
Improving Scheduling for Irregular
Applications with Logarithmic Radix

Binning
James Fox, Alok Tripathy, Oded Green

Additional Collaborators

HPEC'19, LRB - Scheduling, Oded Green 2

James Fox Alok Tripathy

Main contributions

• Logarithmic Radix Binning
• A new load balancing technique applicable for irregular problems
• Same computational complexity as Prefix Summation – but better

load-balancing
• Architecture independent
• Very simple

• One step closer to making the irregular into regular

3HPEC'19, LRB - Scheduling, Oded Green

Regular Vs. Irregular

• Computational sciences
• Sequence of events is

predefined
• Typically, can be analyzed

offline
• Applications: linear algebra,

dense matrix multiplication,
image processing…

• Data analytics
• Highly data dependent

• Execution flow cannot be
analyzed offline

• Applications: merging and
sorting, graph algorithms,
classification, sparse
matrix multiplication

Oded Green, Technion, 2019

Presenter
Presentation Notes
http://www.classthink.com/

Known scalability issues

• Load-balancing is challenging
– Some threads might receive heavy

edges only
– Gets tougher for large core counts
– SIMD\SIMT programming models

• Need to load-balance at the lane
granularity

• Prefix summation can help get
good partitions per core
– Doesn’t resolve SIMD/SIMT

programmability

5HPEC'19, LRB - Scheduling, Oded Green

Cores

LRB resolves
these problems

Logarithm Radix Binning

• Four 𝑓𝑓𝑓𝑓𝑓𝑓 loops
– Simple
– Scalable

6HPEC'19, LRB - Scheduling, Oded Green

Logarithm Radix Binning

• First loop – initialize bin counters
– 𝑂𝑂 𝐵𝐵
– 𝐵𝐵 ∈ 32,64,128

• Simple 𝑂𝑂(𝐵𝐵)
– Inexpensive

7HPEC'19, LRB - Scheduling, Oded Green

Logarithm Radix Binning

• Second loop – count number of instances

8HPEC'19, LRB - Scheduling, Oded Green

– Compute expected
work per task

– Get 𝒍𝒍𝒍𝒍𝒍𝒍 of the work
– Increment counter

•This is value between
0. .𝐵𝐵

• Scalable 𝑂𝑂(𝑁𝑁) work

Logarithm Radix Binning

• Third loop – create bins based on counters

9HPEC'19, LRB - Scheduling, Oded Green

– Compute expected
work per task

– Get 𝒍𝒍𝒍𝒍𝒍𝒍 of the work
– Increment counter

•This is value between
0. .𝐵𝐵

• Simple 𝑂𝑂(𝐵𝐵)

Logarithm Radix Binning

• Fourth loop – reorganize tasks in bins

10HPEC'19, LRB - Scheduling, Oded Green

– Place the tasks into
bins with a similar
amount of work

• Scalable 𝑂𝑂(𝑁𝑁) work

Logarithm Radix Binning – High Level

11HPEC'19, LRB - Scheduling, Oded Green

𝑡𝑡0 𝑡𝑡1 𝑡𝑡2 𝑡𝑡3 𝑡𝑡4 𝑡𝑡5 𝑡𝑡6𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇

𝐿𝐿𝐿𝐿𝐿𝐿
ordering

Original
ordering

• New LRB ordering is not perfect, but it is good enough.

0 1 4 5

Logarithm Radix Binning - Features

• Given two tasks, 𝑢𝑢 and 𝑣𝑣, in bin 𝑖𝑖 we know
the following:
– 2𝑖𝑖 ≤ 𝑤𝑤 𝑢𝑢 ,𝑤𝑤(𝑣𝑣) < 2𝑖𝑖+1

– This means that 𝑤𝑤(𝑣𝑣) is never more than twice
as big or small as 𝑤𝑤 𝑢𝑢

•Or vice-versa

12HPEC'19, LRB - Scheduling, Oded Green

Complexity Analysis

• Work: 𝑂𝑂 𝑁𝑁 + 𝐵𝐵 = 𝑂𝑂(𝑁𝑁)

• Time: 𝑂𝑂 𝑁𝑁
𝑃𝑃

+ 𝐵𝐵 log(𝑃𝑃) = 𝑂𝑂 𝑁𝑁
𝑃𝑃

+ log𝑃𝑃

• Storage: 𝑂𝑂 𝑁𝑁 + 𝐵𝐵 = 𝑂𝑂(𝑁𝑁)

• Parallel Prefix Summation:
• Work: 𝑂𝑂 𝑁𝑁

• Time: 𝑂𝑂 𝑁𝑁
𝑃𝑃

+ log 𝑃𝑃
– Requires 𝑃𝑃 synchronizations!

• Storage: 𝑂𝑂 𝑁𝑁 + 𝐵𝐵 = 𝑂𝑂(𝑁𝑁)
13HPEC'19, LRB - Scheduling, Oded Green

Systems

1) NVIDIA GV-100 GPU
• 80 SMs, 5120 SPs (CUDA cores)
• 6MB LLC
• 16GB MCDRAM
• PCI-E

2) Intel KNL processor
• 64 threads, 256 threads, 4-way SMT
• 45MB LLC
• 16GB of MCDRAM – roughly 400 GB/s BW
• 96GB of DDR4 - roughly 100 GB/s BW

14HPEC'19, LRB - Scheduling, Oded Green

Experiments

1. Time comparison with parallel prefix
summation

– Even though PPS doesn’t solve load-balancing…

2. Accelerating Segmented Sort on the GPU
3. Accelerating PageRank

– Will not cover because of time limitations
– Cool results as we ran one thread per vector-

lane… over 4k threads…

15HPEC'19, LRB - Scheduling, Oded Green

Experiment 1

• Load balance an array of length N
• Prefix summation use a binary search to find

N/P partition points – we do not time this
– Partitions are near equal in size
– Does not ensure good SIMD\SIMD placement

• We only focus on the execution times

• Inputs are real world graph and task lengths
are the size of the edge lists

16HPEC'19, LRB - Scheduling, Oded Green

CPU Comparison - Speedup

• Small thread counts – prefix sum is faster
• Large thread counts – LRB is faster

– This is the more interesting problem

17HPEC'19, LRB - Scheduling, Oded Green

GPU Comparison – Execution Times

• In comparison with CUB’s prefix
implementation
– Very optimized

18HPEC'19, LRB - Scheduling, Oded Green

GPU Comparison - Speedup

• For smaller inputs, can be up-to 3X faster
• For larger inputs, roughly 5% slower

19HPEC'19, LRB - Scheduling, Oded Green

Experiment 2: Accelerating
Segmented Sort

• Rather than sorting a single array of length
𝑀𝑀, we need to sort 𝑁𝑁 arrays of length 𝑀𝑀
– One example is sorting 𝑁𝑁 rows in a CSR

– Its expected that Segmented Sort for CSR will be
faster the sorting COO

•Locals sorts vs. a global sort

20HPEC'19, LRB - Scheduling, Oded Green

Sorting Comparisons

• CUB – optimized framework for basic primitive
– Radix based
– Two different test cases: COO and segmented sorts

• ModernGPU - optimized framework for sorting and DB
operations
– Merge-Sort based

• BB-Sort
– Hou et al., ”Fast Segmented Sort on the GPU”, ICS’17
– Highly optimized kernels
– Several hundred to thousands of lines of code
– Has some load-balancing but not as fine grain as LRB

21HPEC'19, LRB - Scheduling, Oded Green

Segmented Sort – soc-LiveJournal1

• Rows – 4,847,571
• NNZ – 68,993,773
• Average adjacency size 14

22HPEC'19, LRB - Scheduling, Oded Green

Time(ms)

ModernGPU-SegSort 13.128

CUB-SortPair 31.47

CUB-SegSort 1923

BB-Sort 11

Segmented Sort – soc-LiveJournal1

• CUB’s segmented sort works really well if the
segments are fairly large

23HPEC'19, LRB - Scheduling, Oded Green

Time(ms)

ModernGPU-SegSort 13.128 1.04X

CUB-SortPair 31.47 2.40X

CUB-SegSort 1923 177.3X

BB-Sort 11 0.84X

LRB-SegSort 13.06

Our Segmented Sort

• We did not implement any merge or sort kernels!
• Instead we used the existing sorting kernels in CUB:

– Large adjacency arrays sorted using a device wide SegmentSort
– Small adjacency arrays sorted in the small L1 caches use thread-

block sort.
• One for each bin size

24HPEC'19, LRB - Scheduling, Oded Green

Device segmented sort –
for rows with more than
4k entries

Thread block granularity.
One kernel for each bing

Our Segmented Sort

• This would not be possible without LRB
• Thread-block sorts are templated functions that require

shared-memory size, number of threads, number of
elements.

• LRB accounts for less than 3% of execution time
• We would probably benefit from the highly optimized kernels

in BB.

25HPEC'19, LRB - Scheduling, Oded Green

Additional Experiments

• For ModernGPU:
– Reordered the segments using LRB
– Used MGPU’s SegmentSort
– Twice as fast

•Unfortunately, the segments are not in the original
order. Artifact of the API.

26HPEC'19, LRB - Scheduling, Oded Green

LRB Summary

• Showed a new load-balancing mechanism for irregular
problems.

• LRB has a time complexity and execution similar to PPS
– LRB has better task partitioning

• Works well for a wide range of applications: segmented
sorting, page-rank, triangle counting, BFS and more.

• LRB makes irregular execution one step closer to regular
execution!

27HPEC'19, LRB - Scheduling, Oded Green

Thank you

28HPEC'19, LRB - Scheduling, Oded Green

Backup Slides

29HPEC'19, LRB - Scheduling, Oded Green

CPU Scalability – Parallel Prefix Sum

• Does not scale very well
• OpenMP sync is very costly

30HPEC'19, LRB - Scheduling, Oded Green

CPU Scalability – LRB

• Scales with the number of threads
• Could still do better

31HPEC'19, LRB - Scheduling, Oded Green

	Improving Scheduling for Irregular Applications with Logarithmic Radix�Binning
	Additional Collaborators
	Main contributions
	Regular Vs. Irregular�
	Known scalability issues
	Logarithm Radix Binning
	Logarithm Radix Binning
	Logarithm Radix Binning
	Logarithm Radix Binning
	Logarithm Radix Binning
	Logarithm Radix Binning – High Level
	Logarithm Radix Binning - Features
	Complexity Analysis
	Systems
	Experiments
	Experiment 1
	CPU Comparison - Speedup
	GPU Comparison – Execution Times
	GPU Comparison - Speedup
	Experiment 2: Accelerating �Segmented Sort
	Sorting Comparisons
	Segmented Sort – soc-LiveJournal1
	Segmented Sort – soc-LiveJournal1
	Our Segmented Sort
	Our Segmented Sort
	Additional Experiments
	LRB Summary
	Thank you
	Backup Slides
	CPU Scalability – Parallel Prefix Sum
	CPU Scalability – LRB

