978-1-5090-3525-0/16/$31.00 ©2016 IEEE

Using Natural Language Processing Models for Understanding Network Anomalies

Ketul Barot

Jialing Zhang

Seung Woo Son

University of Massachusetts Lowell
Email: seungwoo_son@uml.edu

Abstract—This paper presents a case study where Natural
Language Processing (NLP) techniques are applied to non-
textual data. Traditionally NLP is applied to text data as it
is meant for natural language. In this study, we explore the
effects of NLP on non-textual data. Our motivation behind this
study is that if the training data for the NLP algorithm meets
proper semantic and syntactic analysis of the algorithm, it
would provide meaningful interpretation for the non-textual
data just as it works for text data. Specifically, we apply
word2vec, a neural embedding model developed by Google,
to detect types of attacks in network log data. Our proposed
mechanisms rely on machine learning techniques for studying
anomalies in network log data. We first describe how word2vec
works and how it proves to be useful to find the semantic of
a particular network attack types, which then can be used
by other classification based machine learning algorithms, like
Convolutional Neural Network (CNN).

1. Introduction

Natural Language Processing (NLP) is mainly concerned
with how computers interpret human (natural) languages.
Modern NLP algorithms are based on machine learning,
and earlier implementation of NLP involved manually writ-
ing a large set of rules. The machine learning algorithms
automatically learn such rules by training on large corpora
of real world examples. A corpus is a set of documents
or sometimes individual sentences that have been annotated
with correct labels to be learned. NLP is used in many Big
Data problems, such as automatic summarization, sentiment
analysis, question answering, anomaly detection in text data
and other such applications.

In this paper, NLP is explored in detecting network
anomaly. Network anomaly detection is part of a broader
category of system known as network intrusion detection
systems. Most of the network intrusion detection systems
incorporate two main techniques: anomaly detection, which
involves detecting deviations from normal behavior, and
signature detection, which looks into anomaly or attack
signatures and known intrusion detection signatures. Given
that the cyber security landscape is evolving constantly, so-
phisticated malware are increasingly being developed along
with the advancement in intrusion technology. For example,
according to 2015 annual report from PandalLabs [1], more
than 84 million new attack samples were detected and neu-
tralized by PandaLabs, with an average of 230,000 samples

daily. Most of these malware are known variants of existing
malware to avoid detection from the current security prod-
ucts like anti-virus, firewalls, and other intrusion detection
systems.

By definition, anomaly detection is the identification
of items, events or observations which do not conform to
an expected pattern [2]. Anomaly detection techniques can
be categorized into three broad categories, namely, unsu-
pervised anomaly detection, supervised anomaly detection,
and semi-supervised anomaly detection. In the unsupervised
anomaly detection, anomalies are detected in unlabelled test
data, while in the supervised anomaly detection, anomalies
are detected in labeled test data that describe either the data
are normal or abnormal. In the semi-supervised anomaly
detection, a small set of data is first trained to learn both
normal and abnormal behavior, and then it tests for likeli-
hood of a test instance to be generated by the learned model.

However, accurately detecting the anomalies can be very
difficult for several reasons. First of all, the quantity that
can be classified as anomaly always increases. Also, the
application system intended to find anomalies is constantly
evolving, therefore the detection scheme should be efficient
enough to detect the subtle changes in the patterns early
enough to prevent any damage to the system. Furthermore,
because anomalies are unexpected in nature, it becomes
more difficult to build an effective detection system. There-
fore, there is a constant need to improve detection systems
and keep them up-to-date to detect even subtle changes in
a normal functioning network.

To address aforementioned problems, in this study, we
explore NLP on non-textual data. Our motivation behind
this is that if the sampled train data meets proper seman-
tic and syntactic requirements of the NLP algorithm, the
algorithm would provide useful interpretation on the non-
textual data as well. Numerous works have been done in
network anomaly detection field using machine learning
algorithms like PCA for intrusion detection [3]], clustering
techniques [4]], and also some hybrid techniques which
combine different machine learning algorithms to detect the
anomaly in network data.

A tutorial from Kaggle, “Bag of words meet Bag of
Popcorn” [5f], particularly motivated us to use a NLP al-
gorithm on non-textual data. Their goal was to perform
sentiment analysis on movie reviews where the positive and
negative reviews were classified from the training dataset
so the system automatically identifies the sentiment of the
reviews. In this paper, we argue that the same concept could

mailto:seungwoo_son@uml.edu

978-1-5090-3525-0/16/$31.00 ©2016 IEEE

be applied to our target domain, i.e., classifying normal and
abnormal network data. Abnormal network data can be a
data sample with different types of network attack, such as
denial of service attack, probing attack, or user-to-remote
attack [6f], [7], etc.

We use word2vec [8], an NLP algorithm developed
by Google, which is a neural network based method that
converts words to vector representation in such a way that
semantically and syntactically similar words are closely
positioned in the space. These vectors can then be further
used as features in deep neural network models such as
convolutional neural networks (CNN) and recurrent neural
networks (RNN) for various applications, for example, lan-
guage modeling, sentiment analysis, etc. In the following
section, we discuss how we train the network log dataset
with word2vec to study the anomalies in the data. Our ex-
perimental results show that we successfully identify 85% of
all the factors responsible for a particular attack (abnormal
data).

2. Background

NLP generally involves training on text data. Typically,
NLP algorithms use a sample input data set with words
or sentences arranged in a particular format. The algorithm
then extracts the features out of this training data. More
often some other machine learning algorithms are used
in addition to NLP algorithms in order to exploit these
features and learn classification rules. After training, the
machine learning algorithm predicts the output on a test
data. Accuracy of classifier can be highly improved if larger
training data set is used. Given this, the effectiveness of NLP
largely depends on the training data in order to achieve a
desired result. The remainder of this section is dedicated to
the discussion of details using word2vec for anomaly detec-
tion as we use word2vec to generate features for anomaly
detection.

Word2vec is an algorithm that takes a word as the
input and produces its equivalent vector representation as
the output. More specifically, it first builds a vocabulary
consisting of unique words from the training text data and
then generates vector representation of words in vocabu-
lary. Internal vector conversion is done using two mod-
els, continuous-bag-of-words (CBOW) or skip-gram (SG).
These two models use neural networks, which are trained to
reconstruct syntactic and semantic context of words. Given
a word, the network is trained to predict contexts (adjacent
words in an input text) [9].

The easiest way to understand the vector representation
is finding the nearest words for a specified input word.
There is a script available in the word2vec toolkit called
“distance”, which calculates the cosine similarity between
the input word and other words in the vocabulary. For
example, if you enter “india” it will emit the similar words
and their cosine distances with “india” [8|]. The cosine
distance value is between 0 and 1. The closer to 1, higher
the output word is related to the input word. The actual
outcome from word2vec is shown in Figure

Word Cosine distance

pakistan 0.681234
bangladesh 0.679523
bhutan 0.674235
myanmar 0.670012
nepal 0.669825
srilanka 0.654586
china 0.648579

Figure 1. Word Cosine Distance when input “india” is given to the trained
vocabulary.

The word2vec is a neural network model that learns
vector representation of words in the training file. A neural
network is defined as “a highly interconnected process-
ing computing system, which process information by their
dynamic state response to external inputs” [10], basically
meaning that neural networks are organized in layers. There
are three layers involved namely: input, hidden, and output
layers. The features are fed to the input layer. The input
layer then communicates with a hidden layer, which per-
forms the actual processing using a system of weighted
connections. Finally, a output layer gives the output to the
given input pattern. All the three layers are made up of a
number of interconnected nodes, which contain an activation
function [[11]].

We next discuss how the two models (CBOW and Skip
gram) work in detail.

2.1. CBOW

To understand continuous bag of words (CBOW), we
first need to understand what is bag of words (BOW).
Consider the vocabulary of the training word vectors as V'
and N be the dimension of the vectors, then the input to the
hidden layer would be a matrix W1 of size V x N, where
each row represents a word from the vocabulary. In similar
way, hidden layer would connect to output layer having a
matrix WO, which would be of size N x V.

Let us consider a training sample of following sentences:
“the cat saw a mouse”, “the cat ran after mouse”, “the mouse
went inside hole”. The corpus vocabulary has nine unique
words. For this example, the neural network will have nine
input neurons and nine output neurons. If we decide to use
three neurons in the hidden layer, then our matrices would
be WI=9x 3 and WO = 3 x 9. Let us assume W[and
WO be initialized to following values:

WI =

-0.094912 -0.425354 0.314589

-0.490589 -0.292356 0.056604
0.0492712 0.172246 -0.537715
0.014528 -0.562333 0.089564

-0.337080 -0.156495 -0.034282
0.460511 -0.129749 -0.414299

0.115174 0.099682 0.366564
-0.044224 0.417952 0.326310

0.256789 0.356489 -0.554896
WO =
0.24589 0.57894 0.00489 -0.254689 -0.458213
0.087945 0.021354 0.657892 0.00245
0.01548 0.68791 0.02358 0.35678 -0.011554
-0.004589 -0.568974 0.002589 0.27894
-0.42518 0.78945 -0.85479 0.015127 0.122489
-0.05789 0.09785 0.258967 0.574859

978-1-5090-3525-0/16/$31.00 ©2016 IEEE

Suppose we want to learn the relationship between
“mouse” and “hole”. In the word embedding terminology,
the word “mouse” is called a context word and the word
“hole” is called as a target word. In this case, the input vector
X would be [000010000]7, where only the fifth position is
1 due to the alphabetical sorting of the vocabulary. So the
word “mouse” takes fifth position and similarly the target
word “hole” would be [00100000]7. With “mouse” as the
input vector, the hidden layer neuron can be computed as:
HT = XTWI =[-0.337080 — 0.156495 — 0.034282].

The vector H of hidden neuron output mimics the second
row of the input layer, as the input word is “mouse” which
holds fourth position in the vocabulary. Similarly, carrying
out matrix multiplication from hidden layer to output layer,
the vector for output neurons can be calculated as: HT WO
=[-0.07073, -0.32986, 0.02396, 0.02949, 0.15206, -0.02694,
0.07848, -0.23104, -0.06418].

Thus the probabilities for words in the output layer can
be calculated by converting activation values to probabilities.
To calculate this, word2vec incorporates a gradient log nor-
malizer function which is also known as softmax function.
Therefore, the output at k-th neuron can be calculated by
following expression [12]:

The output of all the nine words can be calculated as:

exp(activation(k))

= Pr(wordg|word = .
Yk (k‘ context) szl exp(activation(n))

The output of all the nine words can be calculated as:
0.14307 0.09492 0.11444 0.12416 0.14928 0.12287
0.11943 0.14482 0.52485. The probability of the word
“hole” is highlighted in bold while the error vector can
be calculated by subtracting the probability vector from
the target vector. The word2vec model learns the vector
representation of the words by back-propagating the errors
and updating the weights in the matrix W1 and WO. In
the CBOW model, the context is represented by multiple
words for a given target word. For example, we would use
“cat” and “mouse” as context words for the target word
“hole”. Therefore the input layer now needs modification,
which would be W1 matrix of both “cat” and “mouse” as
the input to the hidden layer.

2.2, Skip-Gram

Taking the example of “cat” and “mouse” as context
words and “hole” as the target word, the feature vector
in the model would be [000100000]%, while the outputs
would have [000010000]and [000100000]” as target feature
vectors, respectively. In this example, instead of producing
one vector of probabilities, two such vectors would be
produced. The error vector for each output in this case can
be calculated as described in the CBOW section. However,
all error vectors are added up to adjust the weights via back
propagation.

All the discussion on word2vec so far indicates that both
CBOW and skip-gram models depend largely on word co-
occurrence. Word co-occurrence describes the frequency of
a word occurrence in a text corpus alongside other words.

In the context of the network log data, most of the data
repeats itself and almost all of the attacks have same data.
For example, if we consider any attack or a normal data,
only few of the features in the dataset change and all other
features remain the same. Since the network data has a lot
of word co-occurrence, word2vec should be perfect for use
with this type of non-textual data extensively studied in this

paper.
3. Our Methodology

Every machine learning algorithm first requires training
with an input dataset. Similarly, our model first trains the
word2vec model and converts network log data into vectors.
After training the algorithm, our next step is to find the
cosine distance from the generated word vectors. The inputs
to the cosine distance tool are the different network attack
types, e.g., smurf, neptune, pod, land, ipsweep, etc. The
output will be words with an increasing order of similarity in
terms of the cosine distance of the input word with respect
to a particular output word.

The cosine distance results are then verified for their
accuracy by understanding the nature of the attack followed
by interpreting whether the output words are related to the
input attack word or not. We train the dataset with both
CBOW and Skip-gram models available in the word2vec
algorithm. Our goal is to evaluate the two models and find
the best suitable model for anomaly detection in network log
data. The results obtained will form a basis of classification
of the network log data, thereby allowing detecting the
anomaly present in the network data.

An ultimate goal would be to build a real time detection
system using the word2vec algorithm. After training on the
network log data, the algorithm would provide information
whether the activity in the network is normal or abnormal,
i.e., if the network has been compromised.

3.1. Text to Vector Conversion

We evaluate word2vec on the MGHPCC (Massachusetts
Green High Performance Computing Cluster). To study the
algorithm, we obtain the word2vec toolkit from the Google
archive [[13]]. After downloading the toolkit, we compile the
source code to generate the executables and use the toolkit
with the demo scripts provided. The word2vec toolkit pro-
vides various demo scripts, but we are particularly interested
in using demo-word. sh as it serves our purpose of finding
causes of anomalies in the network data. demo-word. sh
requires a training file as an input. After training, the user
can query, for example, tcp, and then it calculates the
cosine similarity of different words from the train file and
emits the output. The cosine distance closer to 1 means it
is very similar to the entered word. On the other hand, if
the distance is away from 1, i.e., closer to 0, that means it
is not closely related to the entered word.

An example run to generate the word vectors is as
follows: ./word2vec —-train data.txt —-output
vec.txt -size 200 -window 5 -sample le-4

978-1-5090-3525-0/16/$31.00 ©2016 IEEE

TABLE 1. WORD2VEC PARAMETER DESCRIPTION.

TABLE 2. ATTACK TYPES FOR ENTIRE DATASET IN FOUR CATEGORIES.

[Parameter [Description | Denial of Remote to User to Remote | Probe (4) ‘
-train <file> Use text data from <file> to train the model service (DOS) (6) | Local (R2L) (8) | (U2R) (4)
-output <file> Use <file> to save the resulting word vectors/word clus- Back ftp_write Buffer_overflow | Ipsweep
ters Land guess_passwd Loadmodule Nmap
-size <int> Set size of word vectors; default is 100 Neptune imap Perl Portsweep
-window <int> | Set max skip length between words; default is 5 Pod multihop rootkit satan
-sample <float> Set threshold for occurrence of words. Those that appear Smurf phf
with higher frequency in the training data will be randomly teardrop Spy
down-sampled; default is le-3, useful range is (0, le-5) warezclient
-hs <int> Use Hierarchical Softmax; default is 0 (not used) warezmaster

-negative <int> Number of negative examples; default is 5, common values

are 3—10 (0 = not used)

-iter <int> Run more training iterations (default 5)
-binary <int> Save the resulting vectors in binary mode; default is O (off)
-cbow <int> Use the continuous bag of words model; default is 1 (use

0 for skip-gram model)

-negative 5 -hs 0 -binary 0 -cbow 1
—iter 3. Details about the input parameters for the
word2vec executable are described in Table [

3.2. Dataset

The word2vec algorithm is trained on a network log
data obtained from the KDD Cup 1999 [6], [7]. We use
this data as it is one of the most popularly evaluated public
data for the network anomaly detection. The actual dataset
is approximately 743 MB for training purpose, and we use
10% of the actual dataset (about 75MB) that contains 22
training attack types. An example row in the dataset is as

shown: 0, tcp, http, SF, 334, 1684, 0, O,
o, 6, 0, 1, 0, 0, 0, 0, 0, O, O, O, O,
o, 1, 9, 0.00, 0.00, 0.00, 0.00, 1.00,
0.00, 0.33, 0, 0, 0.00, 0.00, 0O.0O0,
0.00, 0.00, 0.00, normal.

As shown above, each log comprises of 39 features,
which can be divided into basic features, content features,
and traffic features as described in [[6f], [7]. The details of
individual feature in those 3 feature categories can be found
in [6], [7], [14].

4. Evaluation

The first set of evaluation is divided into two parts: 1)
The algorithm is trained without any pre-processing of the
data, i.e., it is trained on raw data; and 2) The algorithm is
trained with some pre-processing, specifically we normalize
the data. We choose normalization as our pre-processing
because most of the features have values between 0 and 1,
but some other features, like the number of bytes send to
source and destination, vary from O to tens of thousands.
Normalizing feature values implicitly weights all features
on a near equal footing. Standard normalization formula is
applied on each column of the data set denoted as:

A min(x)

maz(z) —min(z)’

where « is original value and 2z’ is normalized value.

As mentioned in the earlier section, the KDD Cup
dataset has all 22 attack types, which can be furthered
categorized into 4 main categories as follows [6], [[7]:

« DOS: denial-of-service (e.g. neptune, smurf).

o R2L: unauthorized access from a remote machine
(e.g. imap, multihop).

o U2R: unauthorized access to local super user (root)
privileges (e.g., loadmodule, rootkit).

e probing: surveillance and other probing (e.g., ip-
sweep, portsweep).

Table [2] lists all 22 attacks divided into their respective
category.

We trained word2vec to find only attacks that occur
more than 5 times in the entire training data set because
word2vec depends on word co-occurrence and we would
need more training data to find proper semantics and syntax
for these attacks. Therefore, 3 out of 19 attacks listed in
Table 2] cannot be detected by the algorithm. We present
our results in two parts: one using raw data and the other
using normalized data. The sample output of the word2vec
algorithm is given in Figure 2]

Word Cosine distance

-0.016913342 0.894904
loadmodule 0.809164
imap 0.796738
0.849411551 0.790103
ftp_write 0.787436
1.295700132 0.773903
0.193104814 0.758390
-0.148174689 0.750930
12.65796616 0.735594
14.08203231 0.733957

Figure 2. Word cosine distance output from demo-word. sh when input
“land” is given to the trained vocabulary.

4.1. Raw Training Data

The input parameters used for training the algorithm
are kept same as the ones obtained from the demo scripts
provided along with the word2vec toolkit. As word2vec
provides two models, i.e., CBOW and skip-gram, and to
get better understanding of the outputs obtained from which
model better suits our data set, we train the data set with
both the models first and compare their outputs.

Table [3] shows the attack type and its most relevant word
along with cosine distance for both CBOW and Skip-gram.

978-1-5090-3525-0/16/$31.00 ©2016 IEEE

TABLE 3. THE MOST RELEVANT WORD OUTCOME WITH COSINE
DISTANCE USING RAW TRAINING DATA.

Attack CBOW Skip-Gram
Type ‘ ‘ Word | Distance ‘ ‘ Word | Distance
Back 4032 0.316248 8314 0.813475
Buffer_overflow Loadmodule 0.744735 Loadmodule 0.741816
ftp_write 501760 0.654970 501760 0.798405
Guess_passwd SH 0.519847 179 0.611706
Imap RSTOSO 0.565767 RSTOSO 0.819486
Ipsweep Nmap 0.479878 Eco_i 0.672210
Land Buffer_overflow 0.438745 7971 0.690237
Loadmodule Buffer_overflow 0.744735 Rootkit 0.778895
Multihop 5131424 0.613557 5049 0.820894
Neptune 0.07 0.739160 Ldap 0.653005
Nmap SH 0.506103 SH 0.684762
Pod 1480 0.725592 1480 0.947083
Portsweep Satan 0.657618 RSTR 0.732714
Rootkit Buffer_overflow | 0.597605 2425 0.827302
Satan Portsweep 0.657618 Portsweep 0.615319
Smurf 511 0.822005 1032 0.812195
Teardrop Satan 0.401689 Urh_i 0.591581
Warezclient Teardrop 0.373490 2451 0.679937
Warezmaster 11376 0.789164 2191 0.755315

As a rule of thumb, we do not consider the outputs of the
words having cosine distance less than 0.6 because cosine
distance tells the similarity between two vectors [|15[. That
is, the cosine distance near 1 means that the output word is
more closely related to the input word, and our analysis
indicate that there is no meaningful outputs with cosine
distance less than 0.6. Also, by setting the threshold to 0.60,
we can reduce the search space for detecting anomaly. This
eliminates many of the CBOW output words for the attack
types like “back”, “imap”, “guess_passwd”, “ipsweep”, etc.,
and some of the skip-gram output words.

The output words in both CBOW and skip-gram with
above 0.60 of cosine distance values can be summarized as:

e “back” gives 8314 as output word for skip-gram, but
this number denotes number of bytes from destina-
tion to source and this is a very common feature of
a DOS attack. Also, in the case of “ftp_write” and
“guess_passwd”, the output word is not present in
the input attack type and also the output word is not
related to it.

o Some of the attacks and their output words in-
dicate some interesting intuition. For example, in
case of “buffer_overflow”, it shows output as “load-
module”, and for “loadmodule”, it shows “rootkit”
for skip-gram and “buffer_overflow” for CBOW,
respectively. Also “portsweep” attack shows ‘“sa-
tan” as the most relevant word and vice versa. All
other attacks like “buffer_overflow”, “loadmodule”,
“rootkit” fall into same category. For example, U2R
and “portsweep”, “satan” fall into same category,
which confirms that they are all probing attacks.

While the above results provide some insight about
certain attack types, it lacks intuition for other attacks. Even
though the output word has a high cosine similarity with the
input attack type, both the input attack and output words are
irrelevant in many cases and do not depend on each other

which can be observed by the description and signature of
the attack [[16].

Since this method did provide relatively less useful
information on the attacks, we next apply normalization
as a pre-processing on the data. Normalization scales the
data by bring all the data on to near equal footing so that
the algorithm can provide us with more useful results. We
consider scaling or data normalization for pre-processing
because it can be observed in the dataset that besides the
features “number of data bytes from source to destination”
and “number of data bytes from destination to source” all
other features are in the range of 0 to 1, while the above two
features vary from O to tens of thousands. Hence in the next
section we discuss the results after training the algorithm on
a normalized dataset.

4.2. Normalized Training Data

As discussed earlier, we have normalized the data and
also have taken same approach as with the raw input data,
i.e., only consider output words with cosine distance greater
than 0.60. With the normalized data, we also obtain several
outputs showing cosine distance greater than 0.60. Taking
that into account, we have tabulated the results which can
be found in [14], with five top most relevant words for the
input attack types. Some of the attacks do not show cosine
distance greater than 0.60 and hence we do not present in
the table.

To better understand the results, we have categorized the
output from word2vec into 4 distinct feature sets:

« Exactly relevant features: The input attacks which
have the exactly matching relevant feature as output
are grouped into this category.

o Mixed results: Input attacks having mixed features,
i.e., either same category or some broad feature like
output with attacks depending on general feature but
not prominent one, are grouped into this category.

o Irrelevant: Output with no features matching to the
input attacks are grouped into this category.

¢ No Output: Attacks which didn’t give any output
or whose cosine distance was less than 0.60 are in
this category.

As shown in Figures word2vec predicts more ac-
curately with the normalized data as compared with the
results without normalization. We also note that because we
train with the normalized data, skip-gram method provides
more meaningful results than the CBOW method; skip-gram
identified related words for 16 attacks out of 19 compared
to CBOW which identified only 11 attacks. We also make
several additional observations:

o« CBOW predicts root causes for certain attack types,
but it fails for other attacks. For example, it did
not find relevant words for back, imap, ipsweep and
nmap, while skip-gram failed to find result only for
nmap.

o Skip-gram predicts more words that have cosine
similarity greater than 0.60 as compared to CBOW.

978-1-5090-3525-0/16/$31.00 ©2016 IEEE

10

4
| I I I
1
0

Exactly relevant No output
feature

Counts
(9]

N

Mixed results Irrelevant

= CBOW = Skip-Gram

Figure 3. Results summary with CBOW and skip-gram model.

o Skip-gram predicts more meaningful results as com-
pared to CBOW. Meaningful results as in the words
predicted by skip-gram are more related to the
particular attack type than the words predicted
by CBOW. Source of some of the attacks like
land, guess_passwd, pod, portsweep, smurf, neptune,
teardrop were more clearly identified by skip-gram
method than CBOW.

From all of the above points, it is clear that the skip-
gram method with normalized training data provides more
meaningful results. Also, the skip-gram method predicts
results with much higher cosine similarity when compared
to CBOW. Detailed description on each of the output for
the various input attacks with both CBOW and Skip-gram
method is given in [14].

4.3. Discussion

Convolutional Neural Network (CNN) Classifier.
Word2vec proved to be useful to detect actual cause of
attacks in the network log data, but it is not clear if we can
use the word vectors obtained from word2vec to classify the
data. The network log data can be classified in three ways:
1) binary classification which is classifying between normal
data and anomalous data; 2) classifying data between normal
data and 4 main attack categories (dos, u2r, r2l, probe); and
3) classifying each individual attack and the normal data.
To demonstrate feasibility of our study, we have used
CNN model proposed by Yoon Kim [17] to classify the
data using word vectors. We train a simple CNN with one
layer of convolution on top of word vectors obtained from
word2vec. The CNN model used only classifies between
positive and negative data, i.e., binary classification of the
data. The overall validation performance on our network
log data is about 99.5%. We speculate this is an overfit
because no algorithm provides 100% accuracy for validation
and training. Even if we obtain an overfit performance with
CNN, the main point to prove here is that we can still

use word vectors with deep neural network algorithms like
CNN.

Vector Quantization. One possible reason we were able to
detect only 7 attacks out of 19 with exactly matching feature
could be word occurrence. It is clear from the results that, if
we increase the word occurrence, then we may obtain more
accurate results for finding the most relevant feature for a
certain attack. One way to achieve this is to apply a vector
quantization technique because it provides a way to divide
a large set of vectors into groups having approximately the
same number of vectors closest to them. For example, if
there are 2 vectors 1.01234 and 1.01222 in a feature set,
word2vec would consider these 2 vectors as unique words
but it may be the case that both vectors do not provide
any significant difference to classify between normal and
abnormal attack. Vector quantization provides functionality
to combine these near vectors into a single vector which
represents both of these vectors. This would in turn increase
the frequency of word occurrence, leading us to achieve
better results.

Both the above discussions prove to be helpful for future
works on this study, which can largely increase the accuracy
of results from word2vec. Our motivation was to implement
a natural language processing algorithm on non-textual data
which we prove to be feasible and this additional research
and discussion increases the scope of this study.

5. Conclusion and Future Work

In conclusion, we demonstrate that Natural Language
Processing can not only be used for textual data, but also
can be similarly implemented for non-textual data with some
preprocessing. We further show that at least 7 out of the
given 21 attacks were detected with exact matching features
for that particular attack. Lastly, we are able to successfully
identify 85% of all of the factors for a particular attack.
Our study proves our motivation behind this study. As a text
data comprising of words and sentences have a grammatical
structure in the same way non-textual data has a underlying
structure, i.e., both have same type of structure and hence
non-textual data also work with NLP techniques just as text
data works.

In our future work, we intend to exploit the word2vec
extensively by tweaking several arguments in the word2vec
script, which include: size, window, min-count, etc. We
plan to apply different machine learning-based classification
algorithms like decision tree or random forest. We also plan
to investigate more into the CNN classifier that we discussed
in earlier section in order to improve classification perfor-
mance. While not thoroughly applied in our evaluation, we
expect vector quantization would be promising to improve
our results. In our future work, we would like to explore this
technique extensively and to see how it effects the word2vec
output.

978-1-5090-3525-0/16/$31.00 ©2016 IEEE

References

(1]

(2]

[3]

(4]

[3]

(6]

(71

(8]

(91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

“PandalLabs’ Annual Report 2015,” Panda Security, Tech. Rep., 2015.
[Online]. Available: http://www.pandasecurity.com/mediacenter/src/
uploads/2014/07/Pandalabs-2015-anual-EN.pdf]

Wikipedia, “Anomaly detection.” [Online]. Available: https:/en.
wikipedia.org/wiki/Anomaly_detection

L. Mechtri, F. D. Tolba, and N. Ghoualmi, “Intrusion detection using
principal component analysis,” in Second International Conference
on Engineering Systems Management and Its Applications (ICESMA),
March 2010, pp. 1-6.

L. Portnoy, E. Eskin, and S. Stolfo, “Intrusion detection with unla-
beled data using clustering,” in In Proceedings of ACM CSS Workshop
on Data Mining Applied to Security (DMSA-2001, 2001, pp. 5-8.

“Bag of words meets bags of popcorn.” [Online]. Available:
https://www.kaggle.com/c/word2vec-nlp-tutorial

“KDD Cup 199 Data.” [Online]. Available: http://kdd.ics.uci.edu/
databases/kddcup99/kddcup99.html

R. Lippmann, J. W. Haines, D. J. Fried, J. Korba, and K. Das, “The
1999 DARPA Off-line Intrusion Detection Evaluation,” Computer
Networks, vol. 34, no. 4, pp. 579-595, Oct. 2000.

“word2vec.” [Online]. Available: https://www.kaggle.com/c/
word2vec-nlp-tutorial

“What are the continuous bag of words and skip-gram architectures,
in layman’s terms?” [Online]. Available: https://www.quora.com/
‘What-are- the-continuous-bag-of- words-and- skip- gram-architectures-in-laymans-terms

M. Caudill, “Neural networks primer, part i,” Al Expert, vol. 2,
no. 12, pp. 46-52, Dec. 1987. [Online]. Available: http://dl.acm.org/
citation.cfm?id=38292.38295

“A Dbasic introduction to neural networks.” [Online]. Available:
http://pages.cs.wisc.edu/~bolo/shipyard/neural/local.html

“Continuous Bags of Words (CBOW).” [Online]. Available:
https://iksinc.wordpress.com/tag/continuous- bag-of-words-cbow/

“word2vec.” [Online]. Available: https://code.google.com/archive/p/
word2vec/

K. Barot, “Using Natural Language Processing on Non-Textual Data:
A Case Study of Network Anomaly Detection,” Master’s thesis,
University of Massachusetts Lowell, 2016.

[Online]. Available: https://en.wikipedia.org/wiki/Cosine_similarity

“DARPA Intrusion Detection Evaluation.” [Online]. Available:
https://www.1l.mit.edu/ideval/

Y. Kim, “Convolutional Neural Networks for Sentence Classification,”
in Proceedings of the Conference on Empirical Methods in Natural
Language Processing (EMNLP), 2014.

http://www.pandasecurity.com/mediacenter/src/uploads/2014/07/Pandalabs-2015-anual-EN.pdf
http://www.pandasecurity.com/mediacenter/src/uploads/2014/07/Pandalabs-2015-anual-EN.pdf
https://en.wikipedia.org/wiki/Anomaly_detection
https://en.wikipedia.org/wiki/Anomaly_detection
https://www.kaggle.com/c/word2vec-nlp-tutorial
http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
https://www.kaggle.com/c/word2vec-nlp-tutorial
https://www.kaggle.com/c/word2vec-nlp-tutorial
https://www.quora.com/What-are-the-continuous-bag-of-words-and-skip-gram-architectures-in-laymans-terms
https://www.quora.com/What-are-the-continuous-bag-of-words-and-skip-gram-architectures-in-laymans-terms
http://dl.acm.org/citation.cfm?id=38292.38295
http://dl.acm.org/citation.cfm?id=38292.38295
http://pages.cs.wisc.edu/~bolo/shipyard/neural/local.html
https://iksinc.wordpress.com/tag/continuous-bag-of-words-cbow/
https://code.google.com/archive/p/word2vec/
https://code.google.com/archive/p/word2vec/
https://en.wikipedia.org/wiki/Cosine_similarity
https://www.ll.mit.edu/ideval/

