
An Improved Eigensolver for Quantum-dot Cellular
Automata Simulations

A. Taylor Baldwin, Jeffrey Will, Douglas Tougaw
Electrical and Computer Engineering

Valparaiso University
Valparaiso, Indiana

Aaron.Baldwin@valpo.edu

Abstract The work in this paper describes the application of
an optimized eigensolver algorithm to produce the kernel
calculations for simulating quantum-dot cellular automata
(QCA) circuits, an emerging implementation of quantum
computing. The application of the locally optimal block
preconditioned conjugate gradient (LOBPCG) method to
calculate the eigenvalues and eigenvectors for this simulation was
shown to exhibit a 15.6 speedup over the commonly used QR-
method for a representative simulation and has specific
advantages for the Hermitian, positive-definite, sparse matrices
commonly encountered in simulating the Time-Independent
Schrödinger equation. We present the computational savings for
a simulation analyzing the effect of stray charges near a four-cell
line of QCA cells with a single driver cell, and we discuss
implications for wider application. We further discuss issues of
problem preconditioning which are specific to QCA simulation
when utilizing the LOBPCG method.

Keywords Performance Metrics; Quantum-dot Cellular
Automata, Eigensolvers, LOBPCG, Simulation, Numeric Linear
Algebra

I. INTRODUCTION
The following paper describes the application of an

optimized eigensolver to a simulation which computes the
effect of stray charges on a four-cell line of quantum-dot
cellular automata. We first describe the fundamentals of
quantum-dot cellular automata (QCA) and the methodology
behind our simulation.

This is followed by a detailed description of the linear
algebra behind the optimized eigensolver that was used within
the simulation. This eigensolver uses the locally optimal block
preconditioned gradient (LOBPCG) method to find the
eigenvalues and eigenvectors needed for the QCA simulation.
Our objective is to provide conclusive evidence that the
LOBPCG method is a superior eigensolver for this
computation when compared to the efficiency of traditional
eigensolver algorithms.

A. Quantum-dot Cellular Automata Simulation
Quantum-dot Cellular Automata (QCA) utilize a nanoscale
architecture based on placing four quantum dots, at the four
corners of the square. Electrons are able to tunnel between
adjacent pairs of these dots, but each dot can only be occupied
by one electron (ignoring opposite spins) at a given time [1, 2,
3, 4, and 5]. Two low-energy ground states occur when the

two electrons occupy diagonally opposite sites, either right-
leaning or left-leaning, and these two states can then be

binary information within a single QCA cell. Electrostatic
interaction between neighboring QCA cells can then be used
to create quantum logic circuits, much like the transistors of
present silicon-based fabricated circuits [6, 7, 8, 9, 10, 11, 12,
13, 14, and 15]. The benefit of QCA cells comes from low
switching times on the order of a few nanoseconds and the
fact that QCA bistable elements operate at a tiny fraction of
the power required by silicon-based transistors [16 and 17].

For the scope this paper, we consider and present a single
possible QCA configuration consisting of four-site cells
selected to match values used in canonical publications (cf. [1,
2, 3, 4, and 5]), but the calculations required for simulation are
generalizable to a variety of QCA implementations. We
consider a cell consisting of four quantum-dots at the corners
of a square of diagonal 40 nm with an intercell spacing of 60
nm (See Figure 1.)

Figure 1. A pair of QCA cells using typical geometry. Each cell has four
quantum-dots, with two electrons occupying each cell. Tunneling is allowed
between sites, and Coulombic interactions within cells cause the electrons to
achieve bistable ground states where electrons occupy opposite corners of the
cell. Inter-cellular Coulombic interactions cause neighboring cells to have

 the ground states, allowing propagation of information
along a line of QCA cells.

Simulations of QCA devices require the consideration of the
six possible configurations shown in Figure 2. Each
configuration is represented by occupancy basis kets, also
shown in the figure. The bistable ground states are
represented by | 2> = |1 0 1 0> (binary 1) and | 5> = |0 1 0 1>
(binary 0).

3a=60 nm

t

t

t

t

t

t

t

t

Ka
Typewritten Text
978-1-4799-1365-7/13/$31.00 ©2013 IEEE

Figure 2. Six possible configurations of the two electrons, giving the basis
kets for the single QCA cell. Configurations 2 and 5 with electrons occupying
opposite corners are the two ground-state configurations and are encoded as a

When considering a system with two cells, we must consider
the direct product of the six basis states of the first cell with
the six basis states of the second cell, which results in a full-
basis set of 36 two-cell basis kets as shown schematically in
Figure 3

Figure 3. Sequence of 36 basis kets forming the full basis of a two-cell
configuration from the direct product of two single-cell kets.

In like fashion, a circuit of three QCA cells would require
36 x 6 = 216 basis kets and a QCA cell system of N cells
would require 6N basis kets, each of which would be the direct
product of the N single-cell basis kets. With useful QCA
circuits typically consisting of 20 or more cells [7, 18, and 15],
the computational demand for simulation rapidly escalates.

This paper focuses on improving the computation time for the
stray-charge analysis of [19] which considers an input driver
cell and both three and four additional driven cells, each
contributing six candidates for permutation in the full basis
ket. The Hamiltonian for these systems can be written in
matrix form using the 216 or 1296 direct product basis kets.
The Hamiltonian used for the systems is

ji ji

ji
Q

ji ji

ji
Q

ji
ijjiji

i
i RR

qn
V

RR
nn

VaaaatnEH
,

,0

where the first term represents the on-site energy to confine
each electron to a quantum-dot, the second term defines the
tunneling of adjacent sites within the cell, and the third
represents Coulombic interaction of inter-cellular electrons

charges, including the two fixed charges of the driver cell, the
single stray charge, and a layer of positive charges 10 nm
directly below the sites comprising the QCA cells
(representing the donor atoms of the electrons). The
Hamiltonian must then be diagonalized to compute the
eigenvalues and eigenvectors of the matrix in order to
determine the energies and charge configurations that satisfy
the Time-Independent Schrödinger Equation, shown in (1).

iii EH (1)

For the purposes of the simulation considered here, it is
required to find the lowest energy state (ground state) of the
system and the second-lowest energy state. These two
energies correspond to the lowest two eigenvalues of the
matrix. The difference between these two states is referred to

eigenvector corresponding to the ground state can be used to
determine the expected value of the ground-state charge
configuration, as shown in Equation (2)

00 ii n (2)

The four charge densities are subsequently used to determine
the polarization of a cell, given in Equation (3)

4321

4231P (3)

where P takes on a value of +1 for electron occupation of
sites 1 and 3 and a value of -1 for electron occupation in sites 2
and 4.

B. 1.2 Optimized Eigensolvers
An effective way to minimize the computation time interval

for the calculation of the eigenvalues for large, symmetric,
positive definite matrices is to exploit the specific
characteristics of these matrices by choosing an appropriate
eigensolver. The locally optimal block preconditioned
conjugate gradient method (LOBPCG), is one such alternative
[22]. This algorithm is specifically optimized for the
calculation of large symmetric eigenvalue problems, based on a
local preconditioned optimization of a three-term recurrence
and through the use of the Raleigh-Ritz method, resulting in a
basis on the Krylov subspace, as seen in [22]. The generalized
eigenvalue problem is of the form (A -
are real symmetric matrices and A is positive definite. (It is not
necessary for matrix B to be positive definite). The eigenvalue
problem begins its solution within LOBPCG with an
approximated preconditioned matrix that contains n columns
and m rows. This estimate should be similar to the
eigenvectors that will be found in the solution. The value of n
is the number of eigenvalues required in the solution and the
column values contain the approximate preconditioned
eigenvector estimates that are associated with each extreme
eigenvalue.

1

23

4

00111

1

23

4

01012

1

23

4

10013

23

14

01104

1

23

4

10105

1

23

4

11006

111 00110011

1

23

4 1

23

4
Cell #1 Cell #2

212 01010011

1

23

4 1

23

4
Cell #1 Cell #2

5635 10101100

1

23

4 1

23

4
Cell #1 Cell #2

6636 11001100

1

23

4 1

23

4
Cell #1 Cell #2

The algorithm focuses on preconditioning the matrix,
beginning with random approximations. This allows the
LOBPCG algorithm to achieve superior convergence and has
augmented the speed and accuracy of this eigensolver. The
LOBPCG algorithm uses simultaneous block iterations that
allow the computation of an entire subspace rather than a
single eigenvector by itself. This allows the algorithm to work
faster on parallel processing computers, and the convergence of
the most extreme (largest and smallest) eigenvalues occurs
more rapidly [22, 23, and 24]. The LOBPCG method utilizes
the Rayleigh-Ritz procedure within the trial subspace
mentioned earlier to iterate the program until the required
eigenvalues and eigenvectors converge. The Rayleigh-Ritz
method is a direct variational method in which the minimum of
a functional represented on a normalized linear space is
approximated with a linear combination that includes the
elements within that space. The output of LOBPCG then
provides the approximations of the corresponding number of
the most extreme eigenvalues, the smallest or largest, and their
corresponding eigenvectors, which are consistent with
numerically computed eigenvalues found using other methods
[22 and 25]. The process of the algorithm is outlined in
Figure 4.

Figure 4. The linear algebraic process behind the LOBPCG algorithm found
in [22].

The LOBPCG method compares equally if not better than
several other methods that are used to calculate the eigenvalues
of large matrices. The Davidson method [26], for example,
converges at roughly the same rate as LOBPCG, but in terms
of computation LOBPCG is significantly less expensive. The
Jacobi-Davidson QR (JDQR) method for the solution of
eigenpairs [20], as another example, is not as robust as
LOBPCG because it fails to produce the eigenvalues and
eigenvectors for larger matrices (greater than 108 x108), and is
about half the speed of LOBPCG in typical cases. JDQR also
fails to accurately compute eigenpairs when handling randomly
generated initial guess matrices; a characteristic which
LOBPCG handles well, as seen through tests where JDQR
converges to the second smallest eigenpair instead of
converging to the smallest one. The LOBPCG algorithm has
been implemented in software on several platforms and
computer languages. The LOBPCG function is quite versatile
and can be manipulated to fit many specific characteristics of

the matrix whose extreme eigenvalues and eigenvectors it is
computing. The number of iterations that occur before
convergence can be chosen to optimize computation time and
accuracy of the eigenpairs. The precision or residual tolerance
of the solution can be chosen as well within the function
parameters. The software for this and other preconditioned
eigensolvers can be found at [27]. Our research utilized a
slightly modified version of the MATLAB implementation
from [28].

The LOBPCG function has also been used in several other
published applications, including research done with the Earth
Simulator Supercomputer in Japan. The main research,
highlighted in [29], that was performed on this supercomputer
was a high-performance computation, with multi-billion cell
matrices, to determine several exact numerical approaches to
solving quantum many-body problems.

II. APPLICATIONS OF LOBPCG TO QCA SIMULATION
The optimization for QCA simulation discussed in this paper
focuses on optimizing the accuracy and speed of an algorithm
that computes a full-basis calculation to determine the stray
charge on an n-cell QCA line. The particular work performed
focused on the optimization of the calculation of the two
smallest eigenvalues of multiple 1296 x 1296 matrices. The
purpose of this calculation is to simulate the effects of stray
charge on a row of four quantum-dot cellular automata and a
driver cell, similar to that done in [19] and [30].

Research primarily focused on the development and
implementation of algorithms that provided more efficient and
faster computation of the smallest eigenvalues of large
matrices. Three linear algebraic methods were used to
successfully compute eigenvalues for these large, symmetric,
sparse, Hermitian matrices. They included three solvers for
eigenvalues within the MATLAB environment: eig(),
eigifp(), and LOBPCG(), discussed below

The default Matlab function for the computation of
eigenvalues is eig(). This function utilizes the QR
algorithm or (for the generalized problem) uses the QZ
method. The QZ method uses a prior transformation to
Hessenberg tri-diagonal form to find the eigenvalues. The QR
algorithm uses a QR decomposition [20], where the matrix is
written as a product of an orthogonal matrix and an upper
triangular matrix, then the factors are multiplied in the reverse
order, and the process continues until all the eigenvalues are
calculated.

The function eigifp(), described in [21], uses a two-level
iteration with a projection on Krylov subspaces generated by a
shifted matrix A _k in the inner iteration. Either the Lanczos or
the Arnoldi algorithm is employed for the projection, and the
preconditioner of the matrix uses Incomplete Lower-Upper
(ILU) factorization. This method only provides us with
accurate eigenvectors and the eigenvalues were too dissimilar
from those found with the default Matlab function to use as an
effective comparison to eig().

The function LOBPCG(), the algorithm for which was
discussed in the previous section, uses an iterative
minimization of the generalized Rayleigh quotient to find the
smallest eigenvalues of a Hermitian matrix. The MATLAB
default eigenvalue calculator, the eig() function mentioned
earlier, was replaced by LOBPCG(). The eig() function is
a general-purpose function that is not optimized for specific
types of matrices like the sparse, positive-definite, Hermitian
matrices that are being dealt with in a QCA stray charge
calculation. The eig() function uses the QR algorithm with
some variants, depending on the settings, to compute the
eigenvalues of a given matrix, and it returns all the
eigenvalues of that matrix. The LOBPCG() function is called
with the MATLAB code format found in the documentation of
[28]:
[blockVectorX,lambda,failureFlag]=lobpcg(blockVectorY,
operatorA,residualTolerance,maxIterations,verbosityLevel)

The LOBPCG() function is calibrated in this statement to
return three variables. The blockVectorX contains a
matrix with the eigenvectors that correspond to the two
smallest eigenvalues, or whatever n number of eigenvalues are
necessary for the calculation. One important note is that
within the LOBPCG library documentation it is suggested that
users should not try to solve for more than twenty percent of
the possible eigenvalues for a matrix. This is because the
calculation decreases in accuracy and speed as more and more
eigenpairs are being calculated. The lambda variable within
the function contains a vector with the eigenvalues from the
operand matrix. These values represent the smallest n
eigenvalues of the operand matrix operatorA, which are
sorted smallest to largest in the vector returned from the
function after the calculation has been completed.

The failureFlag indicates the Boolean value returned
from a statement which checks if there was enough iterations
for the eigenvalues to converge to a specific value. Also,
inside the function itself a wide variety of commands can be
implemented. In this case blockVectorY contains an
estimation matrix that should be reasonably similar to the
eigenvectors contained within blockVectorX.

The operatorA statement contains the matrix whose
eigenpairs are being found. In order to optimize the algorithm
used by the LOBPCG() function the operator matrix should
be a sparse, Hermitian, positive-definite, symmetric matrix.
Our simulation is composed of calculations that require the
diagonalization of a Hamiltonian matrix, operatorA, that is
64 by 64, or of size 1296 x 1296. This Hamiltonian, for the
QCA application, represents a four-cell QCA line with a fixed
driver cell as seen in Figure 5.

The residualTolerance and maxIterations
variables control the residual tolerance of the eigenvalues and
the maximum number of iterations that are completed to find
the eigenvalues. When the tolerance is decreased and the
iteration value is increased, both the speed of the calculation
and the accuracy of the eigenvalues increase. However, as the

residual tolerance decreases or the iteration value increases,
the computation time of the simulation increases significantly.

The last setting is the verbosityLevel, which can be set to the
values 0, 1, or 2, where each corresponding value controls the
amount of printed info seen while the function is processing.
The zero provides the least amount of feedback about the
results of the algorithm. This value was used in this
application because allowing the program to output
information decreases the efficiency and speed of the
optimized program.

III. RESULTS AND ANALYSIS
The optimization provided a strong indication of higher

efficiency in the computation of eigenvalues. This was shown
through a decrease by a factor of 15.6 in the computation time.
The results of this computation using LOBPCG can be seen in
Figure 5. This can be compared to Figure 6, which is the same
simulation performed using the eig() function to solve for
eigenvalues instead, thus demonstrating the validity of the
results with the improved eigensolvers.

Figure 5. Excitation energy for the first excited state of a four-cell QCA line
using LOBPCG is seen on the left. The color at each point represents the
energy between the first excited state and the ground state when the stray
charge is located at that point. The simulation is run for both polarities of
input polarization, and the least successful outcome is shown for each point.
The simulation is run for both values of input polarization, and the least
successful outcome is shown.

Figure 6. Excitation energy and polarization for the first excited state of a
four-cell QCA line using EIG. The graph represents the same stray charge
values as Figure 3.

The default MATLAB eigenvalue solver eig() was able to
compute the stray charge of a four-cell QCA line in 33:22:00.
This is in comparison to the function LOBPCG(), which was
optimized for large, sparse, positive-definite matrices, like
those used to simulate the stray charge. The LOBPCG()
function was able to compute the same information in 02:08:00

x

y

Graph of P

-100 0 100

-250

-200

-150

-100

-50

0

50

100

150

200

250

x

y

Graph of E

-100 0 100

-250

-200

-150

-100

-50

0

50

100

150

200

250

x

y

Graph of P

-100 0 100

-250

-200

-150

-100

-50

0

50

100

150

200

250

x

y

Graph of E

-100 0 100

-250

-200

-150

-100

-50

0

50

100

150

200

250

as seen in Table 1. The eigifp() algorithm, which was
mentioned earlier, solved the problem correctly but required a
calculation time of 07:32:00, significantly slower than
LOBPCG(). These results are summarized in Table 1.

The other values on Table 1 demonstrate the calculation
time needed for each of the methods using different sizes of
matrices. These matrices were similar to the ones that were
built and solved in the stray charge full basis simulation but
were larger sizes, and the values included are approximate.
The full four cell simulation only used 1296 x 1296 matrices,
but for a five cell simulation 7776 x 7776 matrices would be
solved instead. As can be seen the runtime is always the least
for LOBPCG no matter the size of the matrix. In addition, the
LOBPCG eigensolver was the only solver capable of solving
larger matrices on the order of 23000 x 23000. These initial
tests provide compelling evidence that the LOBPCG algorithm
is a very effective eigensolver replacement for QCA
simulations.

TABLE 1. EIGENSOLVER RUNTIME

One important note, with reference to the residualTolerance

and iterations parameters, within our simulation, was that
increasing the iteration number from 35 to 50 in our simulation
had the effect of increasing the computation time from
02:08:00 to 03:15:00. It is important to note also that as the
iterations increase the accuracy does as well; however, at a
certain point the accuracy is maximized, which in our case was
the implementation of thirty-five iterations.

The computer used in these simulations was comprised of
an Intel Core i7-2600K CPU running at 3.40 GHz on an Intel
Z-68 express chipset motherboard (Gigabyte Z68XP-UD3)
with 16 GB DDR3 dual-channel system memory and magnetic
disk running 64-bit Windows 7 Professional. The version of
MATLAB used was 7.12.0.635 R2011a 64-bit with the

reported for simulation are reported using equal CPU resources
(four threads on two cores) for all cases of algorithm
implementation.

A. Selection of Estimate Vectors
The QCA simulation we consider here requires the

calculation of the lowest two eigenpairs of the (1296 x 1296)
matrix representing the location of the stray charge. This must
be done for each possible location in the 200 x 300 nm region
of simulation. In our case, the space was divided into a 300 x
450 grid and thus the lowest two eigenpairs were calculated for
a total of 135,000 1296 x 1296 matrices. In the application of

the standard QR algorithm, we are not able to exploit any
spatial correlation of an already-calculated solution for the
matrix at location (m, n) to do a subsequent calculation for the
matrix located at, say, (m+1, n) or (m, n+1). However, we can
exploit the ability of the LOBPCG algorithm to accept an
estimate vector as the seed of its solution, and it is the
optimization of determining the estimate vector
(blockVectorY), that we turn to now and subsequently analyze.

The initial estimate matrix used for the simulation was an
educated guess that used ones and zeroes to populate a
preconditioned hypothesis matrix for the eigenvectors that
were related to the smallest two eigenvalues. After the
eigenpair computation of the first matrix, the two eigenvectors
from the answer are used to populate the blockVectorY
parameter, called nextguess below,

 [vecs1,vals1,failureFlag]=lobpcg(nextguess,
 H_final1,1e-­7,35,0)

and from that point on the previous eigenvectors are used as
the guess matrix for all subsequent eigenpair calculations.

This was found to work well because the actual
eigenvectors will be very similar to the ones that were
calculated for the previous matrix. This method is much more
efficient than using a random number generator to populate the
guess eigenvector matrix. When the change was made to use
the previous eigenvectors as the preconditioned guess matrix ,
the calculation time was reduced from 02:38:00 to 02:08:00.
Also, the accuracy, when compared to the results of the eig()
function, improved to 99.99%, where 99% of the eigenvalues
of one method were within one percent of the value found
using the other method. The total computational time of each
algorithm is outlined in Figure 7 below.

Figure 7. Simulation time for each of the eigensolvers, LOBPCG contains
two different implementations. The first version of LOBPCG uses a
randomly generated eigenvector guess matrix, while the revised version uses
an estimate based on the previous eigenvectors that were found in the
previous calculation.

The accuracy was verified using analysis that would
calculate the absolute error between the eigenvalues of all the
matrices generated in the simulation using eig() versus using
LOBPCG. From this result it was concluded that the

Eigenvalues of
7776*7776 Matrices EIG EIGIFP LOBPCG
Calculation Time
(hh:mm:ss) (00:00:50) (00:00:02) (00:00:01)
Eigenvalues of
23k*23k Matrices EIG EIGIFP LOBPCG
Calculation Time
(hh:mm:ss) N/A N/A (37:06:36)
Full Simulation w/
135k 64*64 Matrices EIG EIGIFP LOBPCG
Calculation Time
(hh:mm:ss) (33:20:00) (07:30:00) (02:08:00)

difference between the eigenvalues of each method was greater
than 1% different for 0.0118%of the data, which provides
strong evidence for the accuracy of the LOBPCG method.

IV. CONCLUSIONS
We have demonstrated that the LOBPCG algorithm has

clear advantages over the standard QR algorithm for
calculating eigenvectors and eigenvalues in QCA simulation.
In the stray-charge problem in particular, the time of
calculation was reduced by a factor of 12.8 initially. After
exploiting the special correlation found in the problem to
improve the estimate vectors seeding the calculation, we
further reduced the time for an overall speedup of 15.6.

The work herein has demonstrated the need for better
eigensolvers for the QCA simulation community. Presently,
common computation software used in the community of QCA
simulation for the presented problem takes over 30 hours for
the problem studied. It is hoped that the work presented here
will motivate other QCA simulation researchers to apply the
LOBPCG algorithm to their simulations and thereby move the
research in QCA simulation forward by implementing an
order-of-magnitude reduction in computation time.

REFERENCES

ion in coupled
Applied Physics Letters,

vol. 62, no. 7, pp. 714-716, Feb. 1993.
-dot cells: a

Journal of Applied Physics, vol. 74, no. 10, pp. 6227-
6233, Oct. 1993.

quantum- Journal of Applied Physics, vol. 74, no. 5, pp.
3558-3566 , Sept. 1993.

[4] C. S. Lent, P. D. Tougaw, W. Porod, and G. H. Be
Nanotechnology, vol. 4, no. 1, pp. 49-57, Jan.

1993.

Proceedings of the IEEE, vol. 85, no. 4, pp. 541-557,
Apr. 1997.

[6]
Journal of Applied Physics, vol. 85, no.7,

pp. 3713-3720 , Apr. 1999.
[7] C. R. Graunke, D. I. Wheeler, P. D. Tougaw, and J. D. Will,

 a crossbar network using quantum-dot cellular
IEEE Trans. Nanotechnol., vol. 4, pp. 435-440, July 2005.

[8] -dot cellular
automata full- Scientific Research and Essays, vol. 7, no. 2, pp.
177-189, 2012.

Based on Quantum- ETRI Journal, vol. 34, no.
2, 2012.

t
Stream Analysis Using Quantum- IEEE Trans.
Nanotechnol., vol. 3, pp. 158-164, Mar. 2004.

circuits with quantum- IEEE International
Symposium on Circuits and Systems, 2012.

-
Journal of Applied Physics, vol. 87,

no. 12, pp. 8604-8609 , June 2000.

[13] A. Shahidinejad et a -dot Cellular Automata XOR
Advanced Materials Research, pp. 622-623, 545-550, 2012.

Journal of Applied Physics, vol. 75, no. 3,
pp. 1818-1825, Feb. 1994.

-

IEEE Trans. Nanotechnol., vol. 10, pp. 1036-1042, Sept. 2011.
[16] C. S. Lent, J. Timler, a -dot cellular

Nanoelectronic Devices, MIT Press, 2001.

Journal of Applied Physics, vol. 80, no. 8, pp. 4722-4736,
Oct. 1996.

[18]
quantum- Progress in VLSI Design and Test,
2012, pp. 350-351.

-dot
Cellular Automata: A Validation of the Intercellular Hartree

IEEE Trans. Nanotechnol., vol. 2, pp. 225-233, 2013
-

Davidson style QR and QZ algorithms for the reduction of matrix
 SIAM Journal on Scientific Computing, vol. 20, pp. 12-23,

1992.
[21]

SIAM
Journal on Scientific Computing, vol. 24, pp. 312-334, 2004.

SIAM Journal on Scientific Computing, vol. 23, no. 2, pp. 517-541,
2001.

d Eigensolvers
Electron. Trans. Numer. Anal., vol. 7, pp. 104-123, 1998.

Templates for the Solution of Algebraic Eigenvalue Problems: A
SIAM, Philadelphia, pp. 352-368, 2000.

-Type
Iterative Methods In a Subspace for Partial Generalized Symmetric

SIAM Journal of Nuerical Analysis, vol. 31, pp.
1226-1239, 1994.

Journal of Computational Physics, vol. 89, pp.
241-245, 1990.

[27] A. Knyazev. (2012, Sept. 13) Preconditioned Conjugate Gradient
Methods for Eigenproblems. Available:
http://math.ucdenver.edu/~aknyazev/software/CG/

[28] Mathworks. (2004). lobpcgm - File Exchange. (2012, October 31).
Available: http://www.mathworks.com/matlabcentral/fileexchange/48-
lobpcg-m

-performance computing for exact numerical
approaches to quantum many-
SC '06 Proceedings of the 2006 ACM/IEEE conference on
Supercomputing. Article No. 47, doi:10.1145/1188455.1188504

Japanese Journal of Applied Physics, vol. 34, pp.
4373-4375, 1995.

