Exploiting Free Silicon for Energy-Efficient Computing Directly in NAND Flash-based Solid-State
Storage Systems

Peng Li
Seagate Technology
Shakopee, MN, 55379
benjamin.p.li@seagate.com

Abstract—Energy consumption is a fundamental issue in today’s data
centers as data continue growing dramatically. How to process these
data in an energy-efficient way becomes more and more important.
Prior work had proposed several methods to build an energy-efficient
system. The basic idea is to attack the memory wall issue (i.e., the
performance gap between CPUs and main memory) by moving com-
puting closer to the data. However, these methods have not been widely
adopted due to high cost and limited performance improvements. In
this paper, we propose the storage processing unit (SPU) which adds
computing power into NAND flash memories at standard solid-state
drive (SSD) cost. By pre-processing the data using the SPU, the data
that needs to be transferred to host CPUs for further processing
are significantly reduced. Simulation results show that the SPU-based
system can result in at least 100 times lower energy per operation than
a conventional system for data-intensive applications.

Keywords-SSD, NAND Flash, Parallel computing, OpenCL.

I. INTRODUCTION

High-performance computers have been widely used in many
fields, such as weather prediction, human genome studies, and so
on. Their performance has been driven by endless quests for more
and more computing power in such applications. However, as data
continue to grow dramatically, energy consumption of those high-
performance computers becomes a limiting issue. In fact, more than
50% of today’s data centers’ budgets go to energy costs [1]]. Thus,
how to design an energy-efficient computer system becomes more
and more important.

A fundamental energy-efficiency issue is the performance gap
between CPUs and main memories, i.e., the memory wall [2].
In 1994, Wulf and McKee [3|] pointed out the implications of
processor and memory performance progressing exponentially but
with differing rates (50% per year for processors vs. 7% per year for
memory). Most complex operations, such as floating-point multipli-
cations, take only a few CPU clock cycles [4]]. However, accessing
the main memory can take hundreds of CPU clock cycles [4].
Thus, for those data-intensive applications whose dataset is much
larger than the CPU cache size, more than 90% of the energy is
consumed by the data transfer instead of computing. If the dataset
is even larger than the main memory size, accessing the data in
storage devices will consume even more energy and futher extend
the processing time [5], [6l], [7]. The exponentially increasing gap
between the CPUs and the main memories has also led to the end
of single thread processor performance progress by 2008. Although
multi-core CPUs had been proposed to further improve the system
performance through the memory wall, the energy-efficiency was
not improved. The IEEE rebooting computing working group has
set up a goal to completely rethink computing, from devices to
circuits to architecture and software [8]].

978-1-4799-1365-7/13/$31.00 ©2013 IEEE

Kevin Gomez
Seagate Technology
Shakopee, MN, 55379
kevin.gomez @ seagate.com

David J. Lilja
University of Minnesota, Twin Cities
Minneapolis, MN, 55455
lilia@umn.edu

A well-known solution to the memory wall issue is moving
computing closer to the data. For example, Gokhale et al [2]
proposed a processor-in-memory (PIM) chip by adding a processor
into the main memory for computing. Riedel et al [9] proposed
an active disk by using the processor inside the hard disk drive
(HDD) for computing. With the evolution of other non-volatile
memories (NVMs), such as phase-change memory (PCM) and spin-
transfer torque (STT)-RAM, researchers also proposed to use these
NVMs as the main memory for data-intensive applications [10] to
improve the system energy-efficiency. However, these methods are
not widely adopted due to the high cost and the limited performance
improvements.

In this paper, we attack the memory wall issue by adding
computing power directly into NAND flash memories. Compared
to prior work, our approach has the following advantages: (1)
Compared to its nearest competing technology (such as the PCM
and the STT-RAM), the NAND flash-based solid-state devices
(SSDs) have been widely used in the storage market thanks to their
low-cost and high-density. To enable the NAND flash memories
to scale and stay orders of magnitude cheaper than its nearest
competing technology, manufacturers have integrated hardware into
a die inside the NAND flash package for error-correcting logic to
deal with the reliability issue as the NAND flash cell size continues
to shrink. We believe that this is the first time in history that a
significant chunk of silicon (more than 1M gates) is called for
right on the storage media touching the data stream to deal with
the degrading signal-to-noise ratio (SNR). If we add a computing
unit into the same die, especially in a pad-limited case (i.e., the
die area is driven by the number of I/O pins rather than gate
counts), the cost will be negligible or zero. (2) The NAND flash
is a block addressable storage device which can tolerate latencies
due to sophisticated signal processing. This is not feasible in
byte-addressable main memory such as DDR SDRAM or 24 byte
addressable PCM since it would significantly impact latency. (3)
Compared to the conventional HDD, the NAND flash-based SSDs
have high performance and low power consumption. In addition,
compared to the active disk approach, which suffers from the single
channel of the spinning disk recording head/media system when
applied to data intensive compute applications, the NAND flash-
based storage devices have multiple independent channels.

We call the proposed architecture a storage processing unit
(SPU). The basic idea is adding a coprocessor in the pad-limited die
inside the NAND flash package to perform parts of the computation
required for data-intensive applications. The SPU benefits the
system in the following aspects: (1) By moving computing closer
to the data, the system saves energy on data transfers without

Ka
Typewritten Text
978-1-4799-1365-7/13/$31.00 ©2013 IEEE

a loss of performance. This is because we can use pipeline
techniques to design the coprocessors, loading data from the NAND
flash memories and processing these data using the coprocessor
simultaneously. (2) By pre-processing the data inside the storage
devices, the host CPU will work with a smaller dataset thereby
producing better energy-efficiency because cache miss rates are
reduced. (3) The coporcessors do not need to be high-performance
processors due to the speed limitation of the NAND flash I/O
interface. Thus, they can be implemented using low operating
power (LOP) technology as defined by the International Technol-
ogy Roadmap for Semiconductors (ITRS) [T1]]. These low power
coprocessors are more energy-efficient than the high-performance
host CPUs [12]]. (4) Hardware for error-correcting coding (ECC)
and a general purpose processor for data management have already
been integrated into the die inside the NAND flash package, and the
die area is pad-limited. Thus, the cost for adding a coprocessor into
this die is negligible. (5) The SSD’s multi-channel architecture is
highly scalable. By adding computing power into the NAND flash
memories, we can take advantage of parallel computing.

We evaluate the proposed SPU using a facial recognition al-
gorithm and a restricted Boltzmann machine (RBM) algo-
rithm [[14]]. The facial recognition algorithm is a proxy algorithm for
content-based image retrieval algorithms, and the RBM algorithm
is a proxy algorithm for many machine learning and data-intensive
scientific computing algorithms [13]]. Simulation results show that
the SPU-based system is at least 100 times more energy-efficient
than the conventional system for data-intensive applications. The
remainder of this paper is organized as follows. Section [lI| briefly
reviews the background of the NAND flash-based SSDs. Section [[T]]
describes the proposed SPU in detail. Section [[V] presents the
simulation results. Conclusions are drawn in Section [V]

II. BACKGROUND

Demand for NAND flash-based SSDs has grown dramatically
in recent years thanks to their high performance and low power
consumption. As shown in Fig. [T} a conventional NAND flash-
based SSD normally consists of an SSD controller and multiple
NAND flash channels. Each of these channels has multiple NAND
flash packages, and each of these NAND flash packages contains
multiple NAND flash dies. The NAND flash die has multiple
planes, each plane has multiple blocks, and each block has multiple
pages which are the basic storage units. The SSD controller
communicates with the host and implements a flash translation
layer (FTL) to emulate a block device to the host. The functions
in the FTL include block management, wear leveling, and garbage
collection. In addition, the SSD controller also needs to implement
error-correction coding (ECC) due to the reliability issues of the
NAND flash memories.

[! lash Packag
NAND NAND | NAND NAND
Flash Die Flash Die Flash Die Flash Die

Host Communication

Data Buffer

Block Management H
Wear Leveling ! e
D
Garbage Collection Flash Die e

The block diagram of a typical SSD.

NAND NAND
Flash Die Flash Die

Figure 1.

To increase the density of the NAND flash memories, manufac-
turers have applied two main techniques [16]. One is the standard
process node and lithography shrinks, making each memory cell
and the associated circuitry smaller. The other technique is storing
more than one bit per cell. Early NAND devices, the single-level
cell (SLC), could store one of two states in a memory cell. Recently,
multi-level cell (MLC) and tri-level cell (TLC) techniques have
been used to further increase the density. Compared to SLC, which
is the original 2 levels per cell and stores 1 bit of information per
cell, MLC uses 4 levels and stores 2 bits, and TLC uses 8 levels and
stores 3 bits [16]. Although MLC and TLC increase the density,
they have come at the cost of introducing more errors. The more
bits stored per cell, the more errors are introduced.

To solve the reliability issues of MLC and TLC, more compli-
cated ECC has to be used. For example, the MLC NAND flash
memories require more than 16 bits of ECC per 512 bytes [16].
Advanced ECC operations, like low-density parity-check (LDPC)
coding, are computationally expensive. Many solutions implement
specific hardware to support ECC, since these operations will
take many CPU cycles from other important tasks if they are
implemented only using the SSD controller [16]]. For example,
both the Micron ClearNAND and the Toshiba embedded multi-
media card (eMMC) have integrated the hardware ECC into a die
inside the NAND flash package. In addition, since the die area
is pad-limited, manufacturers like Micron and Toshiba also have
integrated a general purpose processor into the die to implement
parts of the FTL functions, such as block management, to further
increase the SSD performance. A block diagram of such an
architecture is shown in Fig. |Z| (a).

In fact, even with the integrated general purpose processor and
the hardware ECC, the die still has available area [16]]. Thus, we
can integrate more logic units without any additional cost. In this
paper, we propose the SPU architecture, which adds computing
elements directly into the die and enables the storage devices to
support parallel computing. The SPU design will be presented in
the next section.

III. DESIGN OF THE SPU

Based on the block diagram shown in Fig. 2] (a), it can be seen
that a conventional SSD is actually a small computer that contains
multiple processors and storage media. Besides the basic read/write
operations, we can also use it to perform computing. In addition,
the flexibility of the SSD multiple channel architecture provides
substantial opportunities to improve the system performance. A
block diagram of the proposed SPU is shown in Fig. |Z| (b). It
can be seen that, besides the hardware ECC and the general
purpose processor, the SPU also adds a coprocessor into the pad-
limited die inside the NAND flash package. In this section, we
first discuss the coprocessor design. Then we introduce a data
allocation scheme that fully utilizes the throughput of the multi-
level parallelism. Finally, we show how this SPU can be utilized
for parallel computing using a standard programming environment
such as OpenCL [17]].

A. Coprocessor Design

Fig. [B] shows the trend of the NAND flash process node and the
SSD controller process node based on the ITRS [I1]. For example,
the controller process node will be 13nm and the NAND flash

NAND! NAND! NAND! NAND!
Flash Die Flash Die Flash Die Flash Die
"""

Pad-limited dig

Host.
Interface
(PCle)

NAND NAND NAND
Flash Die Flash Die Flash Die

NAND
Flash Die

(a)

NAND NAND
Flash Die Flash Die

Coprocessor

NAND NAND
Flash Die Flash Die

Coprocessor

Pad-limited dig

Host
Block Management
Wear Leveling
Garbage Collection

Interface
(PCle)

NAND
Flash Die

NAND NAND' NAND
Flash Die Flash Die Flash Die
ICIEETa Coprocessor Coprocessor

(b)

Figure 2. The block diagram of SSD systems with integrated functions in the NAND flash package: (a) a typical SSD with ECC function and a general
purpose processor integrated into the NAND flash package; (b) our proposed SPU.

—Controller Process Node (nm)
~——Gates per 0.25mmA"2 (K)

\><’ 10000 _
— 1000

/ 100

1 10
2002 2004 2006 2008 2010 2012 2014 2016 2018 2020

—NAND Flash Process node (nm)
—ECC Gates (K)

[
=)
3

100000

Gates (K]

Process Node (nm)
=
o

Year

Figure 3. Trends in ECC requirements for NAND flash show that the
additional gates provided by Moore scaling outpace the area needed for
the hardware ECC in 2011, which enables an exponentially increasing
gate count available to provide essentially free computational resources
for enhanced operations, especially in a pad-limited case [18].

process node will be 12nm by the year 2015. To maintain the
system error rate, the gate count of the hardware ECC needs to be
increased when the process node continues shrinking. However, as
the transistor size continues shrinking, we also have more available
gates besides the ones used for the hardware ECC. As shown in
Fig. (] by the year 2015 the hardware ECC needs 4M gates but
the available gate counts per 0.25mm? will be 8M. Thus, it will
be feasible to increase the die utilization by adding computing
functionalities without increasing the die area. Compared to the
hardware ECC and the general purpose processor, the gate counts
required for the coprocessor can be much smaller. This is because
the computing kernels of most data-intensive applications are all
basic operations, such as multiplication, addition, and comparison.
The multiplier, adder, and comparator can be implemented using
less than 10K gates. Especially in the pad-limited case, the addi-
tional cost is negligible [18].

Furthermore, because the NAND flash package is designed based
on the Open NAND Flash interface (ONFi) specification, the speed
of the coprocessor should match the NAND flash I/O throughput.
For example, based on ONFi specification version 3.1 [19], the
NAND flash interface supports transfer rates up to 400MB/s.
In this case, the coprocessor can work under 400MHz, and use
pipeline techniques for computing to match its I/O throughput.
Thus, the coprocessor does not need to be high-performance, and
we can use the LOP technology as defined by the ITRS to design
the coprocessor [11]. Compared to the high performance (HP)
technology defined by the ITRS, the speed of the LOP technology
is half as fast, but its dynamic power and leakage power is only
60% and 5% of the HP technology, respectively. Thanks to the
LOP technology, a 100K-gate coprocessor consumes only 0.3mW
more dynamic power than a 1K-gate coprocessor at 400MHz.

Due to these conditions, we should design the coprocessor using
as much available die area as possible, because the additional cost
is negligible in terms of both die area and power consumption.
Using more gates to design the coprocessor can support more
computing kernels. For example, if we use 10K gates to design the
coprocessor, it will support basic operations such as multiplication,
addition, and comparison. If we can use 100K gates to design
the coprocessor, it will also support computing kernels, such as
random number generation, which are widely used in Monte Carlo
simulations [4]]. If we can use 1M gates to design the coprocessor,
it will additionally support floating-point computation, which is
widely used in science and engineering applications [4].

B. Data Allocation

As we described in Section [[I] the SSD has multi-level (channel-
level, package-level, die-level, and plane-level) parallelism. In fact,
Hu et al [20] have shown that the priority order of this multi-level
parallelism is different in terms of the I/O throughput. To achieve
the highest I/O throughput for the conventional SSD, the optimum
priority order should be channel-level, die-level, plane-level, and
package-level parallelism.

Since we have both the general purpose processor and the
coprocessor inside each NAND flash package, we have multiple
control and compute units in each flash channel. To fully utilize
the parallel computing capability of the SPU, we design our data
allocation scheme based on the one proposed by Hu et al [20]
with modifications. We change the priority order to channel-level,
package-level, die-level, and plane-level parallelism. The channel-
level and package-level parallelism are managed by the SSD
controller, while the die-level and the plane-level parallelism is
managed by the general purpose processor inside each of the
NAND flash packages.

For example, let us consider vector to matrix multiplication,
which is one of the computing kernels in the basic linear alge-
bra subprograms (BLAS) widely used in data-intensive applica-
tions [4]. We allocate the matrix to the NAND flash memory based
on its columns. Since the channel-level parallelism has the highest
priority, the columns are first allocated to different channels. Then,
when all the channels have been allocated at least one column, the
next column will be allocated to a new NAND flash package in
the flash channels. A similar principle is applied to the die-level
and plane-level parallelism. Table [[] shows an example of how to
allocate a 16-column matrix to a 2-channel, 2-package, 2-die, 2-
plane SPU. For example, the 11th column of the matrix is allocated
to channel 1, package 2, die 1, and plane 2.

Table I
AN EXAMPLE OF THE PROPOSED DATA ALLOCATION SCHEME.

Columns | Channel-Package Columns | Channel-Package
-Die-Plane -Die-Plane
1 1-1-1-1 2 2-1-1-1
3 1-2-1-1 4 2-2-1-1
5 1-1-2-1 6 2-1-2-1
7 1-2-2-1 8 2-2-2-1
9 1-1-1-2 10 2-1-1-2
11 1-2-1-2 12 2-2-1-2
13 1-1-2-2 14 2-1-2-2
15 1-2-2-2 16 2-2-2-2

C. Parallel Programming Model

Because the SPU has a general purpose processor in each of the
NAND flash packages, its firmware can be designed to support par-
allel programming standards, such as OpenMP, MPI, and OpenCL.
In this section, we describe how the SPU can be used as an
OpenCL-based computing device, since the OpenCL programming
standard has become more popular. It defines four models, which
are the platform model, the execution model, the memory model,
and the programming model [17]. In this subsection, we discuss
how the SPU can be mapped into these models.

The OpenCL platform model defines the interface between the
host and the compute devices. Because all of the current OpenCL-
based compute devices do not contain storage media, they need
a high throughput interface to reduce the data transfer time. In
fact, this is the current bottleneck of these compute devices. Thus,
they adopt the high throughput PCle interface. Since the SPU is
also a storage device, the data transfer time will not be an issue.
Although the SPU can adopt the PCle interface, it can also use
other interfaces such as SATA, SAS, or even USB to reduce cost.

The OpenCL execution model defines the concepts of work
group and work item [17]. As shown in Fig. [2| (b), a single flash
channel of the SPU can serve as an OpenCL work group, and the
coprocessors in the flash channel can serve as the OpenCL work
items. If the SPU has ¢ flash channels and each channel has p
NAND flash packages, then the SPU will have ¢ work groups and
p work items per work group.

The OpenCL memory model defines three different kinds of
memories that can be accessed by the compute device—the
global/constant memory, the local memory, and the private mem-
ory [17]. In the SPU, the SSD controller’s main memory can be
used as the global/constant memory. The SRAM inside the SSD
controller can be divided into multiple groups and used as the local
memory of the work group. The SRAM of the general purpose
processor inside each NAND flash package can be used as the
private memory.

The OpenCL programming model supports both the data parallel
programming model and the task parallel programming model. The
SPU can use the multiple coprocessors to support the data parallel
programming model. In addition, thanks to its internal processor
hierarchy (coprocessors and the SSD controller), the SPU can use
this processor hierarchy to support the task parallel programming
model, i.e., some tasks can be run using the coprocessors and the
others can be run using the SSD controller. How to allocate these
tasks depends on their data dependencies and the corresponding
computing load. For example, the SSD controller is more suitable
for the tasks with small datasets and a light computing load.

IV. SIMULATION RESULTS

In this section, we compare the SPU-based system to a conven-
tional system in terms of processing time and energy consumption.
Both systems are implemented using SystemC transaction level
modeling. Two applications, the restricted Boltzmann machine
(RBM) [14] and facial recognition [13]], are used for evaluation.
The size of the dataset of the RBM is between the host CPU cache
size and the host main memory size, which can be used to study
the memory bus as the system bottleneck. The size of the dataset
of the facial recognition application is much larger than the host
main memory size, which can be used to further study the storage
device as the system bottleneck. The computing kernels of these
two applications are vector multiplication and addition, which is
widely used in data mining and machine learning. The datasets and
the computing kernels of the two applications can represent many
other applications. For example, the facial recognition algorithm is
the proxy algorithm for content-based image retrieval algorithms,
and the RBM algorithm is the proxy algorithm for many machine
learning and data-intensive scientific computing algorithms [4].

The model of the conventional system consists of the CPU,
the main memory (DDR SDRAM), the PCle interface, and the
conventional SSD. To run an application, the conventional system
first loads data from the SSD to the main memory via the PCle
interface. If the dataset is smaller than the main memory, the data
will be loaded only once. We use different values of CPU cycles
per instruction (CPI) to study the memory wall. In addition, we use
different numbers of CPU cores to study scalability. If the dataset
is larger than the main memory, the CPU will load the data from
the SSD multiple times. In this case we implement a direct memory
access (DMA) controller between the main memory and the SSD.
For example, when the CPU is performing computing on the first
sub-dataset which has been loaded into the main memory, the DMA
controller is loading the second sub-dataset from the SSD to the
main memory. The SSD uses the data allocation scheme proposed
by Hu et al [20]] to maximize its throughput.

The SPU-based system consists of the CPU, the main memory,
the PCle interface, and the SPU. To run the application, the host
CPU issues computing commands to the SPU via the PCle bus.
We assume the data have been allocated based on the scheme
introduced in Section[[II-B] so that the parallel computing capacity
of the SPU can be fully utilized. In addition, we assume the
coprocessor’s CPI is one for the basic operations like multiplication
and addition. This can be achieved by using the same clock
frequency as the NAND flash bus and pipelining. The SPU sends
only the results to the host CPU for further processing.

Table lists the main parameters used in our models. We
assume the gate count of a single CPU core is 200M based on
multi-core CPUs from different manufacturers, such as the IBM
Power7 8-core CPU and the Intel Xeon E5 8-core CPUI The
gate count of the SSD controller is estimated using the ARM
A5 embedded general purpose processor [19]]. The gate count of
the SPU coprocessor is estimated using the basic arithmetic logic
units such as the multiplier and the adder [18]. The power of the
CPU is calculated based on the high performance (HP) technology
defined by ITRS [11]. Its dynamic power is the product of the
clock frequency, the gate count, and the power of a single gate

Uhttp://en.wikipedia.org/wiki/Transistor_count

http://en.wikipedia.org/wiki/Transistor_count

defined by the HP technology. Its leakage power is the product of
the gate count, the operating voltage, and the leakage current of a
single gate defined by the HP technology. The power of the SSD
controller and the SPU coprocessor is based on the low operating
power (LOP) technology, since their speeds are at most half of
the CPU speed. The power of the NAND flash die (including the
general purpose processor and the hardware ECC) and the power
of the main memory are based on Micron’s devices [19].

Table II

THE MAIN PARAMETERS USED IN THE SIMULATION MODEL.
Parameters [[Values
CPU clock frequency 2GHz
CPU gate counts per core 200M
CPU dynamic/leakage power per core 5.04W/0.34W
Main memory dynamic/leakage power 0.44W/0.09W
PCle interface speed 24Gb/s
PCle dynamic/leakage power per GB 37.5mW/0
SSD controller clock frequency 1GHz
SSD controller gate counts 20M
SSD controller dynamic/leakage power 156mW/1.3mW
NAND flash dynamic/leakage power per die 40mW/3mW
NAND flash page read to register 75us
NAND flash bus speed 400MHz (or 2.5ns per byte)
SPU coprocessor clock frequency 400MHz
SPU coprocessor gate counts 1K
SPU coprocessor dynamic/leakage power 3.12uW/67TaW

Fig. [shows the energy consumption (per classification) of the
RBM algorithm using the conventional system. In the simulation,
we change the assumed CPIs from 100 to 0.1 and change the
number of CPU cores from 1 to 16. Note that the average CPI
values include all sources of delay, including cache miss delays.
In the conventional system, we assume that the performance of
the multi-core CPU is highly scalable. For example, the 16-core
CPU will always be 16 times faster than the 1-core CPU for any
computing task. As we know, this is not true in reality. However,
even in this ideal case, we noticed that increasing the number of
the cores will decrease the system energy-efficiency. For example,
when CPI=100, the system using 16 cores consumes 11.7% more
energy than the system using a single core CPU. When CPI=0.1,
the system using 16 cores consumes 14 times more energy than
the system using one core. In addition, reducing the CPI can
significantly increase the system energy-efficiency. For example,
with one CPU core, the energy consumption of the system with
CPI=0.1 is only 1.8% of the one with CPI=100. If the number of
cores is increased to 16, the energy consumption of the system with
CPI=0.1 is only 23.7% of the one with CPI=100. However, it is
very hard to reduce the CPI in reality for data-intensive applications
due to cache misses and other delays.

6
.z Y ~-CPI=100
sS85
S =
28
ES’ -=-CPI=10
O G2 CPI=1
Bi.
g8
SEo ¢CPI=0.1

1-Core 2-Core 4-Core 8-Core 16-Core
Figure 4. Energy consumption per classification of the RBM algorithm
using the conventional system.

Fig.] shows the energy consumption of the RBM algorithm

using the SPU-based system. In the simulation, we change the
number of flash channels from 4 to 32 (each channel has a single
NAND flash package), and change the gate count of the SPU
coprocessors from 1K to 1M. In the SPU-based system, we assume
the host CPU has CPI=100 and the host CPU has only a single core.
Note that when we increase the gate count of the coprocessor, it
means that the coprocessor can implement more computing kernels.
We noticed that by increasing the gate count of the coprocessor
from 1K to 1M, the energy consumption is increased by less than
4%. Thus, as long as the die area has available space, adding more
logic units into the coprocessor has little or no cost in terms of
manufacturing and power consumption, and it can benefit more
applications. We also noticed that, by increasing the number of
channels, the energy consumption is decreased. This is because
the ratio between the memory/storage and the coprocessor is a
constant as the number of channels increases. Thus, compared to
the conventional system, the SPU is a highly scalable architecture
in terms of energy-efficiency. The minimum energy consumption of
the conventional system shown in Fig. [] is 0.09mJ when CPI=0.1
with a single core CPU. The maximum energy consumption of
the SPU-based system shown in Fig. |§| is 0.037mJ when the
coprocessor gate count is 1M and the SPU uses 4 channels. Even
in this worst-case comparison, the SPU-based system is still 2.4
times more energy-efficient than the conventional system.

c €

6 O

E- -1 ~o-Gates = 1K

8§ oo LN ates

Eg \ -m-Gates = 10K

2 3 oo

8 8 Gates = 100K
o —

g o 002 =Gates = 1M
Q

2 5 o002

5%

4-Channel 8-Channel 16-Channel 32-Channel

Figure 5. Energy consumption per classification of the RBM algorithm
using the SPU-based system.

Fig. [f] shows the energy consumption of the facial recognition
algorithm using the conventional system. Compared to the RBM
algorithm, the size of the dataset is much larger than the main
memory. Thus, the main memory needs to load data from the SSD
multiple times. In this case, we noticed that when CPI=100, using
more CPU cores can decrease the system energy consumption.
However, the most efficient way to improve the system energy-
efficiency is still to reduce the CPIL

300 —
5 * * =+=CPI=100
= 250
g~
E g 200 -#-CPI=10
2 T 150
o 9
O 2100 CPI=1
S =
BE %
g 0 = ~-CPI=0.1
5

1-Core 2-Core 4-Core 8-Core 16-Core
Figure 6. Energy consumption per face of the facial recognition algorithm
using the conventional system.

Fig. [/| shows the energy consumption of the facial recognition
algorithm using the SPU-based system. The maximum energy
consumption of the SPU-based system is only 7% of the minimum
energy consumption of the conventional system.

Based on these simulation results, for the more general cases of
data-intensive applications, when the host’s CPI is 100, the SPU-
based system is at least 100 times more energy-efficient than the
conventional system. For example, Fig. @compares the energy con-
sumption of the conventional quad-core system and the 16-channel

0.28

_5 0.26 N

‘g’. =02 N ——Gates = 1K
35022 ~#-Gates = 10K
S5 o2 s

S 3 oia N Gates = 100K
& _E, o016 =»=Gates = 1M
2 ~

S o

IS

4-Channel 8-Channel 16-Channel32-Channel
Figure 7. Energy consumption per face of the facial recognition algorithm
using the SPU-based system.

SPU-based system. When the host’s CPI is 100 in the conventional
system, the SPU-based system is 204 times more energy-efficient
for the RBM algorithm and 1521 times more energy-efficient for
the facial recognition algorithm. The improved energy-efficiency
is mainly from the energy savings for data transfers and using
multiple low-power coprocessors for parallel computing instead of
the high-performance host CPU. In addition, the SPU-based system
also has better performance. For example, for the RBM algorithm,
the processing time of the 16-channel SPU-based system (0.05ms)
is only half of the conventional quad-core system with CPI=10
(0.1ms). For the facial recognition algorithm, the processing time
of the 16-channel SPU-based system (0.1ms) is only 3% of the
conventional quad-core system with CPI=10 (3.4ms).

W Restricted Boltzmann Machine
SPU (16-channel, 100K) vs. Conventional
(4-core CPI=100) _—
SPU (16-channel, 100K) vs. Conventional
(4-core CPI=10) ,

 Facial Recognition

1 10 100 1000
Factor of energy consumptionimprovement per operation

Figure 8. Energy consumption comparison of the conventional quad-core
system and the 16-channel SPU-based system.

V. CONCLUSION

This paper proposes the storage processing unit (SPU) archi-
tecture to improve system energy-efficiency by adding computing
power into the NAND flash-based SSDs. Compared to the conven-
tional system, the SPU-based system reduces energy consumption
significantly by substantially reducing the data transfer cost. This
allows for significantly more compute resources within a given
system power budget. In summary, the proposed SPU will signifi-
cantly benefit data-intensive applications in datacenters in terms of
energy-efficiency without sacrificing performance.

ACKNOWLEDGMENT

This work was supported in part by the Center for Research in
Intelligent Storage (CRIS), which is supported by National Science
Foundation grant no. IIP-0934396 and member companies, and
NSF grant no. IIP-1127829. Any opinions, findings and conclusions
or recommendations expressed in this material are those of the
authors and do not necessarily reflect the views of the NSF. This
work was performed when Peng Li was a Ph.D. candidate at
the University of Minnesota. The authors would like to thank
Laurent Isenegger from Intel for his help on the CoFluent tool,
and Prof. David Du from University of Minnesota for his valuable
suggestions on this project.

REFERENCES

[1] M. Poess and R. O. Nambiar, “Energy cost, the key challenge
of today’s data centers: a power consumption analysis of tpc-
c results,” Proceedings of the VLDB Endowment, vol. 1, no. 2,
pp. 1229-1240, 2008.

[2] M. Gokhale, B. Holmes, and K. Iobst, “Processing in memory:
The terasys massively parallel pim array,” Computer, vol. 28,
no. 4, pp. 23-31, 1995.

[3] W. A. Wulf and S. A. McKee, “Hitting the memory wall: impli-
cations of the obvious,” ACM SIGARCH computer architecture
news, vol. 23, no. 1, pp. 20-24, 1995.

[4] K. Asanovic, R. Bodik, B. C. Catanzaro, J. J. Gebis, P. Husbands,
K. Keutzer, D. A. Patterson, W. L. Plishker, J. Shalf, S. W.
Williams, et al., “The landscape of parallel computing research:
A view from berkeley,” tech. rep., Technical Report UCB/EECS-
2006-183, EECS Department, University of California, Berkeley,
2006.

[5] Y. Yang and V. Prasanna, “Robust and scalable string pattern
matching for deep packet inspection on multi-core processors,”
Parallel and Distributed Systems, IEEE Transactions on, 2012.

[6] W. Harrod, “A journey to exascale computing,” in High Per-
formance Computing, Networking, Storage and Analysis (SCC),
2012 SC Companion:, pp. 1702-1730, 2012.

[7]1 1. S. Vetter, Contemporary High Performance Computing: From
Petascale Toward Exascale. Chapman & Hall/CRC, 2013.

[8] K. Pretz, “The future of computing,” The Institute, IEEE, 2013.

[9] E. Riedel, C. Faloutsos, and D. F. Nagle, “Active disk architecture
for databases,” tech. rep., Carnegie Mellon University, 2000.

[10] B. Van Essen, R. Pearce, S. Ames, and M. Gokhale, “On the
role of NVRAM in data-intensive architectures: An evaluation,”
in Parallel & Distributed Processing Symposium (IPDPS), 2012
IEEE 26th International, pp. 703-714, IEEE, 2012.

[11] “Process Integration, Devices, and Structures (PIDS),” The Inter-
national Technology Roadmap for Semiconductors, 2012.

[12] Z. Ou et al., “Energy-and cost-efficiency analysis of arm-based
clusters,” in Cluster, Cloud and Grid Computing (CCGrid), 12th
IEEE/ACM International Symposium on, IEEE, 2012.

[13] M. Turk and A. Pentland, “Eigenfaces for recognition,” Journal
of Cognitive Neuroscience, vol. 3, no. 1, pp. 71-85, 1991.

[14] G. Hinton, “A practical guide to training restricted boltzmann
machines,” Momentum, vol. 9, 2010.

[15] S. Reinhardt, “Discovery in big data using a graph analytics
appliance,” Tech Talk, San Diego Supercomputer Center, 2013.

[16] D. Allred and A. Gaurav, “Software and hardware challenges due
to the dynamic raw NAND market,” EE Times, 2011.

[17] J. Kowalik and T. Puzniakowski, Using OpenCL: Programming
Massively Parallel Computers. 10S Press, 2012.

[18] K. Gomez and P. Li, “Quantum tunneling through the memory
wall,” Big Data Workshop, Center for Research in Intelligent
Storage, 2013.

[19] “Open NAND flash interface specification 3.1,” www.onfi.org,
2012.

[20] Y. Hu, H. Jiang, D. Feng, L. Tian, H. Luo, and C. Ren, “Exploring
and exploiting the multilevel parallelism inside ssds for improved
performance and endurance,” Computers, IEEE Transactions on,
vol. 62, no. 6, pp. 1141-1155, 2013.

