
Modeling the Performance of 2.5D Blocking of 3D
Stencil Code on GPUs

Guangwei Zhang
Department of Computer Science

Xi’an Jiaotong University
Key Laboratory of Modern Teaching Technology
Shaanxi Normal University Xi’an, Shaanxi, China

Email: zgw1982@gmail.com

Yinliang Zhao
Department of Computer Science

Xi’an Jiaotong University
Xi’an, Shaanxi, China

Email: zhaoy@xjtu.edu.cn

Abstract—The performance of stencil computations can be
improved significantly by using GPUs. In particular, 3D stencils
are known to benefit from the 2.5D blocking optimization, which
reduces the required global memory bandwidth of the stencils
and is critical to attaining high performance on GPU. Using four
different GPU implementations of a 3D stencil, this paper studies
the performance implications of combining 2.5D blocking with
different memory placement strategies, including using global
memory only, shared memory only, register files only, and a
hybrid strategy that uses all layers of the memories. Based on
static analysis of the stencil data access patterns, we additionally
develop heuristics to reduce tuning time of thread configurations
of the various implementations to attain the highest performance.

Index Terms—Stencil, Data placement, Tuning, 2.5D blocking,
GPUs

I. INTRODUCTION

Stencil computations represent one of the most important
classes of kernels and are widely used in application areas such
as image processing, data mining, and physical simulation. For
example, Figure 1 shows a 3D stencil kernel that computes the
following heat equation,

pnewi,j,k = α ∗ poldi,j,k + (poldi±1,j,k + poldi,j±1,k + poldi,j,k±1)
(0 < i < nx− 1, 0 < j < ny − 1, 0 < k < nz − 1)

pnewi,j,k is the computed value of grid point (i, j, k) and poldi,j,k

is its original value. nx, ny and nz are the size of the X, Y
and Z dimension of the stencil grid respectively. Each update
of every node requires 8 data accesses (7 loading + 1 writing)
and 7 floating point operations according to the equation. The
ratio between flops and data access is 7/(8 ∗ 8) = 0.11 for
single precision floating point data. Such a low ratio indicates
that a very high memory bandwidth must be supported by the
hardware platforms for the stencil to attain good performance.

Because of the high demand on memory bandwidth, stencil
computations such as the one in Figure 1 are good candidates
to be evaluated on modern GPU architectures, which provide
higher memory bandwidth than traditional CPUs. However,
to attain high performance on GPUs, the stencil code must
be able to sufficiently exploit the compute power of GPUs,
by carefully managing the stencil data to efficiently utilize

Fig. 1. Visualization of the 3D 7-point stencil used in this work.

the hierarchy of GPU resources including the global memory,
shared memory, and the registers. Optimizations on reducing
the bandwidth requirement help improve the performance of
stencil computation. In particular, 2.5D blocking [1] is a
well known strategy that can significantly reduce the memory
bandwidth demand of 3D stencils.

In order to efficiently utilize the memory hierarchy of GPUs,
stencil data need to be placed in the most suitable memories.
In particular, the input and output data of a GPU computation
must be initialized and saved in the global memory. During
computation, these data typically need to moved among the
global memory, the shared memory, and the registers to ensure
that data are more quickly available when needed by the
GPU stream processors. In particular, registers are the fastest
memory in a GPU, and the bandwidth and latency of the
shared memory is comparable to registers if bank conflicts
can be avoided. However, when bank conflicts are prevalent,
accessing the shared memory can be as slow as the global
memory. Further, data in the shared memory can be shared
among all the threads in a thread block, but the register can
only be owned by one thread. Often both need to be utilized
for stencils to achieve high performance.

Besides decisions over data placement, different thread
block configuration can also influence the overall GPU per-
formance. In particular, when using CUDA, a thread block
configuration needs to be specified by the developer explicitly
before executing a kernel on the GPU, and the performance
attained by using different thread configurations can differ by
orders of magnitude. However, the best thread configuration
may vary greatly for different stencil implementations and
when operating on different sizes of stencils. Automated

978-1-5090-3525-0/16/$31.00 ©2016 IEEE

empirical tuning is often used to find the best configuration.
Auto-tuning is effective but is often also time consuming due
to the large search space, especially when using exhaustive
search without considering the varying data access patterns of
stencil kernels.

This paper combines analytical modeling and auto-tuning
techniques to investigate the performance implications of
placing stencil data differently in the shared memory and
register files of GPUs, when the stencil code is blocked with
varying thread configurations.

Our main contributions are:
• We study the performance implications of four different

data placement strategies of the 2.5D blocking optimiza-
tion: including blocking only with shared memory, with
both shared memory and register files and with only
register files. The register only blocking version performs
the best on Kepler and Maxwell GPUs;

• By analyzing the data access patterns of stencils, we
develop auto-tuning heuristics to quickly find the best
thread block configurations for different implementations;

• We present an analytical model to help choose the best
data placement strategies for blocked 3D stencils on
varying GPU platforms.

The rest of the paper is organized as follows. Section II
introduces the 2.5D blocking optimization of stencil codes;
Section III demonstrates the relationship of different data
placement strategies and their performance implications; Sec-
tion IV analyzes the main factors affecting the performance
of stencil codes on GPUs based on their data access patterns.

II. 2.5D BLOCKING OF 3D STENCIL COMPUTATIONS

Because of the limitation of the on-chip memory (i.e. shared
memory and registers), stencil codes on GPUs typically block
the input data grid into multiple smaller grids that can be stored
in on-chip memory (a.k.a. spatial bocking). The sub-grids
could either be mapped directly to 3D thread blocks or 2D
thread blocks on modern GPUs, and the latter usually performs
better than the former [1][2][3]. The latter is also called 2.5D
blocking, in which the original stencil grid is blocked in XY-
plane. Each thread in a thread block computes a grid point in
the XY-plane and sweeps through the Z dimension, so that the
grid points computed by a thread block is a cuboid with the
shape bx× by× nz. bx and by are the size of the sub-grid of
XY-plane on X and Y dimension respectively. Listing 1 is a
basic implementation of 2.5D blocking without exploiting the
data reuse between the iterations along Z dimension. Though
it is easier to map the stencil grid directly onto a set of 3D
thread blocks than onto 2D thread blocks, the 3D mapping
usually needs more shared memory or registers, and as the
result it often performs worse than baseline version of 2.5D
blocking shown in Listing 1.

Listing 1. The baseline version of 2.5D blocking of 3D 7-point stencil
1 g l o b a l k e r n e l (in , out , bx , by , f a c){
2 tx b = t h r e a d I d x . x ;
3 ty b = t h r e a d I d x . y ;
4 i f (! i s b o u n d a r y){

5 f o r (k = 1 ; k < nz − 1 ; k ++){
6 c g = tx b + ty b ∗ nx + k ∗ xy ;
7 c s = i n p u t [c g] ;
8 l = c g − 1 ;
9 r = c g + 1 ;

10 t = c g + nx ;
11 d = c g − nx ;
12 z = c g + xy ;
13 b = c g − xy ;
14 l s = i n [l] ;
15 r s = i n [r] ;
16 u s = i n [u] ;
17 d s = i n [d] ;
18 f s = i n [f] ;
19 b s = i n [b] ;
20 o u t [c g] = l s + r s + u s + d s + f s
21 + b s − c s ∗ f a c ;
22 }
23 }
24 }

By enhancing data reuse, 2.5D blocking helps reduce the
bandwidth requirement of stencil computations, thereby re-
sulting in better performance. When the kernel compute the
values of points in a sub-plane in the XY-plane (we name
it ’current’ sub-plane), two neighbor sub-planes need to be
loaded (we name ’top’ and ’down’ sub-planes respectively) as
well as itself. Two of the three loaded sub-planes can be reused
at the next iteration, that is the ’current’ sub-plane becomes the
’down’ one and the ’top’ sub-plane becomes the ’current’ one
when the iteration is from bottom to top. The overlapped and
split blocking methods have been studied to improve stencil
code, and 2.5D blocking could be implemented using either
blocking method on XY-plane. The overlapped blocking of
XY-plane is used in this paper.

Besides spatial blocking, existing research also explored
blocking in the temporal dimension, by reusing the data
already loaded into the GPU’s on-chip memory across multi-
ple time steps. Temporal blocking increases the computation
intensity of stencil code. However, not all stencil computations
with temporal blocking perform better, due to the need to load
multiple time iterations of halo data and the complex control
flow introduced [4]. In this paper, We focus on 2.5D spatial
blocking only without considering temporal blocking.

The performance improvement from 2.5D blocking is re-
lated to the data placement of the sub-grids. Unlike CPUs,
GPUs have many more registers. In particular, the capacity of
the register is even larger than shared memory, therefore the
sub-grid could be loaded into shared memory, or be directly
loaded into registers, or be loaded partly into shared memory
and partly into registers. Each type of memory has its own
requirements if we want to efficiently access the data, for
example, coalesced global memory accesses and accessing
shared memory without bank conflicts would be benefit to
the performance; but too many shared memory and register
files allocation would decrease the occupancy of GPUs and
may result in performance degradation.

978-1-5090-3525-0/16/$31.00 ©2016 IEEE

III. DATA PLACEMENT STRATEGIES

The placement of data in GPU’s on-chip memory plays an
important role in the achieved performance of 3D stencil codes
with 2.5D blocking. For example, consider the 3D 7-point
stencil in Fig 1. Here for each grid point being modified,
four neighboring points located in the same XY-plane (p1)
are needed, plus two neighboring points located in the XY-
planes located above and below (p0 and p2). All the three
XY-planes can be stored in the shared memory, and p1 and
p2 be reused in a circular queue pattern [5]. An alternative
strategy is to only place the middle plane in the shared
memory, with the p0 and p2 planes in register files [2]. We
implemented both these stategies to study their performance
implications. Additionally, we implemented a third version,
which places all the three planes, p0, p1, and p2, in register
files only. Performance statistics are collected for all three ver-
sions using the three metrics, gld throughput, gst thoughput,
and achieved occupancy, supported by the NVIDIA nvprof
command tool. Figure 2 shows the relative performance of the
three data placement strategies with the input stencil grid of
512x512x512 on GTX 780. The following subsections discuss
the implications of each data placement strategy from the
results collected.

Fig. 2. Performance and the metrics

A. Placing data in shared memory

The GPU’s shared memory is used to store data shared
among different threads of a thread block. Because it has a
much higher bandwidth and a much lower latency than the
global memory, it acts as a user-managed cache reducing the
required global memory bandwidth for memory-bound GPU
applications [2]. However, certain patterns of data access,
e.g., the 3D 7-point stencil in Figure 1, can induce severe
bank conflicts and thereby greatly degrade the performance of
shared memory. The kernel code of the shared memory version
is in Listing 2. The performance metrics of this version is the
worst as shown in Figure 2.

Listing 2. Stencil kernel (shared memory)
1 bx = blockDim . x ;
2 by = blockDim . y ;
3 x s = bx + 2 ;
4 y s = by + 2 ;

5 xy s = x s ∗ y s ;
6 CURRENT G = i x + i y ∗nx + nx∗ny ;
7 CURRENT S = t x + t y ∗x s + xy s ;
8 s h a r e d f l o a t s d a t a [] ;
9 / / down

10 s d a t a [CURRENT S−xy s] = i n [CURRENT G−nxy] ;
11 / / c u r r
12 s d a t a [CURRENT S] = i n [CURRENT G] ;
13 / / t o p
14 s d a t a [CURRENT S+xy s] = i n [CURRENT G+nxy] ;
15 / / ha lo r e g i o n
16 s d a t a [CURRENT S−1] = i n [CURRENT G−1];
17 s d a t a [CURRENT S+1] = i n [CURRENT G+ 1] ;
18 s d a t a [CURRENT S−x s] = i n [CURRENT G−nx] ;
19 s d a t a [CURRENT S+x s] = i n [CURRENT G+nx] ;
20 s y n c t h r e a d s () ;
21 i f (! i s b o u n d a r y){
22 c u r r = s d a t a [CURRENT S] ;
23 e a s t = s d a t a [CURRENT S+ 1] ;
24 wes t = s d a t a [CURRENT S−1];
25 n o r t h = s d a t a [CURRENT S−bx] ;
26 s o u t h = s d a t a [CURRENT S+bx] ;
27 s y n c t h r e a d s () ;
28 temp = e a s t + wes t + n o r t h + s o u t h
29 + t o p + down − c u r r ∗ f a c ;
30 o u t [CURRENT G] = temp ;
31 }

The shared memory version decreases the performance than
the baseline version, because its access pattern can not avoid
bank conflicts as shown in Figure 3. The ”up” (denoted as
”UP”) and ”down” (”D”) nodes of the computed node (”C”)
of each thread are located in the same bank, resulting in the
bank conflict. If the bank conflict degree is high, the latency of
shared memory could be even higher than global memory [6].
Besides that, the achieved occupancy is also low compared to
other implementations as shown in Figure 2, that is because
it requires a larger amount of shared memory than the other
versions. The shared memory is divided among all the thread
blocks running on a SM. If the shared memory allocated for
each thread block is too large, the number of concurrent active
thread blocks is limited, resulting in not enough parallelism.
This also contributes to the poor performance.

Fig. 3. The bank conflict of shared memory version

B. Placing data in shared memory and register files

Placing data only in shared memory performs worse than
the baseline. However, it can be improved by storing the

978-1-5090-3525-0/16/$31.00 ©2016 IEEE

”current” plane in the shared memory and the ”top” and
”down” planes in register files as shown in Listing 3. We
name it the hybrid version. The serious bank conflicts in shared
memory only version are avoided and the amount of shared
memory allocated for each thread block is also reduced. The
performance metrics of the hybrid version is better than both
the shared memory only version and the baseline version, as
shown in Figure 2. Because of the mixed use of the shared
memory and register files, the size of shared memory of
each thread block is reduced than the shared memory only
blocking version and the size of register files of each thread is
reduced than register blocking version. Therefore, the achieved
occupancy of the hybrid blocking version is the best, but high
occupancy does not always mean high performance.

Listing 3. Stencil kernel (hybrid)
1 down = i n [CURRENT G − nx∗ny] ;
2 c u r r = i n [CURRENT G] ;
3 s d a t a [CURRENT S] = c u r r ;
4 t o p = i n [CURRENT G + nx∗ny] ;
5 i f (! i s b o u n d a r y){
6 c u r r = s d a t a [CURRENT S] ;
7 e a s t = s d a t a [CURRENT S + 1] ;
8 wes t = s d a t a [CURRENT S − 1] ;
9 n o r t h = s d a t a [CURRENT S − bx] ;

10 s o u t h = s d a t a [CURRENT S + bx] ;
11 s y n c t h r e a d s () ;
12 temp = e a s t + wes t + n o r t h + s o u t h
13 + t o p + down − c u r r ∗ f a c ;
14 o u t [CURRENT G] = temp ;
15 }

C. Placing data in register files

Placing data in register files achieves the highest global data
access throughput and occupancy, as shown in Figure 2. For
different grid size, they share the same trend among the three
blocking methods. syncthreads() is an overhead for shared
memory blocking versions. Because there is no data sharing
between threads, the register blocking version involves no
synchronization as needed in the blocking of shared memory.
Besides that, the register blocking version is similar to the
shared memory blocking version in structure and it also keeps
the data reuse in the iterations along Z dimension. Therefore
it overtakes the codes blocking with the shared memory. The
code of register blocking version is in Listing 4. Vizitiu et al.
showed the similar result in [2] and Vasily also gave the similar
analysis [7]. Besides the performance gain, the programming
is also easier than the shared memory version.

Listing 4. Stencil kernel (register)
1 i f (! i s b o u n d a r y){
2 down = i n [CURRENT G − nx∗ny] ;
3 c u r r = i n [CURRENT G] ;
4 t o p = i n [CURRENT G + nx∗ny] ;
5 e a s t = d in [CURRENT G + 1] ;
6 wes t = d in [CURRENT G − 1] ;
7 n o r t h = d in [CURRENT G − nx] ;
8 s o u t h = d in [CURRENT G + nx] ;
9 temp = e a s t + wes t + n o r t h + s o u t h

10 + t o p + down − c u r r ∗ f a c ;

11 o u t [CURRENT G] = temp ;
12 }

The loading data from global memory directly to register files
utilizes the cache better, resulting much higher global memory
throughput as shown in Figure 2, which is denoted in the
Formula 1 on page 5. On Kepler GPUs, the size of register
files is 64KB per SM as is even larger than the shared memory,
and the maximum registers per thread is 255 make the register
spilling not that easy. The shared memory and L1 cache share
the same on-chip memory on Kepler GPUs, such that there
exist interference between the accesses to shared memory and
L1 cache of the hybrid blocking version. But in Maxwell
GPUs, the L1 cache and shared memory are separate, such
that the interference disappears.

IV. PERFORMANCE ANALYSIS

Efficient use of global memory is critical to the performance
of applications on GPUs, that is the data in global memory
need to be loaded into on-chip memory as efficiently as
possible. Accessing off-chip memory is a major performance
bottleneck in microprocessors [8], and it is especially critical
to the performance of the stencil code on GPUs [9]. The
efficiency of data access is closely related to the data access
pattern of the code. Because the access pattern of stencil
computations is regular, a heuristic of finding the optimal
thread block configuration and an estimation of the achieved
global memory throughput are derived from its data access
pattern analysis. They both help us better understand how an
optimization delivers its performance improvement.

A. A heuristic for finding optimal thread block configuration

Fig. 4. A block of an XY-plane

A thread block and the data it loads are similar in shape,
therefore the optimal thread block configurations can be ap-
proximately derived through analyzing its data access effi-
ciency. The data loaded by each thread block of a XY-plane
is shown in Figure 4, both the blue and orange regions. The
blue region is the grid points to be computed, and the orange
part is usually called the halo region used for computing the
boundary points of the blue region. The dimension of a thread
block is the same with the blue region, each small square of
which represents a thread if one thread computes one node
on the XY-plane. Each square in the blue region is loaded by

978-1-5090-3525-0/16/$31.00 ©2016 IEEE

the corresponding thread at the same position, and the orange
points are usually loaded by the boundary threads in the thread
block. The thread block is specified by the developers when
programming, thus the blocking of the stencil data grid is also
specified at the same time. The size of the loaded data is
(bx+ 2)× (by + 2) if the halo width is 1.

The halo region points are loaded multiple times, therefore
it is a great overhead when each XY-plane is blocked into
many small blocks. The abundant loading data size is related
to the shape of the thread block. The points in the halo region
of the thread block is also the points needed to be computed
in the neighboring blocks, therefore they would have to be
loaded multiple times. As stated in [1], if bx is times of 32,
the loading of each row from global memory is coalesced. If bx
is smaller there is more blocks along X dimension, therefore
the ratio of redundant points is higher. We can infer that
larger bx would provide better performance. The loading of
the points of the halo in the Y dimension can not be coalesced,
therefore the larger by the more un-coalesced global memory
accesses. From this analysis, for the 2.5D blocking of the 3D
7-point stencil computation, a larger bx and a smaller by mean
better performance, which can be used to quickly find the
optimal thread block shape. For example, a stencil grid of
256× 256× 256 points, the baseline version 128 delivers the
best performance on GTX 780, while the optimal configuration
of the shared memory + register version is 128×2. The results
in [10] are similar to ours. Though the configurations are
different from different input data size and implementations,
they share the similar shape: long and flat.

Though this heuristic is consistent for the different im-
plementations of the 3D 7-point stencil computation, the
optimal thread configurations are different, because the thread
block configuration not only influences the efficiency of data
accessing but also impacts other performance factors such as
the occupancy. Therefore, we employ an auto-tuning method
to find the optimal ones. This heuristic greatly reduces the
searching space and saves the tuning time.

B. Analyzing global memory throughput

The achieved throughput of global memory is related to
the data size transferred, the number of threads in a thread
block [11], as well as the shape of the thread block and the
efficiency of utilizing L1 cache. The achieved bandwidth of
global memory is linearly proportional to the size of the data
transferred before saturating the global memory bandwidth if
there is no contention. The less-thread blocks cannot provide
enough parallelism and the more-thread blocks can lead to
memory requests sequentially serviced. The global memory
loading/storing throughput of 3D stencil under 2.5D optimiz-
ing methods is shown in Figure 5, from which we can see
the throughput increases with the data size in each optimizing
implementation.

The global memory throughput of the computation can be
modeled in Formula 1:

Throughputgm =
α · bx×Dall × Ucache ×BW peak

gm

β · by
(1)

Fig. 5. Global memory loading throughput

It approximately describes the factors to the throughput of
loading data from global memory. Dall is the data size of the
input stencil grid. The throughput increases with Dall before
the bandwidth is saturated. Ucache is the utilization of L1 and
L2 cache, which is described in Section III. bx and by is the
thread block dimension. Their influences to the performance
is analyzed in IV-A. BW peak

gm is the peak bandwidth of global
memory. For memory intensive applications, higher memory
throughput usually means better performance.

V. EXPERIMENTAL RESULTS

All the different implementations are executed and tuned
on GTX 780(Kepler) and GTX 960M(Maxwell). They share
the similar results: the performance of placing data in register
only versions increase 20% to 40% than the baseline version
on GTX 780 and 20% on GTX 960M with different input data
sizes; the performance of placing data in shared memory only
versions decreases by 20% to 40% on GTX 780 and 10% to
20% on GTX 960M. The performance results are shown in
Figure 6 and 7. The difference between the hybrid blocking
version and the register blocking version on GTX 960M is not
as much as on GTX 780 as stated in section IV.

The optimal configurations of each implementation on the
same GPU with different input data size are different as listed
in table I.

Fig. 6. Performance on GTX 780

978-1-5090-3525-0/16/$31.00 ©2016 IEEE

Fig. 7. Performance on GTX 960M

TABLE I
OPTIMAL THREAD BLOCK CONFIGURATIONS ON GTX 780

Data Placement 1283 2563 5123

Baseline 64× 2 128× 1 256× 4
Shmem only 128× 1 128× 1 256× 1
Shemem+reg 128× 4 128× 2 256× 1

Reg only 64× 2 128× 1 256× 1

We can estimate the optimal thread block configuration
according to the thread block configuration heuristic stated
in section IV for the three stencil codes. The optimal shape of
blocking configurations for the 3D 7-point stencil is long and
flat as shown in Table I, and it meets the heuristic. The trend is
still agree with the prediction of our performance model: with
the fixed block.x, the performance increases when block.y
decreases; with the fixed block.y, the performance increases
when block.x decreases.

VI. RELATED WORK

The model in [12] is similar to ours and they also focus on
3D low order stencil computations, comparing a baseline and
a z-blocked version, but not the more efficient 2.5D blocking
with shared memory and registers. S. Tabik et al. [10] proposed
a method for finding the optimal thread block configurations
efficiently through the analysis of the memory access transac-
tions of different levels. Though the optimal configuration is
not unique, the wider and shorter blocking usually performs
better, because they can reduce the number of memory access
transactions. Better performance does not always means higher
occupancy [13], the register blocking version delivers the best
performance though its achieved occupancy is not the high-
est. An analytical performance prediction model is proposed
in [14] and empirical tuning is used as an effective to solve
the complex problem.

VII. CONCLUSION

We analyze how the data placement would influence the
performance of the 2.5D blocking optimization of 3D 7-point
stencil computation and the result can be used as a guide when
implementing the stencil code on GPUs. We employ the em-
pirical tuning method to find the best performance according

to the heuristic based on data access pattern analysis, which
can significantly reduce the tuning time. However, when an
application is ported to a different GPU, the tuning needs to
be done again. Though different GPU architectures perform
differently, there exist common places in the relationship
between hardware characteristics and performance. We are
going to study using machine learning techniques and make
the code adaptive to new architectures based on the tuning
results of existing hardware.

ACKNOWLEDGMENT

We thank the anonymous reviewers for their valuable feed-
back. This work is supported by fund of key laboratory
of modern teaching technology, ministry of education, P.R.
China. Guangwei Zhang is supported by the China Scholarship
Council for 1 year study under the direction of Dr. Qing Yi
at the University of Colorado at Colorado Springs.

REFERENCES

[1] M. Krotkiewski and M. Dabrowski, “Efficient 3d stencil computations
using CUDA,” vol. 39, no. 10, pp. 533–548.

[2] A. Vizitiu, L. Itu, C. Nita, and C. Suciu, “Optimized three-dimensional
stencil computation on fermi and kepler GPUs,” in 2014 IEEE High
Performance Extreme Computing Conference (HPEC), pp. 1–6.

[3] N. Maruyama and T. Aoki, “Optimizing stencil computations for nvidia
kepler gpus,” in Proceedings of the 1st International Workshop on High-
Performance Stencil Computations, Vienna, 2014, pp. 89–95.

[4] A. Nguyen, N. Satish, J. Chhugani, C. Kim, and P. Dubey, “3.5-d block-
ing optimization for stencil computations on modern cpus and gpus,” in
High Performance Computing, Networking, Storage and Analysis (SC),
2010 International Conference for, Nov. 2010, pp. 1–13.

[5] K. Datta, M. Murphy, V. Volkov, S. Williams, J. Carter, L. Oliker, D. Pat-
terson, J. Shalf, and K. Yelick, “Stencil computation optimization and
auto-tuning on state-of-the-art multicore architectures,” in Proceedings
of the 2008 ACM/IEEE conference on Supercomputing. IEEE Press,
p. 4.

[6] X. Mei and X. Chu, “Dissecting gpu memory hierarchy through
microbenchmarking,” arXiv:1509.02308 [cs], Sep. 2015, arXiv:
1509.02308.

[7] V. Volkov, “Programming inverse memory hierarchy: case of stencils
on GPUs,” in GPU Workshop for Scientific Computing, International
Conference on Parallel Computational Fluid Dynamics (ParCFD).

[8] A. Aggarwal and S. Vitter, Jeffrey, “The input/output complexity of
sorting and related problems,” Commun. ACM, vol. 31, no. 9, pp. 1116–
1127, Sep. 1988.

[9] N. Fauzia, L.-N. Pouchet, and P. Sadayappan, “Characterizing and en-
hancing global memory data coalescing on GPUs,” in Proceedings of the
13th Annual IEEE/ACM International Symposium on Code Generation
and Optimization, ser. CGO ’15. IEEE Computer Society, pp. 12–22.

[10] S. Tabik, M. Peemen, N. Guil, and H. Corporaal, “Demystifying the
16x16 thread-block for stencils on the gpu,” Concurrency and Compu-
tation: Practice and Experience, 2015.

[11] A. Resios, “GPU performance prediction using parametrized models,”
the Netherlands, 2011.

[12] H. Su, X. Cai, M. Wen, and C. Zhang, “An analytical gpu performance
model for 3d stencil computations from the angle of data traffic,” The
Journal of Supercomputing, pp. 1–21, 2015.

[13] V. Volkov, “Better performance at lower occupancy,” in Proceedings of
the GPU Technology Conference, GTC, vol. 10. San Jose, CA.

[14] S. S. Baghsorkhi, M. Delahaye, W. D. Gropp, and W. H. Wen-mei,
“Analytical performance prediction for evaluation and tuning of GPGPU
applications,” in Workshop on Exploiting Parallelism using GPUs and
other Hardware-Assisted Methods (EPHAM), In conjunction with The
International Symposium on Code Generation and Optimization (CGO)
2009.

978-1-5090-3525-0/16/$31.00 ©2016 IEEE

