978-1-5090-3525-0/16/$31.00 ©2016 IEEE

Performance Characterization and Parallelization of Tesseract Optical Character
Recognition on Multicore Architectures

Sunghwan Bae

Jialing Zhang

Seung Woo Son

University of Massachusetts Lowell

1. Introduction

Optical Character Recognition, or OCR, is one of the
major topics in computer vision technology. It is widely
used in various applications, such as a digital libraries,
automatic banking systems, and mailing services. Tesseract
OCR Engine, which we evaluate in this paper, is one of
renowned OCR programs. It was originally developed by
Hewlett Packard Lab between 1985 and 1995, and has been
maintained by Google since 2006 [[I]]. Initially, this program
was designed to recognize English text only, however, it has
been enhanced to support other languages as more training
models were added [2].

OCR process including Tesseract is known to be very
compute intensive because of the computation involving
image and mathematical processing to obtain higher recog-
nition accuracy. While there has been a significant im-
provement in the recognition accuracy of Tesseract OCR,
parallelization has not been extensively studied. Also, there
is a plethora of multicore architectures, thus it is highly
considered to achieve better performance by utilizing those
parallel architectures. In this paper, performance character-
ization has been performed using a profiling tool to find a
target, and then, parallelizing the identified target using an
appropriate parallel programming method.

The main goal of this paper is characterizing the per-
formance of the Tesseract OCR program and accelerating
compute-intensive loops on multicore architectures. Our
main contributions are as follows. First, we analyze the
Tesseract OCR program using a binary instrumentation tool
and identify target loops that can be parallelized. This
allows us to decide which parallelization method needs to
be applied and how to modify the loops in order to make
them run in parallel. Second, we apply parallel methods on
the loops based on the characterization analysis. Lastly, we
discuss issues and limitations in parallelizing the Tesseract
OCR and suggest appropriate solutions as needed.

2. Our Approach

Performance Characterization. Tesseract OCR has multi-
ple steps to recognize characters from an image. The first
one is line and word finding [3]. It finds text lines by
analyzing page layout and presumed text size. Even if the
text line is curved or slanted, Tesseract OCR is able to
recognize the character by Baseline Fitting [3]. Next is word

target region for
parallel execution

—x -0 1 x

tesseract:Tesseract:match_current_
words(WERD_RES_LIST&, ROW*, ...
- 571%

Figure 1. Part of call graph of KCachegrind based on Callgrind result file.

recognition. It has two steps; one is recognizing characters
from a word, and the other is a process for improving
accuracy called an “adaptive classifier” [3]]. This process is a
potential candidate for parallelization because it is executed
iteratively when a document image has many words.

To characterize the performance of Tesseract in detail,
we used the Valgrind instrumentation framework, specifi-
cally a profiling tool called Callgrind. Callgrind profiles the
program and collects the function call history, the number
of calls, and relationships between functions during run-
time [4]). The collected information can be visualized using
the KCachegrind tool after generating the report file by spec-
ifying ——tool=callgrind on the Valgrind command
line.

Figure [[] is a part of the call graph that
shows an iterative function call. As shown in the
figure, RecogAllWordsPassN() repeatedly calls
classify_word_and_language () 2,654 times.
Thus RecogAllWordsPassN () can be parallelized if
there is no dependency. In terms of the time contribution,
it accounts for 75.99% of total elapsed time, so significant
performance improvement can be expected if this module
was successfully parallelized.

Parallelization Strategy. According to our performance
characterization and call graph analysis, the potential can-

978-1-5090-3525-0/16/$31.00 ©2016 IEEE

didate for parallelization is RecogAllWordsPassN ().
Based on our performance characterization, we found that
OpenMP API can be an optimal option for this program as
it allows users to use multiple threads to perform multiple
iteration process concurrently and to use shared memory
which can be accessed by those threads.

There are 9 steps called “Pass” in this program to
recognize characters after an image segmentation process
divides one or more input images into word blocks. The
candidate function to be parallelized has the first two steps
implemented on itself, which are the processes of recogniz-
ing characters from the word block images. The other steps
are processes of correcting results from previous steps to
improve the accuracy of the result.

Since the target function is designed to support two
passes, Pass 1 and Pass 2, several issues need to be ad-
dressed before parallelization. First, although the function
has only one loop, each iteration involves many steps, such
as updating monitoring progress, changing language setting
in case of failure, and fuzzy correction which could be useful
in the second phase. The second issue is the serialized class
object to store recognition results. Whenever a process of
a single word block is completed, it calls a function of the
class object to shift its pointer of memory to store next
result. The last one is dependencies between each word
recognition process. A separate memory data structure that
stores a word has a pointer member pointing to the previous
word which can be used to change character recognition
settings dynamically based on previous result. However, this
can be an obstacle for parallelization.

To avoid these problems, we separate the target routine
into two separate routines. One reason is that the code in
Pass 2 is relatively complex because it needs to take care of
previous result. Another reason is the dependency of each
word recognition process. Although the result of previous
word recognition is not used in Pass 1, it can be used in
Pass 2 if Pass 2 is executed in serial. The last reason is that
it is much easier to handle the pointer to PAGE_RES_IT,
which is a class object for storing results from Pass 1.

3. Experimental Evaluation

To evaluate the impact of our parallelization methods, we
built and evaluated Tesseract on the Massachusetts Green
High Performance Computing Center (MGHPCC) [5]]. To
build the Tesseract OCR, we used the following modules:
gce/4.7.4 and multiple image libraries (libtiff/4.0.3, lib-
jpeg/6b, jpeg/9a, and giflib/5.1.0). Tesseract also requires
Leptonica [6], which is a widely used library for image
processing application in order to support diverse image
formats.

We measured the performance as well as the recog-
nition accuracy of our parallelized Tesseract OCR using
a sample image which had 1,141 words. The accuracy
of character recognition from original Tesseract OCR was
98.86% which was calculated using the String Similarity
Tool [7]]. Table E] is the performance breakdown of the
parallelized Tesseract. It clearly shows that the parallelized

target routine, RecogAllWordsPassN (), is successfully
parallelized up to 16 threads. It also shows that as the
number of threads increases, the performance improvement
is saturated because of the critical section among the passes.
Overall, the total elapsed time has been improved up to
33% as a result of OpenMP parallelization. In terms of the
recognition accuracy, we were able to maintain the accuracy
of 98.86% regardless of the number of threads.

TABLE 1. PERFORMANCE BREAKDOWN OF THE PARALLELIZED
TESSERACT WHILE INCREASING THE NUMBER OF THREADS.

Number of Elapsed Time (sec) Recognition
threads RecogAllWordsPassN() only Total Accuracy
1 5.41 13.81 98.96
2 2.55 11.18 98.96
4 1.17 9.93 98.96
8 0.58 9.56 98.96
16 0.32 9.30 98.96

4. Conclusion and Future Work

The Tesseract OCR engine supports many different lan-
guages and has a great accuracy of character recognition,
but its performance on multicore processors has not been
studied exhaustively. The compute-intensive loops, identi-
fied by using the Valgrind profiling tool, are intrinsically
serial routines that update the recognized characters while
iterating multiple passes. It also has dependencies where
the current word recognition phase uses the result from the
previous recognition phase. In addition to this, there is a
memory collision issue. In this paper, we reduced these de-
pendencies, thereby allowing us to apply parallelization on
compute-intensive loops using OpenMP. Our experimental
evaluation using a document image containing 1,142 words
demonstrates a scalable speedup for the target loop up to
16 threads. Therefore, the overall performance has been
improved up to 33% as compared to the serial version.

In our future work, we plan to improve the performance
further by resolving the memory collision between Pass 1
and 2 as it prevents threads among different passes from
simultaneously running. We also plan to accelerate the tar-
get kernels using other parallelization mechanisms, such as
CUDA and OpenCL.

References

[1] L. Vincent, “Announcing Tesseract OCR.” [Online]. Available: http:
/Igooglecode.blogspot.com/2006/08/announcing-tesseract-ocr.html

[2] A. Dovev, “Training Tesseract.” [Online]. Available: https://github.
com/tesseract-ocr/tesseract/wiki/TrainingTesseract

[3] R. Smith, “An Overview of the Tesseract OCR Engine,” in Proceedings
of the Ninth International Conference on Document Analysis and
Recognition - Volume 02, ser. ICDAR 07, 2007, pp. 629-633.

[4] J. Seward, N. Nethercote, and J. Weidendorfer, Valgrind 3.3 - Advanced
Debugging and Profiling for GNU/Linux Applications. Network
Theory Ltd., 2008.

[5] “Massachusetts Green High Performance Computing Cluster.”
[Online]. Available: http://wiki.umassrc.org/wiki/index.php/Main_Page

[6] H. Gehrke, “OCR - Optical Character Recognition.” [Online].
Available: https://help.ubuntu.com/community/OCR!

[7] “String similarity test.” [Online]. Available: https://www.tools4noobs.
com/online_tools/string_similarity/

http://googlecode.blogspot.com/2006/08/announcing-tesseract-ocr.html
http://googlecode.blogspot.com/2006/08/announcing-tesseract-ocr.html
https://github.com/tesseract-ocr/tesseract/wiki/TrainingTesseract
https://github.com/tesseract-ocr/tesseract/wiki/TrainingTesseract
http://wiki.umassrc.org/wiki/index.php/Main_Page
https://help.ubuntu.com/community/OCR
https://www.tools4noobs.com/online_tools/string_similarity/
https://www.tools4noobs.com/online_tools/string_similarity/

