithm of [11] (hereafter referred
to as the FMM-FFT), which has several distinct advantages;
in particular, along with reducing the communication-load, the
FMM allows one to specify the desired precision a priori,
regardless of the complexity of the input data. Additionally, the
nature of the FMM allows for the ability to separate the two
main tasks, one of which requires little or no inter-processor
communication and can be accelerated using GPUs as in [15]
despite the increased computational demands of the FMM.

We begin by outlining the FFT and the FMM-FFT, fol-
lowed by a sample of results to show that this approach is
still competitive with the standard high-communication parallel
FFT. We discuss how the computation phases of the FMM can
be separated and finish with a discussion of our implementation
of a computation-phase splitting approach and current results.

II. FFT AND FMM-ACCELERATED FFT OVERVIEW

If a vector, x ∈ Cn, is of the form, [x0, x1, ..., xn−1]
T

, its
Discrete Fourier Transform (DFT), y ∈ Cn is the vector, y =

[y0, y1, ..., yn−1]
T

, formed by yk =
n−1
∑

l=0

xlω
−kl
n , where ωn =

exp(2π i/n) is an nth principal root of unity. In discussing
the parallel implementations, the DFT is typically rewritten as
y = Fnx, where [Fn](j,k) = ω−jk

n .

Computing the DFT of a vector of size n requires O(n2)
total operations. The Fast Fourier Transform (FFT) lowers this

Ka
Typewritten Text
978-1-4799-1365-7/13/$31.00 ©2013 IEEE

2

time to O(n log n) [8], and while recursion can be employed in
computing the FFT, most implementations instead use nested
loops. Further, the fastest implementations place the input into
bit-reversed order, the most popular being the Cooley-Tukey
algorithm [8] and its many variations.

For p distributed-memory processors, 0 < p < n, let m =
n/p, where m is an integer such that Fn|p signifies the top-left

m×m submatrix of Fn/
√

(n), notation specific to [11]. Based
on [8] and the split-radix variation [7], the radix-p splitting
presents a factorization of Fn [6]:

Fn = (Fp ⊗ Im)T (Ip ⊗ Fm)Π, (1)

where T is the diagonal matrix of twiddle factors and Π
performs necessary permutations [10]. Moving right to left in
Equation (1), we can compute Fn in six steps:

• Step 1: Global bit reversal Π;

• Steps 2-3: Local FFTs, global transpose (Ip ⊗ Fm);

• Step 4: Twiddle factors T ;

• Steps 5-6: Local FFTs, global bit reversal (Fp ⊗ Im).

The three globalized operations in the steps above in
computing Fn require three all-to-all steps when data or-
der preservation is required [10]; this common approach for
column-major layouts is referred to as the six-step framework
[6] and can be seen as a consequence of [7]’s evolution from
[8]. For row-major layouts, [6] further discuss a four-step
framework approach.

For the FMM-FFT, [11] refactors Equation (1) as

Fn = (Ip ⊗ Fm)(Fp ⊗ Im)MΠ, (2)

where M = diag(Im, C1, ..., Cp−1) for

Cs
(j,k) = ρs

[

cot
(π

m
(k − j + s/p)

)

+ i
]

and ρs = exp(−iπs/p)sin(πs/p)/m. The Cs operators can
be applied quickly with a 1D FMM [16], a process employed
by [17] for serial 1D FFTs. In order to turn this into a parallel
algorithm with a single all-to-all call, [11] assume x and y

are stored in block order (i.e., x = [x0, ...,xp−1]
T

, y =

[y0, ...,yp−1]
T

for p processes) and perform the following:

1) In processor µ, perform Cµ
xµ in parallel (this incor-

porates the distributed Πx calculation);
2) Perform m = n/p p-sized distributed FFT operations,

corresponding to (Fp ⊗ Im) (this distributed permu-
tation cannot be avoided unlike the one in Step 1);

3) For each processor, µ, perform a local m-sized FFT,
corresponding to (Ip ⊗ Fm).

This approach reduces the communication by nearly half,
totaling O(2p + 5 log2 p − 8) messages sent per processor,
assuming 15 digits of accuracy and NFMM

leaf = 32 as per [11],

where NFMM
leaf is the number of points stored per leaf level

in the FMM algorithm. We now discuss an overview of the
FMM in Section III, followed by results.

III. FMM OVERVIEW

The FMM is a mature algorithm, so we provide only a brief
overview of the structure of a basic 1D FMM with a purely
uniform distribution of points. Please refer to [12], [18], [19]
for more details.

Given force distribution g at Nsrc source locations, yi, we
wish to compute the potential u at Ntrg target locations, xj :

u(xj) =

∫

R

K(xj ,y)g(y)dy ≈

Nsrc
∑

i=1

K(xj ,yi)g(yi)wi, (3)

where K is a kernel operator, wi is a quadrature weight associ-
ated with yi, and j = 1, . . . , Ntrg . For Nsrc = Ntrg = N , the
FMM decreases the computational cost from O(N2) to O(N)
for a fixed user-prescribed level of accuracy by introducing a
hierarchical tree partition of a bounding domain D, enclosing
all points, and two series expansions for each subinterval at
each level of the hierarchy. For the root of the tree at level
ℓ = 0, associated with D, the intervals at level l + 1 are
obtained recursively, subdividing each interval at level l into
two sub-intervals, referred to as its children.

In general, the FMM consists of two steps, denoted as
the near-field (NF) and far-field (FF) computation phases.
Specifically, for interval B of width H , its near field (NFB)
is the set of all subintervals in D contained inside an interval
centered at B of width 3H , and its far field (FFB) is
the complement of NFB : FFB = D \ NFB . Finally, the
interaction list of B, denoted by LB

I , is defined to be the
children of B’s parent’s neighbors that are not neighbors
themselves such that LB

I ⊆ FFB . The depth of the tree is
chosen such that the smallest intervals (leaf nodes in the tree
structure) contain no more than some fixed number of points,
NFMM

leaf . For uniformly-refined trees, the total number of nodes

is bounded by 2N/3NFMM
leaf . Thus, if the workload per interval

is constant, the net algorithm has O(N) complexity.

Two types of series (represented as vectors of coefficients)
are associated with each interval B in the hierarchy. The
length of each expansion is chosen a priori such that the
truncated mathematical series numerically approximates the
original source distribution to within ǫFMM

tol :

• The multipole expansion encodes information in B to
approximate the potential at locations in FFB ;

• The local expansion encodes information from V ∈
FFB , approximating the induced potential on B.

The FMM computes the total field at B as the sum of the
contribution from sources in NFB and the contribution from
sources in FFB . Contributions from NFB are computed di-
rectly using dense summations while contributions from FFB

are obtained by evaluating the approximating expansions.

All of the tools exist for an O(N logN) method, but one
can do better using the following translation operators:

• Source to Multipole (S2M) translates the source
forces at a leaf interval into its multipole coefficients;

• Multipole to Multipole (M2M) translates the multi-
pole coefficients of an interval’s children into its own;

3

• Multipole to Local (M2L) translates the multipole
coefficients of an interval into the local coefficients of
a non-adjacent interval;

• Local to Local (L2L) translates the local coefficients
of an interval’s parent into its own;

• Local to Target (L2T) translates the local coefficients
of a leaf interval into induced potentials at its targets.

For the O(N) FMM, the essential task is the construction
of the local expansion coefficients in a hierarchical manner,
using an upward pass from the finest level to the coarsest,
followed by a downward pass. After computing the approxi-
mate FF contributions, the final step is to compute direct NF
interactions for leaf intervals. The full flow of the algorithm
is outlined below in Algorithm 1.

Algorithm 1 Non-Adaptive Fast Multipole Method

STEP 1 - Construct tree T such that leaf B contains fewer than NFMM
leaf

points and set expansion lengths based on ǫFMM
tol

.
for each B in preoder traversal of T do

build near field NFB and interaction list, LB
I

end for

STEP 2 - UPWARD PASS
for each B in postoder traversal of T do

if B is a leaf interval: Construct its multipole expansion from its source
points and forces using the S2M operator.
if B a non-leaf interval: Construct its multipole expansion from each
of its children using the M2M operator.

end for

STEP 3 - DOWNWARD PASS
for each interval B in preoder traversal of T do

Compute the contribution to B’s local expansion from its parent using
the L2L operator and from LB

I list using the M2L operator.
end for

STEP 4 - DIRECT CALCULATIONS
for each leaf interval B in T do

Compute the potential at each target location from B’s local expansion
using the L2T operator and from NFB using direct calculations.

end for

IV. FMM-FFT RESULTS

The full FMM-FFT algorithm has been reimplemented in
C with generous sharing of the original Fortran 77 code by
Dr. Alan Edelman along with improvements and optimizations.
We have performed the tests in this section of the rebuilt FMM-
FFT algorithm on a distributed-memory Linux OS cluster with
Intel(R) Xeon(R) CPUs X5550 @ 2.67GHz CPU (8-cores per
node with 24 GB of memory per node) and QDR InfiniBand
networking. We have replaced the FFTPACK [3] package with
FFTW [4] for the local FFTs. MPI is utilized for inter-node
communication purposes, and the code is compiled using the
MVAPICH mpicc wrapper for Intel’s icc (version 11.1) with
the -O2 compilation flag.

A. Test 1: Fixed Problem Size with Varying Processors

For our first test, we compare the operation count (number
of floating-point operations), the communication count (num-
ber of messages sent), and the overall runtime (total wall time
in seconds) of the parallel FMM-FFT to a standard six-step
parallel FFT. In Figure 1, we run a test with 1.68× 107 points,
a fixed FMM precision of 10−12, and NFMM

leaf = 32.

As can be seen in Figure 1 (left), the overall operation count
for the FMM-FFT is considerably greater than the standard
FFT due to many matrix-vector product function calls in the
FMM. Both algorithms perform two FFTs while the FMM
adds nearly a factor of 10 more operations in this current
implementation. However, the communication count on each
processor for the FMM-FFT consists of some small amount
of communication in the FMM along with a single all-to-all
call. By comparison, the standard FFT performs three all-to-all
calls; hence, as seen in Figure 1 (middle), the communication
costs for the standard FFT are much greater.

Despite the fact that the operation count for the FMM-
FFT algorithm is significantly greater than for the standard
FFT, the communication count is nearly three times less. The
resulting timings in Figure 1 (right) show that the FMM-FFT
wall times are either on par with or approximately twice that
of the standard FFT.

By more closely investigating the operation count for the
FMM algorithm alone, we see in table I that for the tests
in Figure 1, approximately the same amount of operations
are performed in the NF , counted in NF ops, as in the FF ,
counted in FF ops.

NP NF ops FF ops

2 2.53 × 109 2.39 × 109

4 1.86 × 109 1.47 × 109

16 5.75 × 108 4.19 × 108

32 2.97 × 108 2.14 × 108

64 1.51 × 108 1.09 × 108

128 7.60 × 107 5.66 × 107

TABLE I. FOR THE TESTS IN FIGURE 1, NEAR-FIELD VERSUS

FAR-FIELD OPERATION COUNTS (NF ops AND FF ops , RESPECTIVELY).

The NF does not require any (or nearly no) commu-
nication due to computations in that portion relying solely
on adjacent intervals. Hence, communication can be reduced
in the FMM at the cost of increased NF ops by increasing
NFMM

leaf ; conversely, NF ops can be reduced by decreasing

NFMM
leaf , thereby increasing FF ops and overall time spent in

communication (reducing the overall strength of the FMM-FFT
approach). As can be seen in Step 4 of Algorithm 1, there is
no overlap in the NF and FF computation phases until the
L2T operator translates the FF contributions. Hence, Steps 2
and 3 (using the S2M, M2M, M2L and L2L operators) can
occur at the same time as the direct NF computation in Step
4 as long the direct NF computations and L2T operations do
not overlap. We discuss how we can take advantage of this
property of the FMM in Section V in order to separate the
processes between the CPU and GPU.

In the next test we investigate how changing NFMM
leaf

affects the computation loads between NF ops and FF ops as
well as the effect on the running times.

B. Test 2: Fixed Problem Size with Varying Near-Field Loads

As proposed, changing NFMM
leaf shifts the balance between

NF ops and FF ops. Along with the numerical precision,
NFMM

leaf is the most tunable FMM parameter, and by increasing

NFMM
leaf , the height of the resulting tree structure decreases. In

fact, for input of size N , a tree with height zero simply results
in a fully-dense O(N2) computation while a tree with a single
point per leaf interval results in a tree with unnecessary height

4

1 2 3 4 5 6 7
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

10

log
2
 (Processors)

T
o

ta
l
O

p
e

ra
ti
o

n
 C

o
u

n
t

Operations vs. Log of Number of Processors

FMM FFT

Standard FFT

1 2 3 4 5 6 7
0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x 10

7

log
2
 (Processors)

T
o

ta
l
C

o
m

m
u

n
ic

a
ti
o

n
 C

o
u

n
t

Communication vs. Log of Number of Processors

1 2 3 4 5 6 7
−1

−0.5

0

0.5

1

1.5

log
2
 (Processors)

lo
g

1
0
 (

W
a

ll
T

im
e

 (
s
))

Log of Wall Time vs. Log of Number of Processors

Fig. 1. FMM-FFT versus standard six-step parallel FFT for a fixed problem size on varying processors with various measurements: Left: Total operation count
(number of floating point operations); Middle: Total communication count (number of messages sent); Right: log10 of wall times (in seconds).

and significantly greater FF ops. In figures 2 and 3, we fix the
problem size at 1.34× 108 points, the FMM precision at 10−12

and the number of processors at 64, investigating NF ops and
FF ops as NFMM

leaf increases.

1 2 3 4 5 6 7 8 9
9.5

10

10.5

11

11.5

12

12.5

log
2
 (Points per Leaf)

lo
g

1
0
 (

F
M

M
 O

p
e
ra

ti
o
n
s
)

Log of FMM Operation Count vs. Log of Pts per Leaf

Near−Field

Far Field

FMM Total

Fig. 2. Measuring effect on NF ops and FF ops with respect to NFMM
leaf

with 64 processors and 1.34× 10
8 points.

As expected, as NFMM
leaf increases, NF ops increases sig-

nificantly while FF ops decreases significantly in Figure 2.
Further, this has the expected effect on the wall-time seen in
Figure 3 since the NF computations are a dense operation and
hence more computationally intensive than FF computations.

1 2 3 4 5 6 7 8 9
0

1

2

3

4

5

6

7

8

9

10

log
2
 (Points per Leaf)

W
a
ll

T
im

e
 (

s
)

Wall Time vs. Log of Pts per Leaf

FMM−FFT

Standard FFT

Fig. 3. Measuring effect on the wall-time for FMM-FFT with respect to
NFMM

leaf
with 64 processors and 1.34× 10

8 points as the computation load

is shifted between the FF and NF .

These tests indicate FF ops can be reduced significantly,

though by increasing NF ops. Additionally, we note that the
wall-time for the FMM reaches an optimal level; this in fact
concurs with [11], where it is noted that the overall computa-
tion costs are minimized when NFMM

leaf = −log10(ǫ
FMM
tol) ·

√

10/3 ≈ −2 · log10(ǫ
FMM
tol). In further tests not shown

here, we utilized this optimal choice for NFMM
leaf , resulting

in the same conclusions in terms of measuring NF ops versus
FF ops. In the next test, we investigate the effect of varying
the FMM precision; as expected, there is a small effect on
communication and FF ops, but not on NF ops.

C. Test 3: Fixed Problem Size with Varying FMM Accuracy

The numerical accuracy of the FMM-FFT algorithm has
been separately verified for a requested level of precision in
the FMM (the only portion that does introduce a level of
numerical accuracy outside of machine-level precision). That

is, for requested FMM precision,ǫFMM
tol , if ỹ = F̃n

ǫFMM
tol

x,
then ||y − ỹ|| ≈ ǫFMM

tol . We do not report these results here
as the focus is more on computation and communication
costs and less on numerical accuracy. Further, the proofs of
the numerical accuracy and stability are available in [11].
However, we are interested in the effect on the communication
and operation counts when varying ǫFMM

tol as this affects the
sizes of the expansion coefficients and translation operators
in the FMM’s FF computation phase (specifically Steps 2
and 3 in Algorithm 1 in Section III). In Figure 4, we again
set the problem size to 1.34× 108 points and the number
of processors to 64, investigating NF ops and FF ops as the
requested level of precision increases (or as ǫFMM

tol decreases).

Since ǫFMM
tol has a direct impact on the FF computations,

Figure 4 (left) shows a measurable effect on the operation
balance. The additional communication count in Figure 4
(middle) is largely negligible, but the increased operation cost
leads to an expected increase in wall times in Figure 4 (right).
For applications which require low levels of overall precision,
this suggests that the FF and NF operation counts can be
re-balanced to take advantage of desired ǫFMM

tol .

We now turn to discussing how to exploit the natural split
between the NF and FF computation steps in the FMM.

V. GPU-ACCELERATED FMM-FFT OVERVIEW AND

RESULTS

The FMM is well-tailored for parallel implementation, and
[11] uses [20]’s approach with the specific kernel operator,

5

2 4 6 8 10 12 14 16
0

2

4

6

8

10

12

14

16

18
x 10

10

−log
10

(FMM Precision)

T
o

ta
l
O

p
e

ra
ti
o

n
 C

o
u

n
t

Operations vs. FMM Accuracy

Near−Field

Far Field

FMM Total

2 4 6 8 10 12 14 16
5.5

6

6.5

7

7.5

8

8.5

9

−log
10

 (FMM Precision)

lo
g

1
0
 (

C
o

m
m

u
n

ic
a

ti
o

n
 C

o
u

n
t)

Log of Communication Count vs. FMM Accuracy

FMM Only

FMM−FFT

Standard FFT

2 4 6 8 10 12 14 16
1

1.5

2

2.5

3

3.5

−log
10

 (FMM Precision)

lo
g

1
0
 (

W
a

ll
T

im
e

 (
s
))

Wall Time vs. FMM Accuracy

FMM−FFT

Stan. FFT

Fig. 4. Measuring the effect of FMM accuracy on the FMM-FFT algorithm: Left: Splitting the NF and FF operation counts shows that as expected, only
the FF operation count is affected as accuracy increases; Middle: Total communication count for the FMM-FFT is largely unaffected by increased accuracy;
Right: Wall times begin to show a moderate effect beyond 10 digits of requested accuracy.

K(r) = cot(r/2) for Equation (3), which we additionally
employ. The parallel FMM algorithm, however, has seen many
improvements, most significantly [15], in which the NF and
FF computation steps are split onto the GPU and CPU,
respectively for a distributed memory implementation.

Using NVIDIA’s CUDA framework to accelerate the NF
computations on the GPU as in [15] has the potential for
greatly shifting the load balance between the NF and FF
as we can increase the number of threads in the NF compu-
tations. Additionally, for a well-designed reordering, we stand
to reduce the overall power consumption [21] of the FFT,
both in utilizing the GPU structure as well as the reduced
communication loads of the FMM-FFT.

In Figure 5, we show a system where the FF computations
are handled on the CPU while the NF computations are
handled on a GPU, assuming a dedicated node for each MPI

process and a dedicated GPU for each portion of the NF
affiliated with that process.

CPU CPU CPU CPU

GPU GPU GPU GPU

FF FF FF FF

NF NF NF NF

Fig. 5. Splitting the FF and NF computations onto the CPU and GPU,
respectively, for the FMM portion of FMM-FFT algorithm.

The nature of the redesigned FMM-portion of the algorithm
in Section II is hence as follows:

1) For a problem of size n with p processors, split the
input, x into n/p portions and distribute;

2) For a requested number of points per leaf interval,
NFMM

leaf , and a specific processor, µ, split µ’s portion

(denoted as xµ into NFMM
leaf -size subintervals;

3) Perform a small amount of communication to ensure
all leaf intervals µ have access to the source data
from adjacent intervals which may lie on different
processors (which may occur on the endpoints of xµ);

4) Asynchronously copy xµ and subinterval data from
the CPU to the dedicated GPU for µ.

5) Compute the NF interactions on the GPU;

6) Compute the FF interactions and combine with the
GPU contribution;

7) For m = n/p, perform m p-sized distributed FFT
operations, corresponding to (Fp ⊗ Im);

8) For each processor, µ, perform a local m-sized FFT,
corresponding to (Ip ⊗ Fm).

Again, the NF and FF computations (Steps 5 and 6,
respectively) can occur concurrently. Further, as the cost per
operation on the GPU will be different than on the CPU, the
data balancing between these steps can be altered to increase
the dense contributions as necessary. We show initial results
for the GPU-accelerated FMM-FFT as well as discuss ongoing
innovations in the next section.

A. GPU-Accelerated FMM-FFT Results

We have tested the above approach on a cluster of four
Xeon(R) CPU X5650 @ 2.67GHz CPUs, each with a dedicated
448 thread Tesla-M2070 GPU node. Our current GPU imple-
mentation is designed to take advantage of the size of NFMM

leaf .

That is if NFMM
leaf ≥ 512, the approach is maximizing the

number of threads available. We begin by fixing the input size
as n = 1.34× 108 points and the number of processors at 2
and varying the size of NFMM

leaf from small to large (CPU/MPI
heavy loads to GPU/CUDA heavy loads, respectively). The
results are in Figure 6.

2 4 6 8 10
1

1.5

2

2.5

3

3.5

4

log
2
 (Points per Leaf)

lo
g

1
0
 (

W
a
ll

T
im

e
 (

s
))

Log of Wall Time vs. Log of Pts per Leaf (2 Processors)

CPU Only

CPU + GPU

Fig. 6. Comparing CPU and CPU-GPU FMM-FFT implementations for 2

processors with respect to varying NF loads by increasing NFMM
leaf

.

As can be seen, for smaller NFMM
leaf , the original pure

MPI code is faster than the MPI-CUDA code. However, as we

6

increase NFMM
leaf and the NF load, the GPU-accelerated code

significantly outperforms, nearly by a factor of 10 for large
NFMM

leaf . In fact, for NFMM
leaf < 512, the GPU is not being

fully-utilized due to the nature of our GPU optimizations, so
the improvement is more evident for larger NFMM

leaf .

We repeat the above test with 4 processors in Figure 7.

2 4 6 8 10
1

1.5

2

2.5

3

3.5

4

log
2
 (Points per Leaf)

lo
g

1
0
 (

W
a
ll

T
im

e
 (

s
))

Log of Wall Time vs. Log of Pts per Leaf (4 Processors)

CPU Only

CPU + GPU

Fig. 7. Comparing CPU and CPU-GPU FMM-FFT implementations for 4

processors with respect to varying NF loads by increasing NFMM
leaf

.

Again, we see that for smaller NFMM
leaf , the pure MPI code

is faster, but as we achieve full GPU load for NFMM
leaf ≥ 512,

our MPI-CUDA code performs significantly better.

VI. CONCLUSION

We have shown results for our reimplementation in C

of the FMM-accelerated low-communication 1D FFT from
[11] as well as shown how the loads are balanced between
the NF and FF operations for the FMM. Reviewing the
FMM and how the NF and FF contributions are separate
processes, we have shown how their contributions can be
asynchronously computed on the GPU and CPU, respectively.
We have discussed our current implementation of this splitting
process and have shown current, promising results for a small
number of processors with dedicated GPUs

Ongoing work is focused on optimizing these GPU accel-
erations. The current implementation, due to the nature of the
complex data structures, makes preserving locality difficult,
resulting in potentially poor memory performance. This is
especially true as the number of processors grows. As such,
we are working to incorporate R-Stream [22], a High Level
Compiler for embedded computing and parallel processing of
algorithms, to generate higher quality implementations of the
GPU portion. Further optimizations involve exploiting inherent
symmetries in the FMM structure as in [19] as well as provid-
ing a pure single-precision option for the entire algorithm for
additional efficiency when lower numerical accuracy is desired.

Additionally, we wish to compare this new implementation
(and the six-step parallel FFT) to a four-step parallel FFT,
which employs a single global transpose as described in [6], as
well as additional FFT implementations. Current discussions
with other research groups have focused on such collabora-
tions. Additional discussions have involved investigating the
feasibility of extending this method to higher dimensions. Fi-
nally, we are continuing to test larger numbers of processes and
datasets as well as perform tests where multiple CPUs share

the same GPU resource. The results from these optimizations
and tests will be reported at a later date.

REFERENCES

[1] P. M. Kogge, S. Borkar, W. W. Carlson, W. J. Dally, M. Denneau, P. D.
Franzon, S. W. Keckler, D. Klein, R. F. Lucas, S. Scott, A. E. Snavely,
T. L. Sterling, R. S. Williams, K. A. Yelick, W. Harrod, D. P. Campbell,
K. L. Hill, J. C. Hiller, S. Karp, M. Richards, and A. J. Scarpelli,
“Exascale Study Group: Technology Challenges in Achieving Exascale
Systems,” DARPA, Tech. Rep., 2008.

[2] G. Ballard, J. Demmel, O. Holtz, and O. Schwartz, “Minimizing
communication in numerical linear algebra,” SIAM J. Matrix Analysis

Applications, vol. 32, no. 3, pp. 866–901, 2011.

[3] P. Swartztrauber, Vectorizing the FFTs. Acad. Press, 1982, pp. 51–83.

[4] M. Frigo and S. Johnson, “FFTW: An adaptive software architecture
for the FFT,” ICASSP Conf. Proc., vol. 3, pp. 1381–1384, 1998.

[5] ——, “The design and implementation of FFTW3,” Proceedings of the

IEEE, vol. 93(2), pp. 216–231, 2005.

[6] C. V. Loan, Computational Frameworks for the Fast Fourier Transform.
Society for Industrial and Applied Mathematics, 1992.

[7] P. Duhamel and H. Hollmann, “‘split radix’ FFT algorithm,” Electronics

Letters, vol. 20, no. 1, pp. 14 –16, 5 1984.

[8] J. W. Cooley and J. W. Tukey, “An Algorithm for the Machine
Calculation of Complex Fourier Series,” Mathematics of Computation,
vol. 19, no. 90, pp. 297–301, 1965.

[9] R. Nishtala, P. Hargrove, D. Bonachea, and K. Yelick, “Scaling
communication-intensive applications on BlueGene/P using one-sided
communication and overlap,” in International Parallel and Distributed

Processing Symposium (IPDPS), 2009.

[10] P. T. P. Tang, J. Park, D. Kim, and V. Petrov, “A framework for
low-communication 1-d FFT,” in Proceedings of the 2012 ACM/IEEE

conference on Supercomputing, 2012.

[11] A. Edelman, P. McCorquodale, and S. Toledo, “The future fast Fourier
transform?” in PPSC. SIAM, 1997.

[12] L. Greengard and V. Rokhlin, “A fast algorithm for particle simulations,”
Journal of Computational Physics, vol. 73, pp. 325–348, Aug. 1987.

[13] B. Cipra, “The best of the 20th century: Editors name top 10 algo-
rithms,” SIAM News (Society for Industrial and Applied Mathematics),
vol. 33, no. 4, p. 2, 2000.

[14] Committee on the Mathematical Sciences in 2025; Board on Math-
ematical Sciences And Their Applications; Division on Engineering
and Physical Sciences; National Research Council, Fueling Innovation

and Discovery: The Mathematical Sciences in the 21st Century. The
National Academies Press, 2012.

[15] I. Lashuk, A. Chandramowlishwaran, M. H. Langston, T.-A. Nguyen,
R. S. Sampath, A. Shringarpure, R. W. Vuduc, L. Ying, D. Zorin,
and G. Biros, “A massively parallel adaptive fast-multipole method on
heterogeneous architectures,” in Proceedings of the 2009 ACM/IEEE

conference on Supercomputing, 2009.

[16] A. Dutt, M. Gu, and V. Rokhlin, “Fast algorithms for polynomial
interpolation, integration, and differentiation,” vol. 33, no. 5, pp. 1689–
1711, Oct. 1996.

[17] A. Dutt and V. Rokhlin, “Fast Fourier transforms for nonequispaced
data,” SIAM J. Sci. Comput., vol. 14, no. 6, pp. 1368–1393, Nov. 1993.

[18] R. Beatson and L. Greengard, “A short course on fast multipole meth-
ods,” in Wavelets, multilevel methods and elliptic PDEs, M. Ainsworth
et al., Eds. Oxford University Press, 1997, pp. 1–37.

[19] M. H. Langston, L. Greengard, and D. Zorin, “A free-space adaptive
FMM-based PDE solver in three dimensions,” Comm. in Applied

Mathematics and Comp. Science, vol. 6, no. 1, pp. 79–122, 2011.

[20] L. Greengard and W. Gropp, “A parallel version of the fast multipole
method-invited talk,” in PPSC, G. H. Rodrigue, Ed. SIAM, 1987, pp.
213–222.

[21] X. Ma, M. Dong, L. Zhong, and Z. Deng, “Statistical power consump-
tion analysis and modeling for GPU-based computing,” in Proc. of ACM

SOSP Workshop on Power Aware Comp. and Sys. (HotPower), 2009.

[22] B. Meister, N. Vasilache, D. Wohlford, M. M. Baskaran, A. Leung, and
R. Lethin, “R-Stream compiler,” in Encyclopedia of Parallel Computing,
D. A. Padua, Ed. Springer, 2011, pp. 1756–1765.

