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Sparse Matrix Partitioning Motivation 

•  Sparse matrix-dense vector multiplication (SpMV) 
is common kernel in many numerical computations 
-  Iterative methods for solving linear systems 
-  PageRank computation 
-  Anomaly detection in graphs (spectral methods)  

•  Need to make parallel SpMV kernel as fast as 
possible 

•  Finding good data to processor mapping 
(partitioning) can greatly improve parallel 
performance 



Parallel Sparse Matrix-Dense Vector Multiplication 

•  Partition matrix nonzeros 
•  Partition vectors 
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Objective 

•  Ideally we minimize total run-time of SpMV 
•  Settle for “easier” objective 

–  Work balanced 
–  Minimize total communication volume 
–  NP-hard to find optimal solution (polynomial time 

heuristic algorithms) 
•  Can partition matrices in different ways 

–  1D 
–  2D  

•  Can model problem in different ways 
–  Graph 
–  Bipartite graph 
–  Hypergraph 
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Parallel SpMV 

•  Alternative way of visualizing partitioning 
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Parallel SpMV Communication 

•        sent to remote  
 processes that have  
 nonzeros in column 

•  Partial inner-products sent 
 to process that owns  
 vector element  
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1D Partitioning 

Each process assigned 
nonzeros for set of columns 

1D Column 

Each process assigned 
nonzeros for set of rows 

1D Row 
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When 1D Partitioning is Inadequate 

n=12 
nnz=34 (18,16) 
volume = 9 

“Arrowhead” matrix 

•  For any 1D bisection of nxn arrowhead matrix: 
– nnz = 3n-2 
– Volume ≈ (3/4)n 
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1D partitioning of arrowhead matrix yields high volume for SpMV 



When 1D Partitioning is Inadequate 

n=12 
nnz=34 (16,18) 
volume = 2 

“Arrowhead” matrix 

•  2D partitioning 
•  O(k) volume partitioning possible 
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2D partitioning of arrowhead matrix reduces volume for SpMV 



1D is Inadequate 
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c-73: nonlinear optimization (Schenk) 
- UF sparse matrix collection   
- n=169,422     nnz=1,279,274 
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Number of parts 



1D is Inadequate 
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asic680ks: Xyce circuit simulation (Sandia) 
- n=682,712     nnz=2,329,176 
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Number of parts 



1D vs 2D: Strong Scaling for “Scale Free” Networks 
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Source: Boman, Devine, Rajamanickam; “Scalable Matrix Computations on Large Scale-Free Graphs using 2D Graph Partitioning,” Sparse Days, CERFACS, 2013.  

Runtime (relative to 16 processor/1D runtime) for SpMV using Trilinos with 
1D and 2D distributions 

1D: 16, 64, 256, 1024 procs. (left to right) 
2D: 16, 64, 256, 1024 procs. (left to right) 

SpMV with 1D distributions not scalable 



2D Partitioning 

•  More flexibility: no particular part for entire row or column 
•  More general sets of nonzeros assigned parts 
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Mondriaan (Vastenhouw, Bisseling) Block/Cartesian 

Coarse-grain (Catalyurek, Aykanat) Fine-grain (Catalyurek, Aykanat) 



2D Partitioning 

•  Fine-grain hypergraph  
• Graph model for symmetric 2D partitioning 
• Nested dissection symmetric partitioning method 

- New 2D method 
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Fine-Grain (FG) Hypergraph Model 

• Catalyurek and Aykanat 
(2001)  

• Each nonzero partitioned 
independently 

• Good quality partitions 
• Significantly slower than 1D 

methods 

Nonzeros represented by vertices in hypergraph 
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Fine-Grain Hypergraph Model 

• Rows represented by 
hyperedges 

• Hyperedge - set of one or 
more vertices 
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Fine-Grain Hypergraph Model 

• Columns represented by 
hyperedges 
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Fine-Grain Hypergraph Model 

• 2n hyperedges 
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Fine-Grain Hypergraph Model 

•  Partition vertices into k 
equal sets 

•  For k=2 
– Volume = number of 

hyperedges cut 
•  Minimum volume 

partitioning when 
optimally solved 

•  Larger NP-hard problem 
than 1D 

k=2, volume = cut = 2 
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Objective: minimize hyperedge cut, subject to load balance constraint 



Graph Model for Symmetric 2D Partitioning 

• Exact model of communication for symmetric 
matrix partitioning  

• Given matrix A with symmetric nz structure 
• Symmetric partition  

– a(i,j) and a(j,i) assigned same part 
– Input and output vectors have same distribution 

• Corresponding graph G(V,E) 
– Vertices correspond to vector elements, diagonal 

nonzero 
– Edges correspond to off-diagonal nonzeros 
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Graph Model for Symmetric 2D Partitioning 

• Corresponding graph G(V,E) 
– Vertices correspond to vector elements, diagonal 

nonzeros 
– Edges correspond to off-diagonal nonzeros 
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Graph Model for Symmetric 2D Partitioning 

• Symmetric 2D partitioning 
– Partition both V and E 
– Gives partitioning of both matrix and vectors 
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Communication in Graph Model 

•  Communication is assigned to vertices 
•  Vertex incurs communication iff incident edge is in 

different part 
•  Want small vertex separator -- S={V8} 
•  For bisection, volume = 2 |S| 
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Nested Dissection Partitioning - Bisection 

•  Suppose A is structurally symmetric 
•  Let G(V,E) be graph of A 
•  Find small, balanced separator S 

–  Yields vertex partitioning V = (V0,V1,S) 
•  Partition the edges such that 

–  E0 = {edges incident to a vertex in V0} 
–  E1 = {edges incident to a vertex in V1} 
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Nested Dissection Partitioning - Bisection 

•  Vertices in S and corresponding edges 
–  Can be assigned to either part 
–  Can use flexibility to maintain balance 

•  Communication Volume = 2*|S| 
–  Regardless of S partitioning 
–  |S| in each phase 
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Nested Dissection (ND) Partitioning Method 

•  Recursive bisection to partition into >2 parts 
•  Use nested dissection! 
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Nested dissection used to obtain symmetric 2D partitioning 



Extension to Nonsymmetric Matrices 

•  Bipartite graph gives exact model of 
communication volume 
-  Trifunovic and Knottenbelt (2006) 

•  Apply nested dissection method to A’  
   (adjacency matrix for bipartite graph) 

–  Use same algorithm as for symmetric case 
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Nested dissection partitioning easily extended to 
nonsymmetric matrices 



Numerical Experiments 

•  Structurally symmetric matrices 
•  k = 4, 16, 64 parts using 

–  1D hypergraph partitioning 
–  Fine-grain hypergraph partitioning (2D) 

•  Good quality partitions but slow 
–  Nested dissection partitioning (2D) 

•  Hypergraph partitioning for all methods 
–  Zoltan (Sandia) with PaToH (Catalyurek) 
–  Allows “fair” comparison between methods 

•  Vertex separators derived from edge separators 
–  MatchBox (Purdue: Pothen, et al.) 

•  Heuristic used to partition separators 
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Communication Volume - Symmetric Matrices 
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Runtimes of Partitioning Methods 
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Communication Volume: 1D is Inadequate 

c-73: nonlinear optimization 
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Communication Volume: 1D is Inadequate 
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Communication Volume: 1D is Inadequate 

asic680ks: Xyce circuit simulation 
w

or
ds
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Another Important Metric: Messages Sent/Received 
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Summary 

•  New 2D matrix partitioning algorithm 
– Nested dissection used in new context 
– Good trade off between communication volume and 

partitioning time 
• Communication volume (comparable to fine-grain) 
• Partitioning time (comparable to 1D) 
• Also, fewer messages than fine-grain 

• ND method partitioning effective for some matrices 
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Future Work 

•  Integrate ND partitioning algorithm into paralllel 
numerical software framework (e.g., Trilinos) 

– Boman, et al. (SNL) 
–  Isorropia, Zoltan2 packages 

•  Analysis of runtimes of SpMV using ND partitioning 
method 

•  Partitioning of scale-free networks with ND method 
– 2D methods are important for these problems 
– Finding balanced separator challenging 
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