A Nested Dissection Partitioning Method for Parallel Sparse Matrix-Dense Vector Multiplication

HPEC 2013

9/11/2013

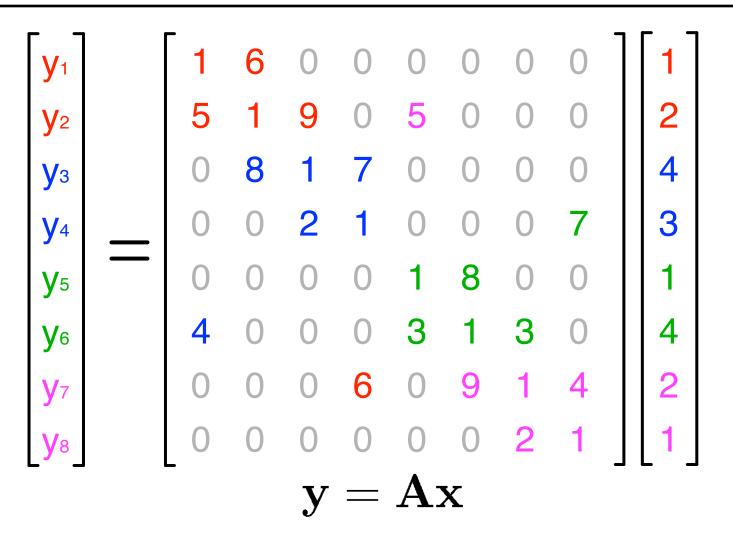
Erik Boman, *Michael Wolf** Sandia National Laboratories

*Now at MIT Lincoln Laboratory

Sparse Matrix Partitioning Motivation

- Sparse matrix-dense vector multiplication (SpMV) is common kernel in many numerical computations
 - Iterative methods for solving linear systems
 - PageRank computation
 - Anomaly detection in graphs (spectral methods)
- Need to make parallel SpMV kernel as fast as possible
- Finding good data to processor mapping (partitioning) can greatly improve parallel performance

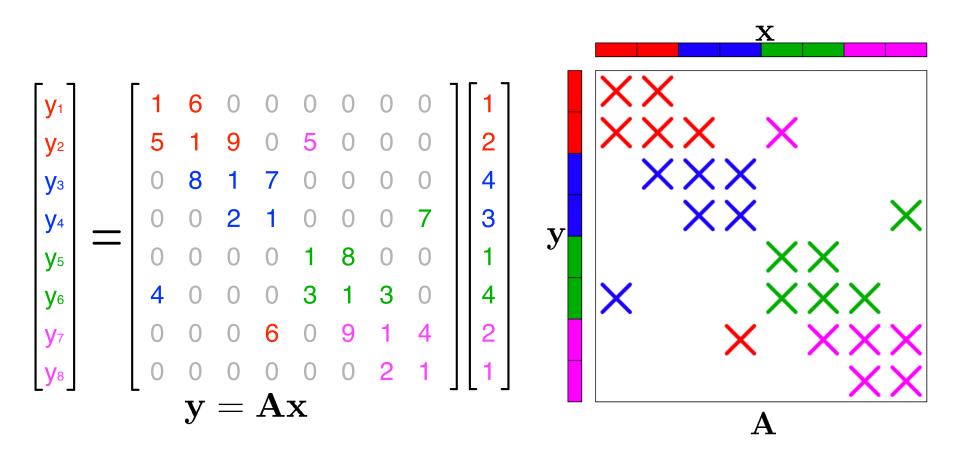
Parallel Sparse Matrix-Dense Vector Multiplication



- Partition matrix nonzeros
- Partition vectors

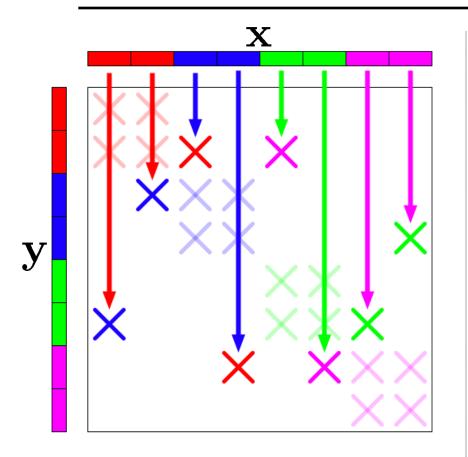
- Ideally we minimize total run-time of SpMV
- Settle for "easier" objective
 - Work balanced
 - Minimize total communication volume
 - NP-hard to find optimal solution (polynomial time heuristic algorithms)
- Can partition matrices in different ways
 - 1D
 - 2D
- Can model problem in different ways
 - Graph
 - Bipartite graph
 - Hypergraph

Parallel SpMV

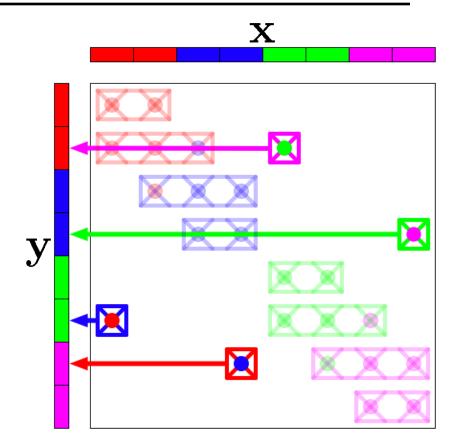


Alternative way of visualizing partitioning

Parallel SpMV Communication

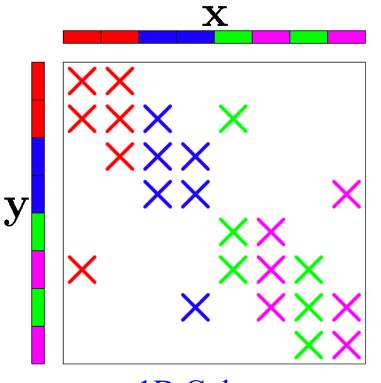


• x_j sent to remote processes that have nonzeros in column j

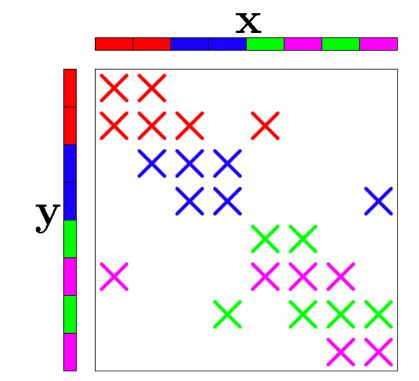


• Partial inner-products sent to process that owns vector element y_i

1D Partitioning



1D Column

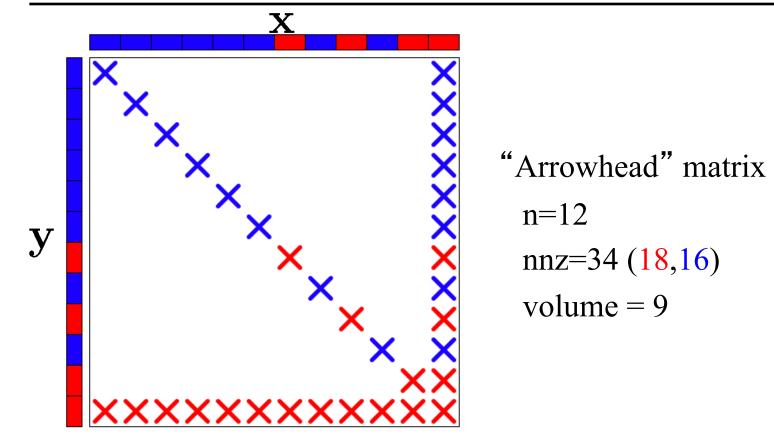


1D Row

Each process assigned nonzeros for set of columns

Each process assigned nonzeros for set of rows

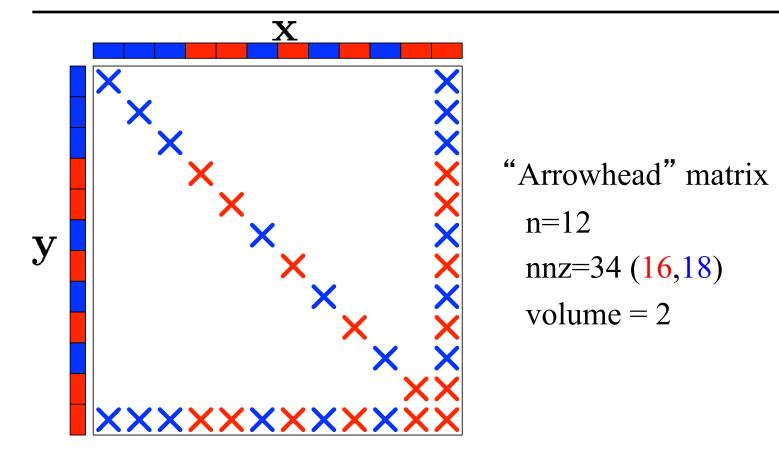
When 1D Partitioning is Inadequate



- For any 1D bisection of nxn arrowhead matrix:
 nnz = 3n-2
 - Volume ≈ (3/4)n

1D partitioning of arrowhead matrix yields high volume for SpMV

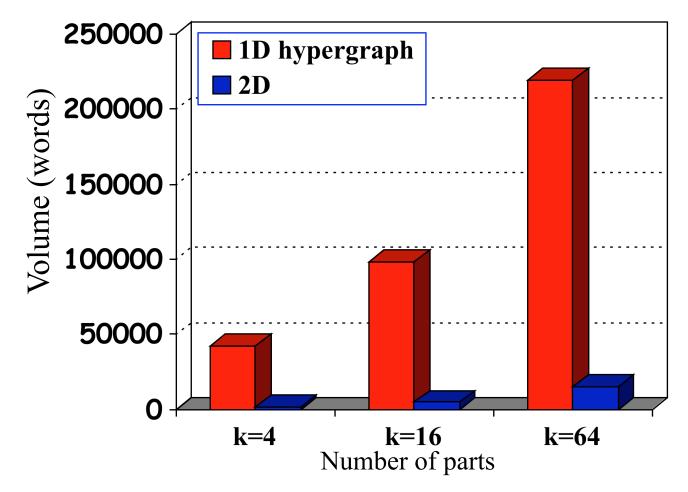
When 1D Partitioning is Inadequate



- 2D partitioning
- O(k) volume partitioning possible

2D partitioning of arrowhead matrix reduces volume for SpMV

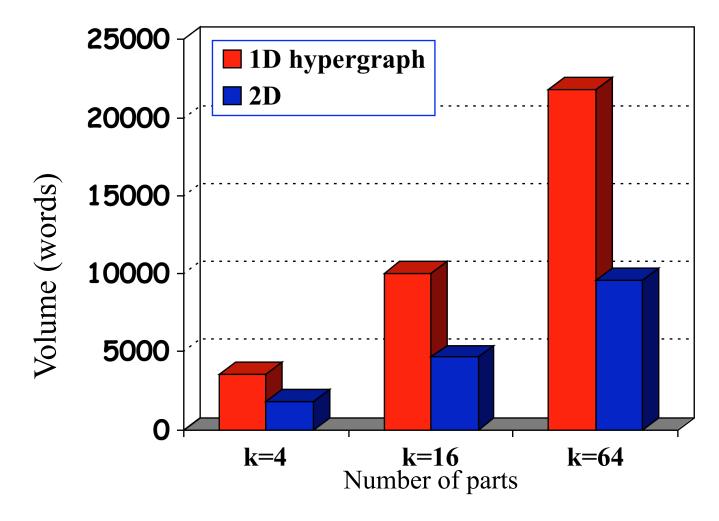
1D is Inadequate



c-73: nonlinear optimization (Schenk)

- UF sparse matrix collection
- n=169,422 nnz=1,279,274

1D is Inadequate



asic680ks: Xyce circuit simulation (Sandia) - n=682,712 nnz=2,329,176

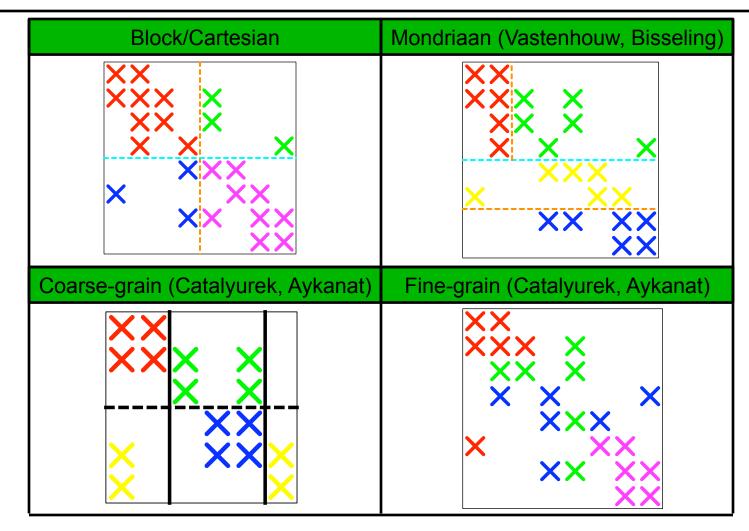
1D vs 2D: Strong Scaling for "Scale Free" Networks



Runtime (relative to 16 processor/1D runtime) for SpMV using Trilinos with 1D and 2D distributions

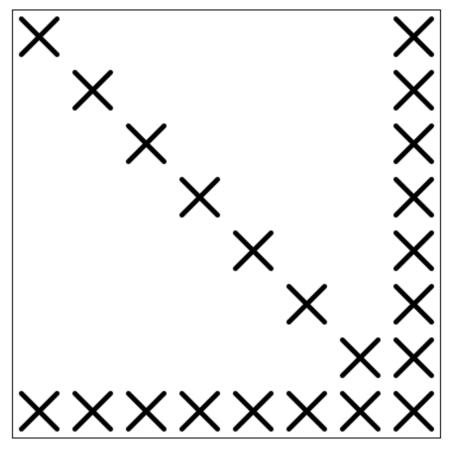
SpMV with 1D distributions not scalable

2D Partitioning



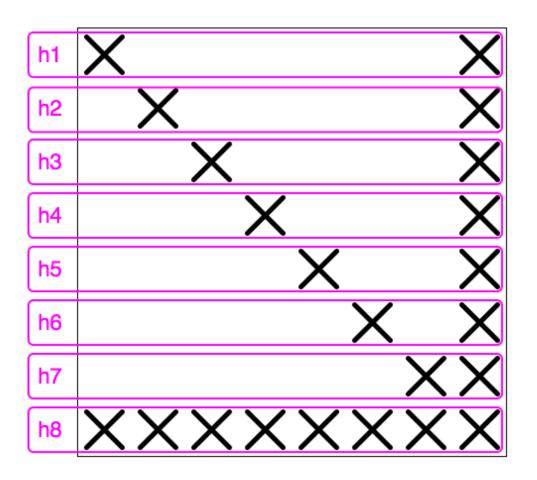
- More flexibility: no particular part for entire row or column
- More general sets of nonzeros assigned parts

- Fine-grain hypergraph
- Graph model for symmetric 2D partitioning
- Nested dissection symmetric partitioning method
 - New 2D method

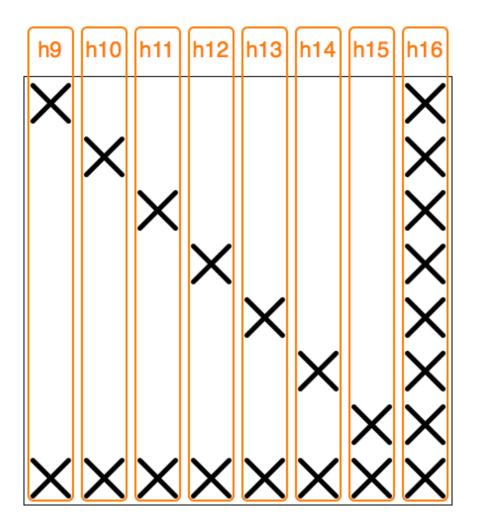


- Catalyurek and Aykanat (2001)
- Each nonzero partitioned independently
- Good quality partitions
- Significantly slower than 1D methods

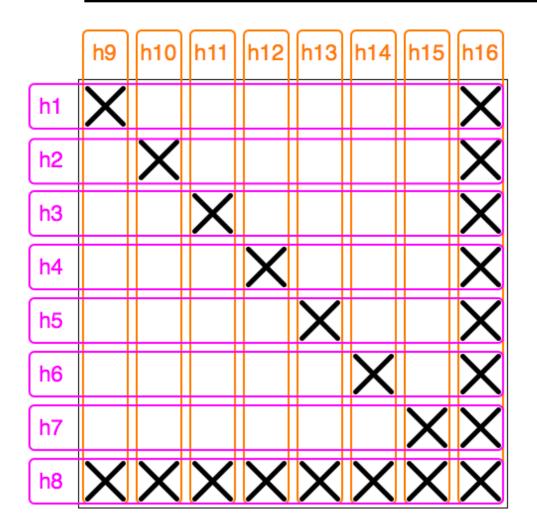
Nonzeros represented by vertices in hypergraph



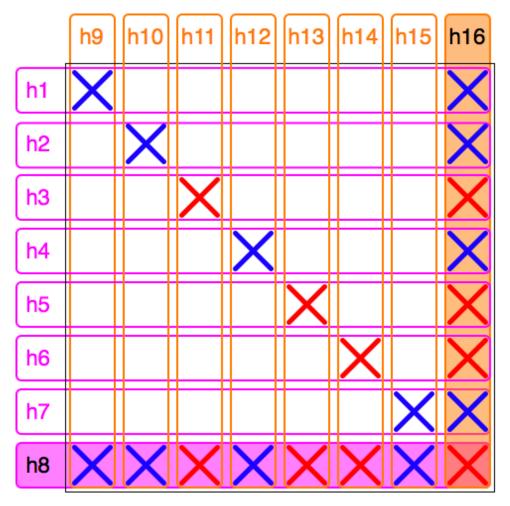
- Rows represented by hyperedges
- Hyperedge set of one or more vertices



 Columns represented by hyperedges



2n hyperedges



- Partition vertices into k equal sets
- For k=2
 - Volume = number of hyperedges cut
- Minimum volume partitioning when optimally solved
- Larger NP-hard problem
 than 1D

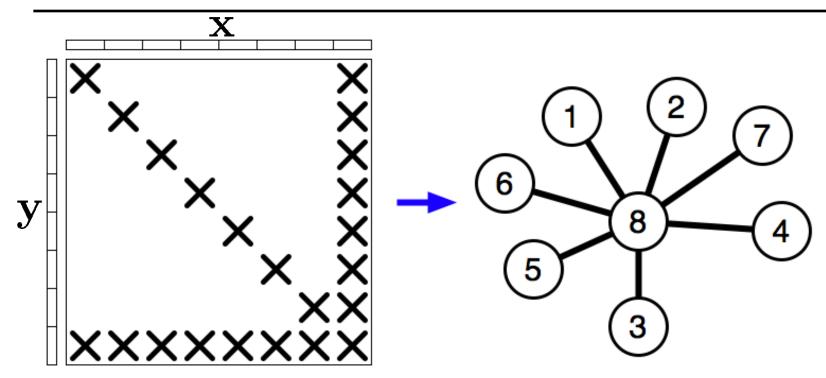
k=2, volume = cut = 2

Objective: minimize hyperedge cut, subject to load balance constraint

Graph Model for Symmetric 2D Partitioning

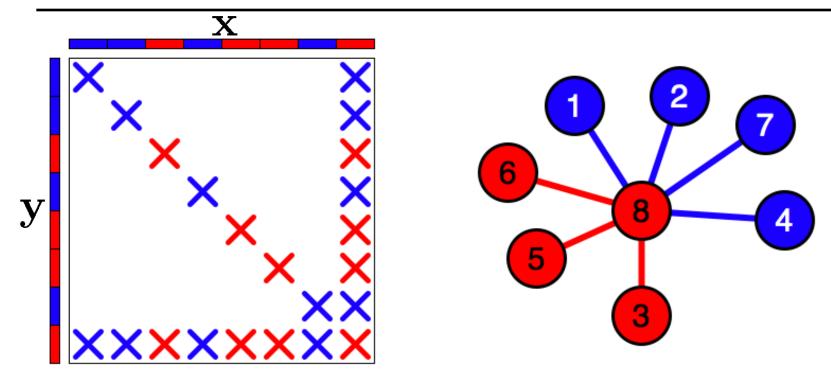
- Exact model of communication for symmetric matrix partitioning
- Given matrix A with symmetric nz structure
- Symmetric partition
 - a(i,j) and a(j,i) assigned same part
 - Input and output vectors have same distribution
- Corresponding graph G(V,E)
 - Vertices correspond to vector elements, diagonal nonzero
 - Edges correspond to off-diagonal nonzeros

Graph Model for Symmetric 2D Partitioning



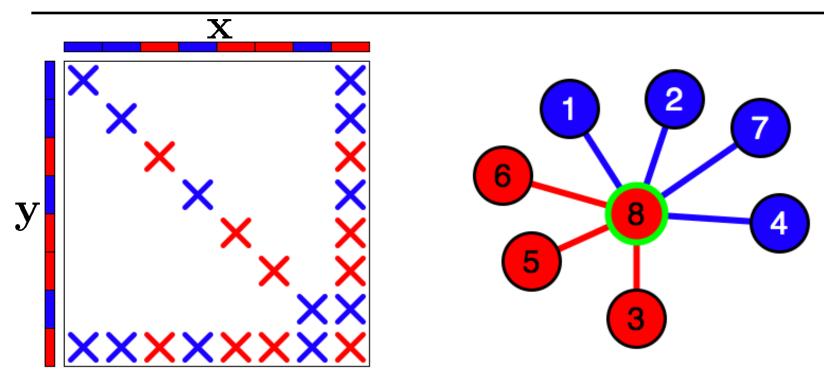
- Corresponding graph G(V,E)
 - Vertices correspond to vector elements, diagonal nonzeros
 - Edges correspond to off-diagonal nonzeros

Graph Model for Symmetric 2D Partitioning



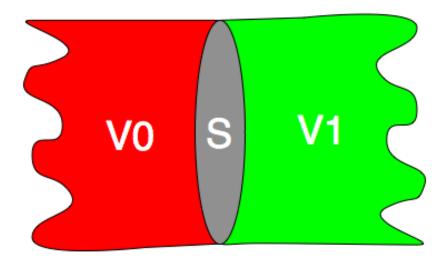
- Symmetric 2D partitioning
 - Partition both V and E
 - Gives partitioning of both matrix and vectors

Communication in Graph Model



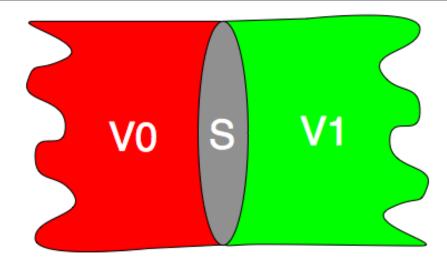
- Communication is assigned to vertices
- Vertex incurs communication iff incident edge is in different part
- Want small vertex separator -- S={V₈}
- For bisection, volume = 2 |S|

Nested Dissection Partitioning - Bisection



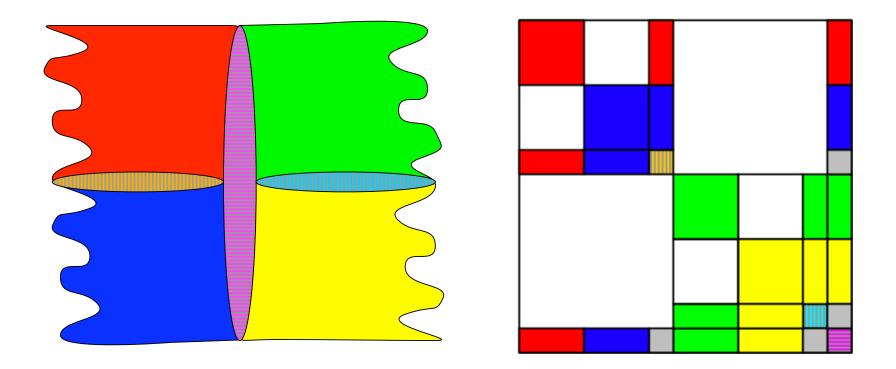
- Suppose A is structurally symmetric
- Let G(V,E) be graph of A
- Find small, balanced separator S
 Yields vertex partitioning V = (V0,V1,S)
- Partition the edges such that
 - E0 = {edges incident to a vertex in V0}
 - E1 = {edges incident to a vertex in V1}

Nested Dissection Partitioning - Bisection



- Vertices in S and corresponding edges
 - Can be assigned to either part
 - Can use flexibility to maintain balance
- Communication Volume = 2*|S|
 - Regardless of S partitioning
 - |S| in each phase

Nested Dissection (ND) Partitioning Method



- Recursive bisection to partition into >2 parts
- Use nested dissection!

Nested dissection used to obtain symmetric 2D partitioning

Extension to Nonsymmetric Matrices

- Bipartite graph gives exact model of communication volume
 - Trifunovic and Knottenbelt (2006)
- Apply nested dissection method to A' (adjacency matrix for bipartite graph)
 - Use same algorithm as for symmetric case

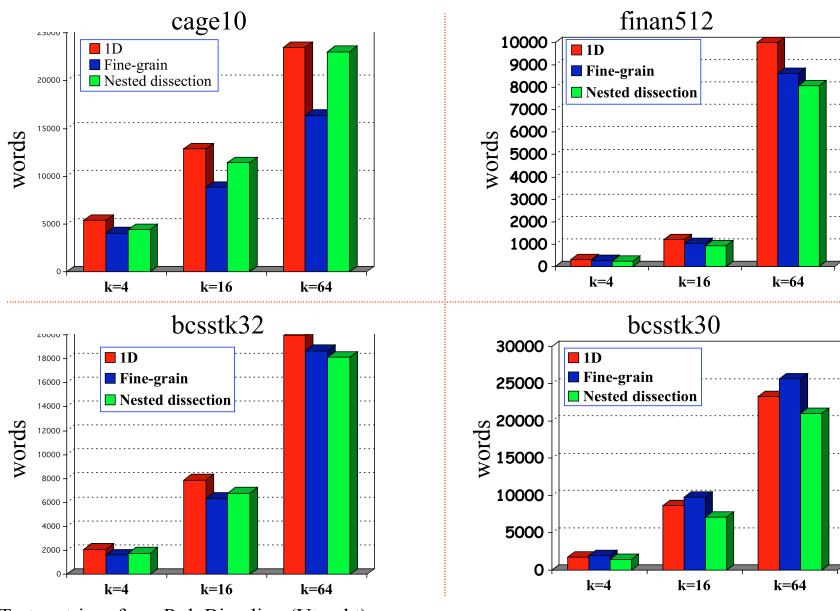
$$A' = \left[\begin{array}{cc} 0 & A \\ A^T & 0 \end{array} \right]$$

Nested dissection partitioning easily extended to nonsymmetric matrices

Numerical Experiments

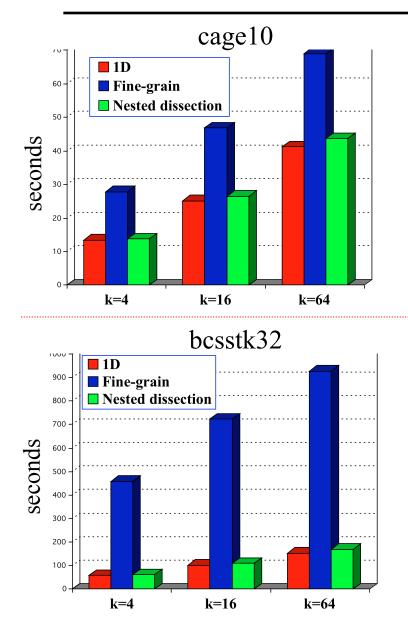
- Structurally symmetric matrices
- k = 4, 16, 64 parts using
 - 1D hypergraph partitioning
 - Fine-grain hypergraph partitioning (2D)
 - Good quality partitions but slow
 - Nested dissection partitioning (2D)
- Hypergraph partitioning for all methods
 - Zoltan (Sandia) with PaToH (Catalyurek)
 - Allows "fair" comparison between methods
- Vertex separators derived from edge separators
 MatchBox (Purdue: Pothen, et al.)
- Heuristic used to partition separators

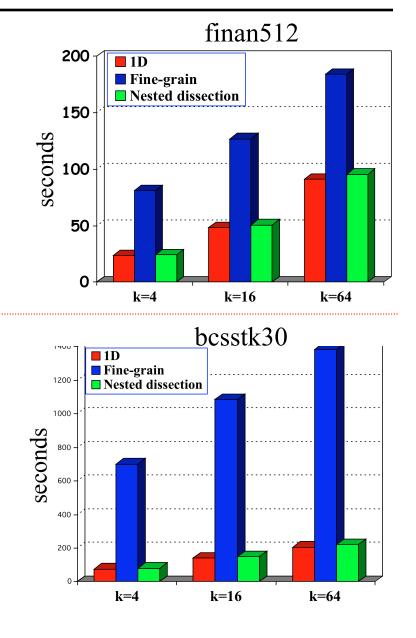
Communication Volume - Symmetric Matrices



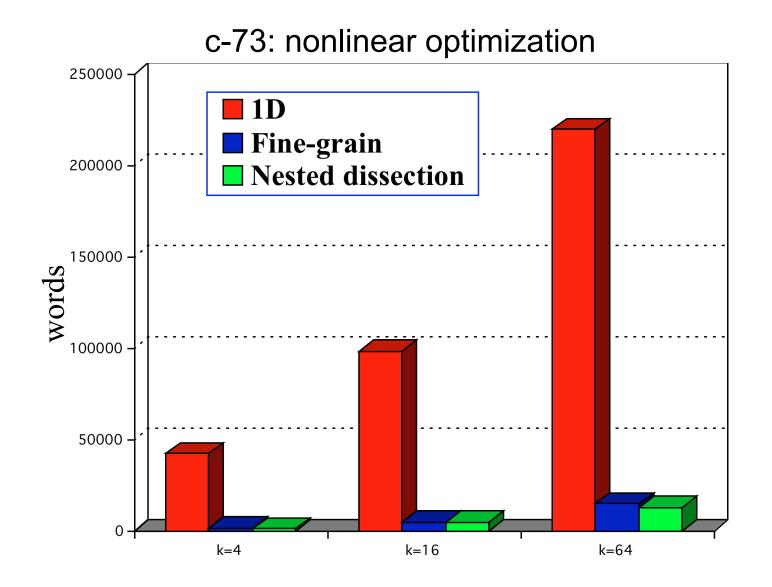
Test matrices from Rob Bisseling (Utrecht)

Runtimes of Partitioning Methods

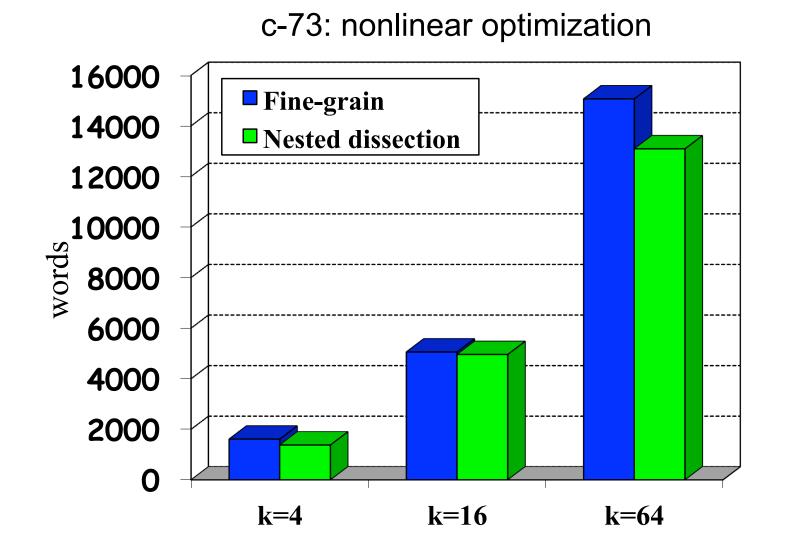




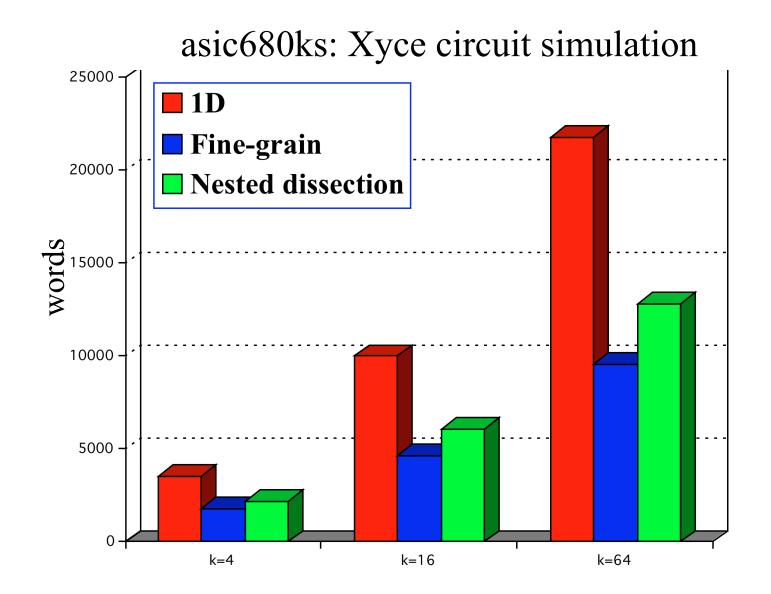
Communication Volume: 1D is Inadequate



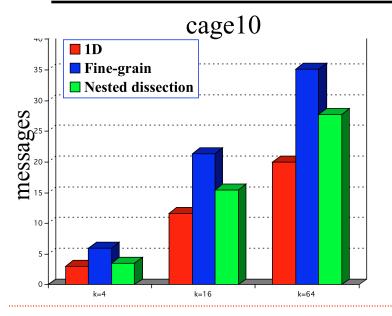
Communication Volume: 1D is Inadequate

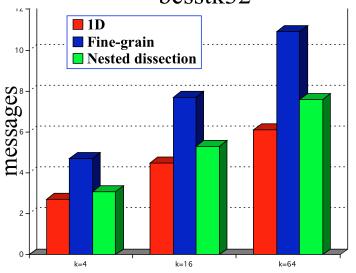


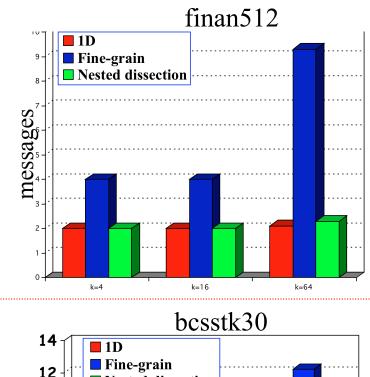
Communication Volume: 1D is Inadequate

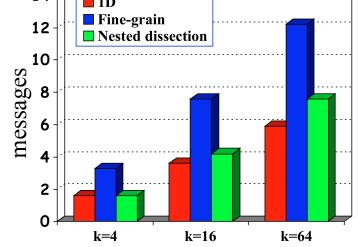


Another Important Metric: Messages Sent/Received

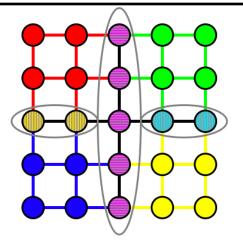


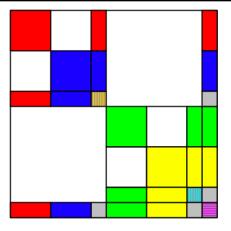






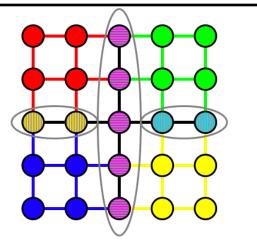
Summary

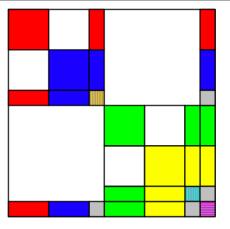




- New 2D matrix partitioning algorithm
 - Nested dissection used in new context
 - Good trade off between communication volume and partitioning time
 - Communication volume (comparable to fine-grain)
 - Partitioning time (comparable to 1D)
 - Also, fewer messages than fine-grain
- ND method partitioning effective for some matrices

Future Work





- Integrate ND partitioning algorithm into parallel numerical software framework (e.g., Trilinos)
 - Boman, et al. (SNL)
 - Isorropia, Zoltan2 packages
- Analysis of runtimes of SpMV using ND partitioning method
- Partitioning of scale-free networks with ND method
 - 2D methods are important for these problems
 - Finding balanced separator challenging