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Re-Introduction of Communication-Avoiding
FMM-Accelerated FFTs with GPU Acceleration
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• FFTs are everywhere and continuous interest in 
improvements and reduced communication.

• sFFTs of interest for sparse frequency domains.
• For reducing communication from 3 global “all-to-all” 

calls to 1 for an in order, large 1D FFT, Tang et. al 
(SC’12) use an oversampling approach while 
mentioning older approach.

• Edelman et. al. (SIAM J.SciComp’97) has largely 
been ignored due to previous lack of interest and 
reliance on Fast Multipole Methods (FMMs).

• Our interest is in reinvestigating and working to 
optimize this older lower-communication 1D FMM-
FFT.
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Introduction and Motivation
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Traditional In Order Parallel FFT Approach in 1D
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• Assume N = M*P Points and 
Apply The Operator:

•
• Perform Global Bit Reversal
• Perform Local FFTs and 

Global Transpose
• Apply Twiddle Factors
• Perform Local FFTs and 

Global Bit Reversal
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• Reducing Global Communication from 3 to ~1
• Edelman et. al. (SIAM J.SciComp’97) refactor the 

operator as
with factor matrices                                              ,

,

• C matrices applied with FMM to reduce global 
communication:
– In processor    , evaluate             in parallel with FMM (this 

incorporates the distributed         calculation);
– Perform m = n/p p-sized distributed FFT operations, 

corresponding to                    ;     
– For each processor    , perform a local m-sized FFT, 

corresponding to   
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Alternative Low-Communication FFTs
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• Given a free-space or integral equation

• where G incorporates the kernel, K, and a quadrature 
weight, fast direct solvers seek to achieve the following 
desired properties:

• Ability to achieve desired accuracy;
• Increased computational efficiency;
• Suitable quadrature method.
• FMM addresses all of these concerns.
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Why Use Fast Direct Solvers to Accelerate 
Refactorization?
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Fast Multipole Method: basic idea

Sources Targets

Original implementations 
(Greengard, Rokhlin 1987):

• Subdivide space in an 
intelligent manner.

• Construct far and near fields.
• For all target locations outside 

of a circle of radius R, 
approximate potential from 
sources inside circle with a 
multipole expansion.

• For all target locations inside 
a circle of radius r, 
approximate potential from 
sources outside as a local 
expansion.
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Fast Multipole Method

• Tree Structure – 2D example
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Fast Multipole Method

• Tree Structure (Uniform/Nonadaptive)

• Subdivided domain on right with marked interaction 
boxes and near neighbors.

• Tree data structure on left – leaves represent smallest. 
• The Near-Field (NF) is the neighbor list and Far-Field 

(FF) is everything else. 
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• Basic Steps
• Upward: M2M translation turns multipole expansions of 

box’s children into its own multipole expansion.
• Downward: M2L translation turns multipole expansions of 

box into local expansion for non-adjacent box and L2L 
translation turns expansions of box’s parent into local 
expansion for itself.

• Compute Near-Field (NF) Interactions at targets and L2T 
translates local expansions (FF or far-field interactions) to 
targets.
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FMM Translation Operators and Steps Overview
for Two Dimensional Illustrative Approach



Reservoir Labs – IEEE HPEC ‘13

Upward pass

• For each box, generate 
multipole expansions of  
its own sources

• If leaf, from exact source (S2M)
• If non-leaf, from children (M2M)
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Upward pass

M2M

• For each box, generate 
multipole expansions of  
its own sources

• If leaf, from exact source (S2M)
• If non-leaf, from children (M2M)
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Upward pass

M2M

• For each box, generate 
multipole expansions of  
its own sources

• If leaf, from exact source (S2M)
• If non-leaf, from children (M2M)
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Downward pass

L2L

• For each box, generate 
local expansions of the 
sources from its far field

• From parent (L2L)
• From interaction list (M2L)
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Downward pass
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Downward pass
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Downward pass

• For each box, generate 
local expansions of the 
sources from its far field

• From parent (L2L)
• From interaction list (M2L)

L2L
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Downward pass

M2L
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Downward pass

M2L

• For each box, generate 
local expansions of the 
sources from its far field

• From parent (L2L)
• From interaction list (M2L)
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• For leaf box, 
evaluate potential 

• From local expansion 
• Contribution from 

neighbor list (direct evaluation)

Downward pass
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1D Version for FMM-FFT

Level = 0

….

Transform 1D domain of 
uniform points into 
binary tree fixed depth tree
• Nleaf points per leaf
• Build NF and FF

• The upward and downward 
passes trade accuracy for 
reduced computation and 
communication

B N2N1I1 I2 I3B N2N1I1 I2 I3

Level = 1

Level = 2

Level = 3
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• Above approach for the FMM-accelerated one 
dimensional FFT (FMM-FFT) has been reimplemented: 

• Fortran code replaced with C;
• Local FFTs replaced with FFTW;
• Minor initial accelerations of the 1D FMM (1/cot(r/2) 

kernel);
• Various tests run on Intel(R) Xeon(R) CPU X5650 @ 

2.67GHz CPUs and QDR InfiniBand (8 cores per node 
and 24GB of memory per node);

• Following are 3 tests to measure effect of varying 
processors, how the FMM operation load is balanced and 
its effect and the effect of varying FMM precision.
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Reimplementation
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FMM-FFT Results: Fixed Problem Size, Varying 
Processors

• Intel(R) Xeon(R) CPU X5650 @ 2.67GHz CPUs and 
QDR InfiniBand. 1.68 x 107 points, 12 digits of FMM 
precision and 32 points per leaf interval:

• Operation Count:

• ~10x increase in arithmetic and ~3x reduction in 
communication.

• Communication Count:
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FMM-FFT Results: Fixed Problem Size, Varying 
Processors

• Intel(R) Xeon(R) CPU X5650 @ 2.67GHz CPUs and 
QDR InfiniBand. 1.68 x 107 points, 12 digits of FMM 
precision and 32 points per leaf interval:

• Wall Time:

• Despite ~10x increase in arithmetic, ~3x reduction in 
communication, only ~2x slower runtimes.
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FMM-FFT Results: Fixed Problem Size, Varying 
Processors

• Intel(R) Xeon(R) CPU X5650 @ 2.67GHz CPUs and 
QDR InfiniBand. 1.68 x 107 points, 12 digits of FMM 
precision and 32 points per leaf interval:

• Investigate the total operation counts in the two major 
stage of the FMM (Near-Field and Far-Field):

• These operation loads can be skewed as desired!
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FMM-FFT Results: Fixed Problem Size, Varying 
FMM Near-Field and Far-Field Loads

• Intel(R) Xeon(R) CPU X5650 @ 2.67GHz CPUs and 
QDR InfiniBand. 1.34 x 108 points, 12 digits of FMM 
precision and 64 processors:

• Operation Count:

• The optimal operation count when the NF and FF 
processes occur in order is optimized by the leaf param.

• Wall Time:
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FMM-FFT Additional Results: Fixed Problem Size 
and Processors, Varying FMM Accuracy

• Intel(R) Xeon(R) CPU X5650 @ 2.67GHz CPUs and 
QDR InfiniBand. 1.34 x 108 points, 12 digits of FMM 
precision, 64 processors and 32 points per leaf interval:

• Operation Count:

• Communication effect is minimal with greater FMM accur.

• Communication Count:
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FMM-FFT Additional Results: Fixed Problem Size 
and Processors, Varying FMM Accuracy

• Intel(R) Xeon(R) CPU X5650 @ 2.67GHz CPUs and 
QDR InfiniBand. 1.34 x 108 points, 12 digits of FMM 
precision, 64 processors and 32 points per leaf interval:

• Wall Time:

• Wall time effect changes rapidly with higher precision.
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• Again, FMM Has Two Distinct Steps
• Near-Field (NF) and Far-Field (FF) can be potentially 

computed separately if resources available and synched 
upon completion.

• Refactoring Approach: FF operations rely on MPI and 
remain on CPU.  NF operations are pushed to GPU.  

• Basic Idea as inspired by Lashuk et. al. (SC’09):
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Refactoring FMM-FFT for GPU

GPU
NF

GPU
NF

GPU
NF

GPU
NF

CPU
FF

CPU
FF

CPU
FF

CPU
FF GPU “cheaper”, so user 

can increase the 
operation load (Nleaf) in 
the NF for faster 
runtimes compared to 
Non-GPU.
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GPU FMM-FFT Results: Fixed Problem Size, 
Varying FMM Near-Field and Far-Field Loads.

• Up to 4 Intel(R) Xeon(R) CPU X5650 @ 2.67GHz CPUs, 
each with a dedicated 448 thread Tesla-M2070 GPU node
and QDR InfiniBand. 1.34 x 108 points, 12 digits of FMM 
precision:

• 2 processors:

• For large NF loads, GPU FMM-FFT nearly ~10x faster.

• 4 processors:
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• Current and Future Work
• Showed results for reimplementation of FMM-FFT from 

Edelman et. al. as well investigated how loads are balanced 
between the NF and FF for the FMM.

• Showed how NF and FF contributions can be 
asynchronously computed on the GPU and CPU along with 
initial promising results for a small number of processors.

• Ongoing:
– GPU optimizations and R-Stream (Meister et. al., 2011) 

incorporations;
– FMM optimizations (including symmetry exploitations);
– Further tests with more processors;
– Comparisons to other approaches;
– Collaborations with other groups, including in expanding to 

higher dimensions.
30

Conclusions
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Symmetries

• Higher dimensional 
example:

• Up to rotation and 
reflection, many 
pairs of interactions 
are equivalent


