Improvmg Schedulmg for Irregular
Applications with Logarithmic Radix
Binning

James Fox, Alok Tripathy, Oded Green

Georgla College of
Tech @@mg@@ﬁﬁm@

Computational Science and Engineering




Additional Collaborators

James Fox

- ‘__" 7_,- J
\ A< =

Georgia Cadllege of
Te%h Commpuriting



Main contributions

 Logarithmic Radix Binning
. A new load balancing technique applicable for irregular problems

. Same computational complexity as Prefix Summation - but better
load-balancing

. Architecture independent
. Very simple

* One step closer to making the irregular into regular

Georgia College off
HPEC'19, LRB - Scheduling, Oded Green Tech Compuiting 3



Regular Vs. Irregular

e Sequence of events is  Highly data dependent
predefined

e Typically, can be analyzed e Execution flow cannot be
offline analyzed offline

* Applications: linear algebra, ¢ Applications: merging and
dense matrix multiplication, sorting, graph algorithms,
image processing... classification, sparse

| matrlx multlpllcatlon

N
o Py Y By

Oded Green, Technion, 2019 Tech Em@


Presenter
Presentation Notes
http://www.classthink.com/


Known scalability issues

* Load-balancing is challenging

- Some threads might receive heavy
edges only

— Gets tougher for large core counts
— SIMD\SIMT programming models

e Need to load-balance at the lane
granularity

e Prefix summation can help get
good partitions per core

- Doesn’t resolve SIMD/SIMT
programmability

LRB resolves
these problems

HPEC'19, LRB - Scheduling, Oded Green

Cores

Georgia GCaollege of

Tech

Conmpuiding




Logarithm Radix Binning

e Four for loops
- Simple

— SCa lable Algorithm 1: LRB Pseudo Code

fori=0:1:D8 do
| Bins[B] + 0
/I Loop 2
fori=0:1:N—1do
L bi « ([loga(w(T'[]))1)
atomicAdd(Bins|[bi],1)
/I Loop 3
prefizB[0] <0
fori=1:1:B do
| prefizBli] < prefizB[i — 1] + Bins[i — 1]
/I Loop 4
fori=0:1: N —1do
L bi = ([logz(w(T']))])
posi = atomicAdd(prefixBb;], 1)
Treordered [POSi] - T[ﬁ]

Georgia College off
HPEC'19, LRB - Scheduling, Oded Green Tech Compuiing



. = EE .
Logarithm Radix Binning

/
* First loop - Initialize bin counters
- 0(B)
- B E {32,64‘,128} Algorithm 1: LRB Pseudo Code

fori=0:1: B do

e Simple 0(B) el
- Inexpensive

Georgla " College of
HPEC'19, LRB - Scheduling, Oded Green Tech C@mputmg

.....




Logarithm Radix Binning

e Second loop - count number of instances

- Compute expected
work per task

Algorithm 1: LRB Pseudo Code

- Get log of the work o s8] 0
/I L(')Oi)z. o .
- Increment counter f"[ b (Tlogn(o (TN

atomicAdd(Bins|[bi],1)

e This is value between
0..B

e Scalable O(N) work

Georgia College off
HPEC'19, LRB - Scheduling, Oded Green Tech Compuiting



Logarithm Radix Binning

* Third loop - create bins based on counters

- Compute expected
work per task

Algorithm 1: LRB Pseudo Code

- Get log of the work Bl 0

/I Loop 2
fori=0:1:N—1do

- Increment counter [ b (T

atomicAdd(Bins|[bi],1)

e This is value between  /Loop3

prefizB[0] <0

for:=1:1:Bdo
O- . B | prefizBli] < prefizB[i — 1] + Bins[i — 1]

e Simple O(B)

Georgia College off
HPEC'19, LRB - Scheduling, Oded Green Tech Compuiting



F
el

- S

—

Logarithm Radix Binning

* Fourth loop - reorganize tasks in bins

- Place the tasks into
blns Wlth a Slmllar Algorithm 1: LRB Pseudo Code
amount of work for i 03131 do

| Bins[B] + 0
I qup 2
e Scalable O(N) work L b o)

atomicAdd(Bins|[bi],1)

/I Loop 3
prefizB[0] <0
fori=1:1:Bdo
| prefizBli] < prefizB[i — 1] + Bins[i — 1]
/I Loop 4
fori=0:1:N—1do
L bi + ([log2(w(T'[i]))])
posi = atomicAdd(prefixBb;], 1)
Treordered [pOSi] - T[ﬁ]

Georgia College off
HPEC'19, LRB - Scheduling, Oded Green Tech Compuiting 10



. . . . UE -
Logarithm Radix Binning - High Level

fasks o ty t, t3 ty ts te

Original

T

g

0 1
|
LRB

Georgia College off
HPEC'19, LRB - Scheduling, Oded Green Tech Compuiting 11




ﬁ 4.-_:::'
E

Logarithm Radix Binning - Features

* Given two tasks, u and v, in bin i we know
the following:
-2t < w(w), w(v) < 2t
- This means that w(v) is never more than twice

as big or small as w(u)
* Or vice-versa

Georgia College off
HPEC'19, LRB - Scheduling, Oded Green Tech Compuiting



Complexity Analysis

 Work: O(N + B) = O(N)
 Time: 0 (5 + B log(P)) = 0 (5 + log P)
e Storage: O(N + B) = O(N)

e Parallel Prefix Summation:
e Work: O(N)
. N
e Time: O (P + log(P))
- Requires P synchronizations!
e Storage: O(N + B) = O(N)
Georgia GCaollege of

HPEC'19, LRB - Scheduling, Oded Green Tech Compuiting



Systems

1) NVIDIA GV-100 GPU

e 80 SMs, 5120 SPs (CUDA cores)
e 6MB LLC

e 16GB MCDRAM

 PCI-E

2) Intel KNL processor

64 threads, 256 threads, 4-way SMT

e 45MB LLC

e 16GB of MCDRAM - roughly 400 GB/s BW
e 96GB of DDR4 - roughly 100 GB/s BW

Georgia College off
HPEC'19, LRB - Scheduling, Oded Green Tech Compuiting

14

el



Experiments

1. Time comparison with parallel prefix
summation

- Even though PPS doesn’t solve load-balancing...
2. Accelerating Segmented Sort on the GPU

3. Accelerating PageRank
- Will not cover because of time limitations

- Cool results as we ran one thread per vector-
lane... over 4k threads...

Georgia College off
HPEC'19, LRB - Scheduling, Oded Green Tech Compuiting



Experiment 1

* Load balance an array of length N

* Prefix summation use a binary search to find
N/P partition points - we do not time this
- Partitions are near equal in size
— Does not ensure good SIMD\SIMD placement

 We only focus on the execution times

* Inputs are real world graph and task lengths
are the size of the edge lists

Georgia College of
HPEC'19, LRB - Scheduling, Oded Green Tech Compuiting



: _

O

CPU Comparison - Speedup

e Small thread counts - prefix sum is faster
e Large thread counts - LRB is faster

™
o

[
Ul

o
n

Speedup LRB vs. PPS
o =
o o

— This is the more interesting problem

as-skitter
soc-LiveJournall
com-lj.ungraph
com-orkut.ungraph
2 4 8 16 32 04 128

1
Threads

Georgia College off
HPEC'19, LRB - Scheduling, Oded Green Tech | Computing 17



GPU Comparison — Execution Times

e [n comparison with CUB’s prefix
Implementation

- Very optimized

2

_— LRE |

=

=

c 0.2

o )

=t 5 -

S mess il

0 0.0-* | | | |
N 00 05 1.0 15 2.0

Vertices

Georgia College off
HPEC'19, LRB - Scheduling, Oded Green Tech Compuiing



Speedup LRB vs. PPS

o I

GPU Comparison - Speedup

 For smaller inputs, can be up-to 3X faster
e For larger inputs, roughly 5% slower

[

Vertices

Georgia College off
HPEC'19, LRB - Scheduling, Oded Green Tech Compuiting

2.5

17

19



Experiment 2: Accelerating
Segmented Sort

e Rather than sorting a single array of length
M, we need to sort N arrays of length M

— One example is sorting N rows in a CSR

- |ts expected that Segmented Sort for CSR will be
faster the sorting COO

* Locals sorts vs. a global sort

Georgia College of
HPEC'19, LRB - Scheduling, Oded Green Tech Compuiting



Sorting Comparisons

e CUB - optimized framework for basic primitive
- Radix based
- Two different test cases: COO and segmented sorts
* ModernGPU - optimized framework for sorting and DB
operations
- Merge-Sort based
e BB-Sort
- Hou et al., "Fast Segmented Sort on the GPU”, ICS’17
- Highly optimized kernels
- Several hundred to thousands of lines of code
- Has some load-balancing but not as fine grain as LRB

Georgia College off
HPEC'19, LRB - Scheduling, Oded Green Tech Compuiting

21



e

-

Segmented Sort - soc-LivelJournall

e Rows - 4,847,571
* NNZ - 68,993,773
* Average adjacency size 14

| Time(ms)

ModernGPU-SegSort 13.128
CUB-SortPair 31.47
CUB-SegSort 1923
BB-Sort 11

Georgia College of
HPEC'19, LRB - Scheduling, Oded Green Tech Compuiting



Segmented Sort - soc-LiveJournall

 CUB’s segmented sort works really well if the
segments are fairly large

I T

ModernGPU-SegSort 13.128 1.04X
CUB-SortPair 31.47 2.40X
CUB-SegSort 1923 177.3X
BB-Sort 11 0.84X
LRB-SegSort 13.06

Georgia College of
Tech Compuiting



Our Segmented Sort

 We did not implement any merge or sort kernels!

* |nstead we used the existing sorting kernels in CUB:
— Large adjacency arrays sorted using a device wide SegmentSort

- Small adjacency arrays sorted in the small L1 caches use thread-
block sort.
* One for each bin size

\ )\ A

| | |
Thread block granularity.
One kernel for each bing

Georgia College off
HPEC'19, LRB - Scheduling, Oded Green Tech | Compurding

24



Our Segmented Sort

* This would not be possible without LRB

 Thread-block sorts are templated functions that require
shared-memory size, number of threads, number of
elements.

e |RB accounts for less than 3% of execution time

 We would probably benefit from the highly optimized kernels
in BB.

Georgia College of
HPEC'19, LRB - Scheduling, Oded Green Tech Compuiting o5



Additional Experiments

 For ModernGPU:
- Reordered the segments using LRB
- Used MGPU’s SegmentSort

- Twice as fast

* Unfortunately, the segments are not in the original
order. Artifact of the API.

Georgia College off
HPEC'19, LRB - Scheduling, Oded Green Tech Compuiting

26



LRB Summary

 Showed a new load-balancing mechanism for irregular
problems.

 LRB has a time complexity and execution similar to PPS
- LRB has better task partitioning

 Works well for a wide range of applications: segmented
sorting, page-rank, triangle counting, BFS and more.

 |LRB makes irregular execution one step closer to regular
execution!

Georgia College off
HPEC'19, LRB - Scheduling, Oded Green Tech Compuiting o7



Thank you

HPEC'19, LRB - Scheduling, Oded Green

Georgia GCaollege of
T;gc;h'-l- Conputing

28



Backup Slides

HPEC'19, LRB - Scheduling, Oded Green

Georgia Cadllege of
Te%h | Compuiting

29



PPS Speedup

CPU Scalability - Parallel Prefix Sum

* Does not scale very well
* OpenMP sync is very costly

22_
El as-skitter
Bl soc-LiveJournall
B com-lj.ungraph
oL com-orkut.ungraph
7 i
1 2 4 8 16 32 64 128

Threads

Georgla Colleg® off
HPEC'19, LRB - Scheduling, Oded Green Tec Lm@ 30



CPU Scalability - LRB

e Scales with the number of threads
e Could still do better

4 as-skitter
%2 7 soc-LiveJournall
© 3. com-lj.ungraph
8 com-orkut.ungraph
%22
g 21,
i b

0.

1 2 4 8 16 32 04 128

Threads

Georgia College off
HPEC'19, LRB - Scheduling, Oded Green Tech | Compurding

31



	Improving Scheduling for Irregular Applications with Logarithmic Radix�Binning
	Additional Collaborators
	Main contributions
	Regular Vs. Irregular�
	Known scalability issues
	Logarithm Radix Binning
	Logarithm Radix Binning
	Logarithm Radix Binning
	Logarithm Radix Binning
	Logarithm Radix Binning
	Logarithm Radix Binning – High Level
	Logarithm Radix Binning - Features
	Complexity Analysis
	Systems
	Experiments
	Experiment 1
	CPU Comparison - Speedup
	GPU Comparison – Execution Times
	GPU Comparison - Speedup
	Experiment 2: Accelerating �Segmented Sort
	Sorting Comparisons
	Segmented Sort – soc-LiveJournal1
	Segmented Sort – soc-LiveJournal1
	Our Segmented Sort
	Our Segmented Sort
	Additional Experiments
	LRB Summary
	Thank you
	Backup Slides
	CPU Scalability – Parallel Prefix Sum
	CPU Scalability – LRB

