









## Improving Scheduling for Irregular Applications with Logarithmic Radix Binning



**Computational Science and Engineering** 





#### **Additional Collaborators**

#### James Fox



#### Alok Tripathy



Georgia Tech



## **Main contributions**

- Logarithmic Radix Binning
  - A new load balancing technique applicable for irregular problems
  - Same computational complexity as Prefix Summation but better load-balancing

Geordía

Tech

- Architecture independent
- Very simple
- One step closer to making the irregular into regular

## Regular

Vs.



- Computational sciences
- Sequence of events is predefined
- Typically, can be analyzed offline
- Applications: linear algebra, dense matrix multiplication, image processing...

- Data analytics
- Highly data dependent
- Execution flow cannot be analyzed offline
- Applications: merging and sorting, graph algorithms, classification, sparse matrix multiplication



Oded Green, Technion, 2019



## Known scalability issues

- Load-balancing is challenging
  - Some threads might receive heavy edges only
  - Gets tougher for large core counts
  - SIMD\SIMT programming models
    - Need to load-balance at the lane granularity
- Prefix summation can help get good partitions per core
  - Doesn't resolve SIMD/SIMT programmability

# LRB resolves these problems



College of Computing

Georgia

Tech



- Four *for* loops
  - Simple
  - Scalable

```
Algorithm 1: LRB Pseudo Code
```

Georgia

Tech

College of

Computing



- First loop initialize bin counters
  - O(B)
  - $B \in \{32, 64, 128\}$
- Simple O(B)
  - Inexpensive

| Algorithm 1: LRB Pseudo Code                                                   |
|--------------------------------------------------------------------------------|
| for $i = 0 : 1 : B$ do<br>$\begin{bmatrix} Bins[B] \leftarrow 0 \end{bmatrix}$ |
|                                                                                |
|                                                                                |
|                                                                                |
|                                                                                |
|                                                                                |
|                                                                                |

College of

Computing

Georgia

Tech



- Second loop count number of instances
  - Compute expected work per task
  - Get <u>log</u> of the work
  - Increment counter
    - This is value between 0..*B*
- Scalable O(N) work

| Algorithm 1: LRB Pseudo Code         |
|--------------------------------------|
| for $i = 0: 1: B$ do                 |
| $ Bins[B] \leftarrow 0 $             |
| // Loop 2                            |
| for $i = 0: 1: N - 1$ do             |
| $b_i \leftarrow ( log_2(w(T[i])) ))$ |
| $tomicAdd(Bins[b_i], 1)$             |
|                                      |
|                                      |
|                                      |
|                                      |
|                                      |
|                                      |
|                                      |
|                                      |
|                                      |
|                                      |

Georgia

Tech



- Third loop create bins based on counters
  - Compute expected work per task
  - Get <u>log</u> of the work
  - Increment counter
    - This is value between 0..*B*
- Simple O(B)

Georgia

Tech

College of

Computing



- Fourth loop reorganize tasks in bins
  - Place the tasks into bins with a similar amount of work
- Scalable O(N) work

```
Algorithm 1: LRB Pseudo Code
 for i = 0 : 1 : B do
  Bins[B] \leftarrow 0
// Loop 2
 for i = 0: 1: N - 1 do
     b_i \leftarrow (\lceil log_2(w(T[i])) \rceil)
     atomicAdd(Bins[b_i], 1)
 // Loop 3
 prefixB[0] \leftarrow 0
 for i = 1 : 1 : B do
   prefixB[i] \leftarrow prefixB[i-1] + Bins[i-1]
 // Loop 4
 for i = 0: 1: N - 1 do
     b_i \leftarrow (\lceil log_2(w(T[i])) \rceil)
     pos_i = atomicAdd(prefixB[b_i], 1)
     T_{reordered}[pos_i] = T[i]
```

Georgia

Tech

College of

Computing



## Logarithm Radix Binning – High Level





്രം പ്രത്വാം തി

Computing

Geordia

Tech

## **Logarithm Radix Binning - Features**

- Given two tasks, *u* and *v*, in bin *i* we know the following:
  - $-2^{i} \leq w(u), w(v) < 2^{i+1}$
  - This means that w(v) is never more than twice as big or small as w(u)
    - Or vice-versa



## **Complexity Analysis**

• Work: 
$$O(N + B) = O(N)$$

• Time: 
$$O\left(\frac{N}{P} + B\log(P)\right) = O\left(\frac{N}{P} + \log P\right)$$

• Storage: 
$$O(N + B) = O(N)$$

- Parallel Prefix Summation:
- Work: *O*(*N*)

• Time: 
$$O\left(\frac{N}{P} + \log(P)\right)$$

- Requires *P* synchronizations!

• Storage: O(N + B) = O(N)

Georgia

Tech



#### **Systems**

1) NVIDIA GV-100 GPU

- 80 SMs, 5120 SPs (CUDA cores)
- 6MB LLC
- 16GB MCDRAM
- PCI-E

2) Intel KNL processor

- 64 threads, 256 threads, 4-way SMT
- 45MB LLC
- 16GB of MCDRAM roughly 400 GB/s BW
- 96GB of DDR4 roughly 100 GB/s BW

Georgia Tech



College of Computing

**lech** 

#### Experiments

- 1. Time comparison with parallel prefix summation
  - Even though PPS doesn't solve load-balancing...
- 2. Accelerating Segmented Sort on the GPU
- 3. Accelerating PageRank
  - Will not cover because of time limitations
  - Cool results as we ran one thread per vectorlane... over 4k threads...



## **Experiment 1**

- Load balance an array of length N
- Prefix summation use a binary search to find N/P partition points – we do not time this
  - Partitions are near equal in size
  - Does not ensure good SIMD\SIMD placement
- We only focus on the execution times

 Inputs are real world graph and task lengths are the size of the edge lists

Geordia



## **CPU Comparison - Speedup**

- Small thread counts prefix sum is faster
- Large thread counts LRB is faster
  - This is the more interesting problem





## **GPU Comparison – Execution Times**

- In comparison with CUB's prefix implementation
  - Very optimized





#### **GPU Comparison - Speedup**

- For smaller inputs, can be up-to 3X faster
- For larger inputs, roughly 5% slower



## Experiment 2: Accelerating Segmented Sort



College of Computing

lech

- Rather than sorting a single array of length *M*, we need to sort *N* arrays of length *M* 
  - One example is sorting N rows in a CSR
  - Its expected that Segmented Sort for CSR will be faster the sorting COO
    - Locals sorts vs. a global sort



Geordia

**lech** 

Computing

## **Sorting Comparisons**

- CUB optimized framework for basic primitive
  - Radix based
  - Two different test cases: COO and segmented sorts
- ModernGPU optimized framework for sorting and DB operations
  - Merge-Sort based
- BB-Sort
  - Hou et al., "Fast Segmented Sort on the GPU", ICS'17
  - Highly optimized kernels
  - Several hundred to thousands of lines of code
  - Has some load-balancing but not as fine grain as LRB



Georgia

Tech

College of

Computing

#### Segmented Sort – soc-LiveJournal1

- Rows 4,847,571
- NNZ 68,993,773
- Average adjacency size 14

|                   | Time( ms) |
|-------------------|-----------|
| ModernGPU-SegSort | 13.128    |
| CUB-SortPair      | 31.47     |
| CUB-SegSort       | 1923      |
| BB-Sort           | 11        |



#### Segmented Sort – soc-LiveJournal1

 CUB's segmented sort works really well if the segments are fairly large

|                                | Time( ms) |                                    |
|--------------------------------|-----------|------------------------------------|
| ModernGPU-SegSort              | 13.128    | 1.04X                              |
| CUB-SortPair                   | 31.47     | 2.40X                              |
| CUB-SegSort                    | 1923      | 177.3X                             |
| BB-Sort                        | 11        | 0.84X                              |
| LRB-SegSort                    | 13.06     |                                    |
| HPEC'19, LRB - Scheduling, Ode | d Green   | orgia College of<br>Tech Computing |



## **Our Segmented Sort**

- We did not implement any merge or sort kernels!
- Instead we used the existing sorting kernels in CUB:
  - Large adjacency arrays sorted using a device wide SegmentSort
  - Small adjacency arrays sorted in the small L1 caches use threadblock sort.
    - One for each bin size





## **Our Segmented Sort**

- This would not be possible without LRB
- Thread-block sorts are templated functions that require shared-memory size, number of threads, number of elements.
- LRB accounts for less than 3% of execution time
- We would probably benefit from the highly optimized kernels in BB.

Computing

**lech** 



## **Additional Experiments**

- For ModernGPU:
  - Reordered the segments using LRB
  - Used MGPU's SegmentSort
  - Twice as fast
    - Unfortunately, the segments are not in the original order. Artifact of the API.

Georgia

Tech

പ്രതിരവി

Computing



## **LRB Summary**

- Showed a new load-balancing mechanism for irregular problems.
- LRB has a time complexity and execution similar to PPS
   LRB has better task partitioning
- Works well for a wide range of applications: segmented sorting, page-rank, triangle counting, BFS and more.
- LRB makes irregular execution one step closer to regular execution!

Computing

**lech** 



#### Thank you

| HPEC'19, LRB - Scheduling, Oded Green | ia College of |
|---------------------------------------|---------------|



#### **Backup Slides**



Georgia Tech



## **CPU Scalability – Parallel Prefix Sum**

- Does not scale very well
- OpenMP sync is very costly



# **CPU Scalability – LRB**

- Scales with the number of threads
- Could still do better

