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•  Application Needs: 
–  Large distributed 

data sets 
–  Algorithm complexity 
–  Parallel processing 

Trends 

•  Technology 
Capabilities: 
–  No more frequency 

scaling 
–  More cores 
–  Distributed caches 

Current 
Multi-core 
Computers 
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Current Architectures 

Memory 

Network, Caches, Prefetchers, etc 

CPU CPU CPU CPU 

Lack of global coordination hurts both performance and power 
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Our Approach 

•  Need better synchronization 
mechanisms. 

•  Two components 
–  Exploit application 

knowledge 
–  Technology enabler 

•  Our Approach 
–  Extended ISA 
–  Utilize Photonics 

This talk is about employing new technologies that enable us to 
program parallel processors easily and efficiently. 

Application knowledge 
(data movement) 

Instruction Set Extensions 

New technology 
capabilities 

New technology 
(photonics) 
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•  Background 
•  The Multi-processor ISA 
•  Matrix transpose example 
•  Conclusions 

Outline 
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•  Physical memories are 2-d arrays that are accessed from only 
one dimension 
–  To read a memory element, an entire row in the physical array must 

be read 
–  Memory is most efficiently accessed sequentially 

Memory Access 

Memory is a 1-dimensional resource, best accessed in contiguous chunks 

Rows 

Data Elements 

Memory Read Sequence: Memory Operations(reads): 

4 

16 
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•  Restructuring of data can be extremely performance limiting 
•  Micro-architecture innovations can hinder efficient distributed 

data movement 

Distributed Memory Access 

Read Sequence: 

Memory 
Operations 

(reads): 

4 

16 

Processor 
Memory 

Processor 
Memory 

Processor 
Memory 

Processor 
Memory 

Network 
Transfers: 

4 

16 

Compute parallelism can increase performance, but it can also greatly exacerbate non-
local data access problems 

To Main Memory 
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•  In our work we use chip-scale photonics to tightly integrate 
processors and memory 

•  Chip-scale photonic links are distance independent 
•  Photonics enables synchronization at long distance 

Chip-scale Photonic Technology 

Photonics enables scalable, global, synchronous communication 
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The Synchronous Coalesced Access 
(SCA)* 

µP µP Memory 
µP µP 

Data Movement: Synchronous Coalesced Access (SCA) 

Photonic waveguide modulator 

data element 

•  The distance independent nature of photonics can be used to 
synchronize transfers from spatially separate chips or regions on 
chips 

•  Multiple independent data transfers synthesized on-the-fly 
•  This coordination can result in long ordered streams of data 

sourced from multiple locations 
–  Globally synthesized accesses 

* IPDPS 2013 “P-sync: A Photonically Enabled Architecture for Efficient Non-local Data Access” 
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•  Worker Processors share two TDM silicon photonic 
waveguides. 

•  The Head Node coordinates memory traffic for Worker 
Processors by issuing Memory Read/Write requests. 

P-sync Architecture* 

WPN-1 WPN-2 WP1 WP0 Head 

DRAM 

Light 
Source 

Clock Inbound (SCA-1) Waveguide 

Outbound (SCA) Waveguide Clock 

* IPDPS 2013 “P-sync: A Photonically Enabled Architecture for Efficient Non-local Data Access” 
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•  Background 
•  The Multi-processor ISA 
•  Matrix transpose example 
•  Conclusions 
 

Outline 
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•  One coordinating instruction to initialize the communication 
schedule 

Globally Synchronous Load-Store 
Instructions 

coalesce_sca  base_address, size 

•  One instruction to write into the address space set up by the 
coordinating instruction. 

sca.b32       local_data, sca_index 

Program the memory, not the processor. 
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A0,0 A0,1 A0,2 A0,3 

A1,0 A1,1 A1,2 A1,3 

A2,0 A2,1 A2,2 A2,3 

A3,0 A3,1 A3,2 A3,3 

Matrix Transpose on P-sync 

Memory 

WPN-1 WPN-2 WP1 WP0 Head 

DRAM 

Light 
Source 

Clock Inbound (SCA-1) Waveguide 

Outbound (SCA) Waveguide Clock 

Head coalesce_sca  Base, N 
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A0,0 A0,1 A0,2 A0,3 

A1,0 A1,1 A1,2 A1,3 

A2,0 A2,1 A2,2 A2,3 

A3,0 A3,1 A3,2 A3,3 

Matrix Transpose on P-sync 

Memory 

WPN-1 WPN-2 WP1 WP0 Head 

DRAM 

Light 
Source 

Clock Inbound (SCA-1) Waveguide 

Outbound (SCA) Waveguide Clock 

WP0 sca.b32 local[2], 0 

WP1 sca.b32 local[2], 1 

WP2 sca.b32 local[2], 2 

WP3 sca.b32 local[2], 3 
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Matrix Transpose on P-sync 

Memory 

WPN-1 WPN-2 WP1 WP0 Head 

DRAM 

Light 
Source 

Clock Inbound (SCA-1) Waveguide 

Outbound (SCA) Waveguide Clock 

A3,2 A2,2 A1,2 A0,2 

Distributed non-local data is combined on the waveguide to form 
a single efficient memory transaction.  
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R1 = local_base_address 
R2 = 0        // row index 
R3 = row_size // loop count 
 
.loop: 
 
   // R5 = local data 
   ld.local.u32 R5, local[R2] 
 
   sca.b32 R5, proc_id 
 
   add.u32 r2, r2, 1 // pos in row 
   sub.u32 r1, r1, 1 // loop count 
 
   // continue until this row has 
   // been coalesced. 
bra loop 
 

Full Transpose Code 

R1 = global_base_address 
R2 = 0        // current row 
R3 = num_rows // loop count 
 
.loop: 
   // R4 = global address of row 
   // to coalesce 
   // R4 = R1 + (R2 * row_size) 
 
   coalesce_sca R4, row_size 
  
   add.32 R2, R2, 1 // current row 
   sub.32 R3, R3, 1 // loop count 
 
   // continue until all rows have 
   // been coalesced.  
bra loop 
 

Head Node Worker Node 
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R1 = local_base_address 
R2 = 0        // row index 
R3 = row_size // loop count 
 
.loop: 
 
   // R5 = local data 
   ld.local.u32 R5, local[R2] 
 
   sca.b32 R5, proc_id 
 
   add.u32 r2, r2, 1 // pos in row 
   sub.u32 r1, r1, 1 // loop count 
 
   // continue until this row has 
   // been coalesced. 
bra loop 
 

R1 = global_base_address 
R2 = 0        // current row 
R3 = num_rows // loop count 
 
.loop: 
   // R4 = global address of row 
   // to coalesce 
   // R4 = R1 + (R2 * row_size) 
 
   coalesce_sca R4, row_size 
  
   add.32 R2, R2, 1 // current row 
   sub.32 R3, R3, 1 // loop count 
 
   // continue until all rows have 
   // been coalesced.  
bra loop 
 

Full Transpose Code 

Head Node Worker Node 

•  coalesce_sca executed once for each row of the 
matrix. 

•  Each time through the loop, it will wait for the 
prior coalesce to complete 
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R1 = local_base_address 
R2 = 0        // row index 
R3 = row_size // loop count 
 
.loop: 
 
   // R5 = local data 
   ld.local.u32 R5, local[R2] 
 
   sca.b32 R5, proc_id 
 
   add.u32 r2, r2, 1 // pos in row 
   sub.u32 r1, r1, 1 // loop count 
 
   // continue until this row has 
   // been coalesced. 
bra loop 
 

R1 = global_base_address 
R2 = 0        // current row 
R3 = num_rows // loop count 
 
.loop: 
   // R4 = global address of row 
   // to coalesce 
   // R4 = R1 + (R2 * row_size) 
 
   coalesce_sca R4, row_size 
  
   add.32 R2, R2, 1 // current row 
   sub.32 R3, R3, 1 // loop count 
 
   // continue until all rows have 
   // been coalesced.  
bra loop 
 

Full Transpose Code 

Head Node Worker Node 

•  Each processor has the same sca_index 
each time through the loop 

•  It is the head node that sets the global 
address 

•  The sca.b32 instruction will wait for its 
sca_index each time through the loop 
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•  General purpose CPUs 
–  Optimized for locality (caches, prefetchers, etc.) 
–  When there is no locality, these optimizations penalize performance 
–  Existing cache-bypassing operations are single-thread 

•  GPUs 
–  Coalescing only works within a Warp 
–  The Kepler Shuffle Instruction manipulates data within a Warp 

Related 

In these solutions the programmer cannot express global 
memory transactions across the entire architecture 
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•  We introduce two new instructions that permit efficient multi-
processor synchronization. 
–  coalesce_sca 
–  sca 

•  These new instructions, in combination with SCA capability, 
give us 

-  simple code 
-  high network and memory efficiency due to well-coordinated 

communication 

Conclusions 

Global synchrony enables parallel efficiency 


