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Abstract  The work in this paper describes the application of 
an optimized eigensolver algorithm to produce the kernel 
calculations for simulating quantum-dot cellular automata 
(QCA) circuits, an emerging implementation of quantum 
computing.  The application of the locally optimal block 
preconditioned conjugate gradient (LOBPCG) method to 
calculate the eigenvalues and eigenvectors for this simulation was 
shown to exhibit a 15.6 speedup over the commonly used QR-
method for a representative simulation and has specific 
advantages for the Hermitian, positive-definite, sparse matrices 
commonly encountered in simulating the Time-Independent 
Schrödinger equation.  We present the computational savings for 
a simulation analyzing the effect of stray charges near a four-cell 
line of QCA cells with a single driver cell, and we discuss 
implications for wider application.  We further discuss issues of 
problem preconditioning which are specific to QCA simulation 
when utilizing the LOBPCG method. 

Keywords Performance Metrics; Quantum-dot Cellular 
Automata, Eigensolvers, LOBPCG, Simulation, Numeric Linear 
Algebra 

I. INTRODUCTION 
The following paper describes the application of an 

optimized eigensolver to a simulation which computes the 
effect of stray charges on a four-cell line of quantum-dot 
cellular automata.  We first describe the fundamentals of 
quantum-dot cellular automata (QCA) and the methodology 
behind our simulation.  

This is followed by a detailed description of the linear 
algebra behind the optimized eigensolver that was used within 
the simulation.  This eigensolver uses the locally optimal block 
preconditioned gradient (LOBPCG) method to find the 
eigenvalues and eigenvectors needed for the QCA simulation.  
Our objective is to provide conclusive evidence that the 
LOBPCG method is a superior eigensolver for this 
computation when compared to the efficiency of traditional 
eigensolver algorithms. 

A. Quantum-dot Cellular Automata Simulation 
Quantum-dot Cellular Automata (QCA) utilize a nanoscale 
architecture based on placing four quantum dots, at the four 
corners of the square.  Electrons are able to tunnel between 
adjacent pairs of these dots, but each dot can only be occupied 
by one electron (ignoring opposite spins) at a given time [1, 2, 
3, 4, and 5].  Two low-energy ground states occur when the 

two electrons occupy diagonally opposite sites, either right-
leaning or left-leaning, and these two states can then be 

binary information within  a single QCA cell.  Electrostatic 
interaction between neighboring QCA cells can then be used 
to create quantum logic circuits, much like the transistors of 
present silicon-based fabricated circuits [6, 7, 8, 9, 10, 11, 12, 
13, 14, and 15]. The benefit of QCA cells comes from low 
switching times on the order of a few nanoseconds and the 
fact that QCA bistable elements operate at a tiny fraction of 
the power required by silicon-based transistors [16 and 17]. 

For the scope this paper, we consider and present a single 
possible QCA configuration consisting of four-site cells 
selected to match values used in canonical publications (cf. [1, 
2, 3, 4, and 5]), but the calculations required for simulation are 
generalizable to a variety of QCA implementations.  We 
consider a cell consisting of four quantum-dots at the corners 
of a square of diagonal 40 nm with an intercell spacing of 60 
nm (See Figure 1.) 

 
Figure 1.  A pair of QCA cells using typical geometry.  Each cell has four 
quantum-dots, with two electrons occupying each cell.  Tunneling is allowed 
between sites, and Coulombic interactions within cells cause the electrons to 
achieve bistable ground states where electrons occupy opposite corners of the 
cell.  Inter-cellular Coulombic interactions cause neighboring cells to have 

 the ground states, allowing propagation of information 
along a line of QCA cells. 

Simulations of QCA devices require the consideration of the 
six possible configurations shown in Figure 2.  Each 
configuration is represented by occupancy basis kets, also 
shown in the figure.  The bistable ground states are 
represented by | 2> = |1 0 1 0> (binary 1) and | 5> = |0 1 0 1> 
(binary 0). 
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Figure 2. Six possible configurations of the two electrons, giving the basis 
kets for the single QCA cell.  Configurations 2 and 5 with electrons occupying 
opposite corners are the two ground-state configurations and are encoded as a 

 

When considering a system with two cells, we must consider 
the direct product of the six basis states of the first cell with 
the six basis states of the second cell, which results in a full-
basis set of 36 two-cell basis kets as shown schematically in 
Figure 3 

 
Figure 3.  Sequence of 36 basis kets forming the full basis of a two-cell 
configuration from the direct product of two single-cell kets. 

In like fashion, a circuit of three QCA cells would require 
36 x 6 = 216 basis kets and a QCA cell system of N cells 
would require 6N basis kets, each of which would be the direct 
product of the N single-cell basis kets.  With useful QCA 
circuits typically consisting of 20 or more cells [7, 18, and 15], 
the computational demand for simulation rapidly escalates. 

This paper focuses on improving the computation time for the 
stray-charge analysis of [19] which considers an input driver 
cell and both three and four additional driven cells, each 
contributing six candidates for permutation in the full basis 
ket.  The Hamiltonian for these systems can be written in 
matrix form using the 216 or 1296 direct product basis kets.  
The Hamiltonian used for the systems is  
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where the first term represents the on-site energy to confine 
each electron to a quantum-dot, the second term defines the 
tunneling of adjacent sites within the cell, and the third 
represents Coulombic interaction of inter-cellular electrons 

charges, including the two fixed charges of the driver cell, the 
single stray charge, and a layer of positive charges 10 nm 
directly below the sites comprising the QCA cells 
(representing the donor atoms of the electrons).  The 
Hamiltonian must then be diagonalized to compute the 
eigenvalues and eigenvectors of the matrix in order to 
determine the energies and charge configurations that satisfy 
the Time-Independent Schrödinger Equation, shown in (1). 

iii EH                             (1) 

For the purposes of the simulation considered here, it is 
required to find the lowest energy state (ground state) of the 
system and the second-lowest energy state.  These two 
energies correspond to the lowest two eigenvalues of the 
matrix.  The difference between these two states is referred to 

eigenvector corresponding to the ground state can be used to 
determine the expected value of the ground-state charge 
configuration, as shown in Equation (2) 

00 ii n                             (2) 

The four charge densities are subsequently used to determine 
the polarization of a cell, given in Equation (3) 

4321

4231P                             (3) 

where P takes on a value of +1 for electron occupation of 
sites 1 and 3 and a value of -1 for electron occupation in sites 2 
and 4. 

B. 1.2 Optimized Eigensolvers 
An effective way to minimize the computation time interval 

for the calculation of the eigenvalues for large, symmetric, 
positive definite matrices is to exploit the specific 
characteristics of these matrices by choosing an appropriate 
eigensolver.  The locally optimal block preconditioned 
conjugate gradient method (LOBPCG), is one such alternative 
[22].  This algorithm is specifically optimized for the 
calculation of large symmetric eigenvalue problems, based on a 
local preconditioned optimization of a three-term recurrence 
and through the use of the Raleigh-Ritz method, resulting in a 
basis on the Krylov subspace, as seen in [22].  The generalized 
eigenvalue problem is of the form (A - 
are real symmetric matrices and A is positive definite. (It is not 
necessary for matrix B to be positive definite).  The eigenvalue 
problem begins its solution within LOBPCG with an 
approximated preconditioned matrix that contains n columns 
and m rows.  This estimate should be similar to the 
eigenvectors that will be found in the solution.  The value of n 
is the number of eigenvalues required in the solution and the 
column values contain the approximate preconditioned 
eigenvector estimates that are associated with each extreme 
eigenvalue.   
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The algorithm focuses on preconditioning the matrix, 
beginning with random approximations. This allows the 
LOBPCG algorithm to achieve superior convergence and has 
augmented the speed and accuracy of this eigensolver.  The 
LOBPCG algorithm uses simultaneous block iterations that 
allow the computation of an entire subspace rather than a 
single eigenvector by itself.  This allows the algorithm to work 
faster on parallel processing computers, and the convergence of 
the most extreme (largest and smallest) eigenvalues occurs 
more rapidly [22, 23, and 24].  The LOBPCG method utilizes 
the Rayleigh-Ritz procedure within the trial subspace 
mentioned earlier to iterate the program until the required 
eigenvalues and eigenvectors converge.  The Rayleigh-Ritz 
method is a direct variational method in which the minimum of 
a functional represented on a normalized linear space is 
approximated with a linear combination that includes the 
elements within that space.  The output of LOBPCG then 
provides the approximations of the corresponding number of 
the most extreme eigenvalues, the smallest or largest, and their 
corresponding eigenvectors, which are consistent with 
numerically computed eigenvalues found using other methods 
[22 and 25].  The process of the algorithm is outlined in 
Figure 4.  

 
 

  
  

 

 
 

  
 

 

         
 

 
Figure 4.  The linear algebraic process behind the LOBPCG algorithm found 
in [22]. 

The LOBPCG method compares equally if not better than 
several other methods that are used to calculate the eigenvalues 
of large matrices.  The Davidson method [26], for example, 
converges at roughly the same rate as LOBPCG, but in terms 
of computation LOBPCG is significantly less expensive.  The 
Jacobi-Davidson QR (JDQR) method for the solution of 
eigenpairs [20], as another example, is not as robust as 
LOBPCG because it fails to produce the eigenvalues and 
eigenvectors for larger matrices (greater than 108 x108), and is 
about half the speed of LOBPCG in typical cases.  JDQR also 
fails to accurately compute eigenpairs when handling randomly 
generated initial guess matrices; a characteristic which 
LOBPCG handles well,  as seen through tests where JDQR 
converges to the second smallest eigenpair instead of 
converging to the smallest one.  The LOBPCG algorithm has 
been implemented in software on several platforms and 
computer languages. The LOBPCG function is quite versatile 
and can be manipulated to fit many specific characteristics of 

the matrix whose extreme eigenvalues and eigenvectors it is 
computing.  The number of iterations that occur before 
convergence can be chosen to optimize computation time and 
accuracy of the eigenpairs.  The precision or residual tolerance 
of the solution can be chosen as well within the function 
parameters. The software for this and other preconditioned 
eigensolvers can be found at [27].  Our research utilized a 
slightly modified version of the MATLAB implementation 
from [28]. 

The LOBPCG function has also been used in several other 
published applications, including research done with the Earth 
Simulator Supercomputer in Japan.  The main research, 
highlighted in [29], that was performed on this supercomputer 
was a high-performance computation, with multi-billion cell 
matrices, to determine several exact numerical approaches to 
solving quantum many-body problems. 

II. APPLICATIONS OF LOBPCG TO QCA SIMULATION 
The optimization for QCA simulation discussed in this paper 
focuses on optimizing the accuracy and speed of an algorithm 
that computes a full-basis calculation to determine the stray 
charge on an n-cell QCA line.  The particular work performed 
focused on the optimization of the calculation of the two 
smallest eigenvalues of multiple 1296 x 1296 matrices.  The 
purpose of this calculation is to simulate the effects of stray 
charge on a row of four quantum-dot cellular automata and a 
driver cell, similar to that done in [19] and [30]. 

Research primarily focused on the development and 
implementation of algorithms that provided more efficient and 
faster computation of the smallest eigenvalues of large 
matrices.  Three linear algebraic methods were used to 
successfully compute eigenvalues for these large, symmetric, 
sparse, Hermitian matrices.  They included three solvers for 
eigenvalues within the MATLAB environment: eig(), 
eigifp(), and LOBPCG(), discussed below 

The default Matlab function for the computation of 
eigenvalues is eig().  This function utilizes the QR 
algorithm or (for the generalized problem) uses the QZ 
method.  The QZ method uses a prior transformation to 
Hessenberg tri-diagonal form to find the eigenvalues.  The QR 
algorithm uses a QR decomposition [20], where the matrix is 
written as a product of an orthogonal matrix and an upper 
triangular matrix, then the factors are multiplied in the reverse 
order, and the process continues until all the eigenvalues are 
calculated. 

The function eigifp(), described in [21], uses a two-level 
iteration with a projection on Krylov subspaces generated by a 
shifted matrix A _k in the inner iteration.  Either the Lanczos or 
the Arnoldi algorithm is employed for the projection, and the 
preconditioner of the matrix uses Incomplete Lower-Upper 
(ILU) factorization.  This method only provides us with 
accurate eigenvectors and the eigenvalues were too dissimilar 
from those found with the default Matlab function to use as an 
effective comparison to eig(). 



The function LOBPCG(), the algorithm for which was 
discussed in the previous section, uses an iterative 
minimization of the generalized Rayleigh quotient to find the 
smallest eigenvalues of a Hermitian matrix. The MATLAB 
default eigenvalue calculator,  the eig() function mentioned 
earlier, was replaced by LOBPCG().  The eig() function is 
a general-purpose function that is not optimized for specific 
types of matrices like the sparse, positive-definite, Hermitian 
matrices that are being dealt with in a QCA stray charge 
calculation.  The eig() function uses the QR algorithm with 
some variants, depending on the settings, to compute the 
eigenvalues of a given matrix, and it returns all the 
eigenvalues of that matrix. The LOBPCG() function is called 
with the MATLAB code format found in the documentation of 
[28]: 
[blockVectorX,lambda,failureFlag]=lobpcg(blockVectorY,  
operatorA,residualTolerance,maxIterations,verbosityLevel)  

The LOBPCG() function is calibrated in this statement to 
return three variables.  The blockVectorX contains a 
matrix with the eigenvectors that correspond to the two 
smallest eigenvalues, or whatever n number of eigenvalues are 
necessary for the calculation.  One important note is that 
within the LOBPCG library documentation it is suggested that 
users should not try to solve for more than twenty percent of 
the possible eigenvalues for a matrix.  This is because the 
calculation decreases in accuracy and speed as more and more 
eigenpairs are being calculated.  The lambda variable within 
the function contains a vector with the eigenvalues from the 
operand matrix.  These values represent the smallest n 
eigenvalues of the operand matrix operatorA, which are 
sorted smallest to largest in the vector returned from the 
function after the calculation has been completed. 

The failureFlag indicates the Boolean value returned 
from a statement which checks if there was enough iterations 
for the eigenvalues to converge to a specific value.  Also, 
inside the function itself a wide variety of commands can be 
implemented.  In this case blockVectorY contains an 
estimation matrix that should be reasonably similar to the 
eigenvectors contained within blockVectorX.     

The operatorA statement contains the matrix whose 
eigenpairs are being found.  In order to optimize the algorithm 
used by the LOBPCG() function the operator matrix should 
be a sparse, Hermitian, positive-definite, symmetric matrix.  
Our simulation is composed of calculations that require the 
diagonalization of a Hamiltonian matrix, operatorA, that is 
64 by 64, or of size 1296 x 1296. This Hamiltonian, for the 
QCA application, represents a four-cell QCA line with a fixed 
driver cell as seen in Figure 5.  

The residualTolerance and maxIterations 
variables control the residual tolerance of the eigenvalues and 
the maximum number of iterations that are completed to find 
the eigenvalues.  When the tolerance is decreased and the 
iteration value is increased, both the speed of the calculation 
and the accuracy of the eigenvalues increase.  However, as the 

residual tolerance decreases or the iteration value increases, 
the computation time of the simulation increases significantly. 

The last setting is the verbosityLevel, which can be set to the 
values 0, 1, or 2, where each corresponding value controls the 
amount of printed info seen while the function is processing.   
The zero provides the least amount of feedback about the 
results of the algorithm.  This value was used in this 
application because allowing the program to output 
information decreases the efficiency and speed of the 
optimized program. 

III. RESULTS AND ANALYSIS 
The optimization provided a strong indication of higher 

efficiency in the computation of eigenvalues.  This was shown 
through a decrease by a factor of 15.6 in the computation time. 
The results of this computation using LOBPCG can be seen in 
Figure 5.  This can be compared to Figure 6, which is the same 
simulation performed using the eig() function to solve for 
eigenvalues instead, thus demonstrating the validity of the 
results with the improved eigensolvers. 

 
Figure 5.  Excitation energy for the first excited state of a four-cell QCA line 
using LOBPCG is seen on the left. The color at each point represents the 
energy between the first excited state and the ground state when the stray 
charge is located at that point. The simulation is run for both polarities of 
input polarization, and the least successful outcome is shown for each point.  
The simulation is run for both values of input polarization, and the least 
successful outcome is shown. 

 
Figure 6.  Excitation energy and polarization for the first excited state of a 
four-cell QCA line using EIG. The graph represents the same stray charge 
values as Figure 3. 

The default MATLAB eigenvalue solver eig() was able to 
compute the stray charge of a four-cell QCA line in 33:22:00.  
This is in comparison to the function LOBPCG(), which was 
optimized for large, sparse, positive-definite matrices, like 
those used to simulate the stray charge.  The LOBPCG() 
function was able to compute the same information in 02:08:00 
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as seen in Table 1.  The eigifp() algorithm, which was 
mentioned earlier, solved the problem correctly but required a 
calculation time of 07:32:00, significantly slower than 
LOBPCG().  These results are summarized in Table 1. 

The other values on Table 1 demonstrate the calculation 
time needed for each of the methods using different sizes of 
matrices.  These matrices were similar to the ones that were 
built and solved in the stray charge full basis simulation but 
were larger sizes, and the values included are approximate.  
The full four cell simulation only used 1296 x 1296 matrices, 
but for a five cell simulation 7776 x 7776 matrices would be 
solved instead.  As can be seen the runtime is always the least 
for LOBPCG no matter the size of the matrix.  In addition, the 
LOBPCG eigensolver was the only solver capable of solving 
larger matrices on the order of 23000 x 23000.  These initial 
tests provide compelling evidence that the LOBPCG algorithm 
is a very effective eigensolver replacement for QCA 
simulations. 

TABLE 1.  EIGENSOLVER RUNTIME 

  
One important note, with reference to the residualTolerance 

and iterations parameters, within our simulation, was that 
increasing the iteration number from 35 to 50 in our simulation 
had the effect of increasing the computation time from 
02:08:00 to 03:15:00.  It is important to note also that as the 
iterations increase the accuracy does as well; however, at a 
certain point the accuracy is maximized, which in our case was 
the implementation of thirty-five iterations. 

The computer used in these simulations was comprised of 
an Intel Core i7-2600K CPU running at 3.40 GHz on an Intel 
Z-68 express chipset motherboard (Gigabyte Z68XP-UD3) 
with 16 GB DDR3 dual-channel system memory and magnetic 
disk running 64-bit Windows 7 Professional.  The version of 
MATLAB used was 7.12.0.635 R2011a 64-bit with the 

reported for simulation are reported using equal CPU resources 
(four threads on two cores) for all cases of algorithm 
implementation. 

A. Selection of Estimate Vectors 
The QCA simulation we consider here requires the 

calculation of the lowest two eigenpairs of the (1296 x 1296) 
matrix representing the location of the stray charge.  This must 
be done for each possible location in the 200 x 300 nm region 
of simulation.  In our case, the space was divided into a 300 x 
450 grid and thus the lowest two eigenpairs were calculated for 
a total of 135,000 1296 x 1296 matrices. In the application of 

the standard QR algorithm, we are not able to exploit any 
spatial correlation of an already-calculated solution for the 
matrix at location (m, n) to do a subsequent calculation for the 
matrix located at, say, (m+1, n) or (m, n+1).  However, we can 
exploit the ability of the LOBPCG algorithm to accept an 
estimate vector as the seed of its solution, and it is the 
optimization of determining the estimate vector 
(blockVectorY), that we turn to now and subsequently analyze. 

The initial estimate matrix used for the simulation was an 
educated guess that used ones and zeroes to populate a 
preconditioned hypothesis matrix for the eigenvectors that 
were related to the smallest two eigenvalues.  After the 
eigenpair computation of the first matrix, the two eigenvectors 
from the answer are used to populate the blockVectorY 
parameter, called nextguess below, 

  [vecs1,vals1,failureFlag]=lobpcg(nextguess,  
         H_final1,1e-­7,35,0)  

and from that point on the previous eigenvectors are used as 
the guess matrix for all subsequent eigenpair calculations.  

This was found to work well because the actual 
eigenvectors will be very similar to the ones that were 
calculated for the previous matrix.  This method is much more 
efficient than using a random number generator to populate the 
guess eigenvector matrix.  When the change was made to use 
the previous eigenvectors as the preconditioned guess matrix , 
the calculation time was reduced from 02:38:00 to 02:08:00. 
Also, the accuracy, when compared to the results of the eig() 
function, improved to 99.99%, where 99% of the eigenvalues 
of one method were within one percent of the value found 
using the other method.  The total computational time of each 
algorithm is outlined in Figure 7 below. 

  
Figure 7.  Simulation time for each of the eigensolvers, LOBPCG contains 
two different implementations.  The first version of LOBPCG uses a 
randomly generated eigenvector guess matrix, while the revised version uses 
an estimate based on the previous eigenvectors that were found in the 
previous calculation. 

The accuracy was verified using analysis that would 
calculate the absolute error between the eigenvalues of all the 
matrices generated in the simulation using eig() versus using 
LOBPCG.  From this result it was concluded that the  

Eigenvalues  of  
7776*7776  Matrices EIG EIGIFP LOBPCG
Calculation  Time  
(hh:mm:ss) (00:00:50) (00:00:02) (00:00:01)
Eigenvalues  of  
23k*23k  Matrices EIG EIGIFP LOBPCG
Calculation  Time      
(hh:mm:ss) N/A N/A (37:06:36)
Full  Simulation  w/  
135k  64*64  Matrices EIG EIGIFP LOBPCG
Calculation  Time  
(hh:mm:ss) (33:20:00) (07:30:00) (02:08:00)



difference between the eigenvalues of each method was greater 
than 1% different for 0.0118%of the data, which provides 
strong evidence for the accuracy of the LOBPCG method. 

IV. CONCLUSIONS 
We have demonstrated that the LOBPCG algorithm has 

clear advantages over the standard QR algorithm for 
calculating eigenvectors and eigenvalues in QCA simulation.  
In the stray-charge problem in particular, the time of 
calculation was reduced by a factor of 12.8 initially.  After 
exploiting the special correlation found in the problem to 
improve the estimate vectors seeding the calculation, we 
further reduced the time for an overall speedup of 15.6. 

The work herein has demonstrated the need for better 
eigensolvers for the QCA simulation community.  Presently, 
common computation software used in the community of QCA 
simulation for the presented problem takes over 30 hours for 
the problem studied.  It is hoped that the work presented here 
will motivate other QCA simulation researchers to apply the 
LOBPCG algorithm to their simulations and thereby move the 
research in QCA simulation forward by implementing an 
order-of-magnitude reduction in computation time. 
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