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Main contributions

 Logarithmic Radix Binning
. A new load balancing technique applicable for irregular problems

. Same computational complexity as Prefix Summation - but better
load-balancing

. Architecture independent
. Very simple

* One step closer to making the irregular into regular
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Regular Vs. Irregular

e Sequence of events is  Highly data dependent
predefined

e Typically, can be analyzed e Execution flow cannot be
offline analyzed offline

* Applications: linear algebra, ¢ Applications: merging and
dense matrix multiplication, sorting, graph algorithms,
image processing... classification, sparse
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Known scalability issues

* Load-balancing is challenging

- Some threads might receive heavy
edges only

— Gets tougher for large core counts
— SIMD\SIMT programming models

e Need to load-balance at the lane
granularity

e Prefix summation can help get
good partitions per core

- Doesn’t resolve SIMD/SIMT
programmability

LRB resolves
these problems
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Logarithm Radix Binning

e Four for loops
- Simple

— SCa lable Algorithm 1: LRB Pseudo Code

fori=0:1:D8 do
| Bins[B] + 0
/I Loop 2
fori=0:1:N—1do
L bi « ([loga(w(T'[]))1)
atomicAdd(Bins|[bi],1)
/I Loop 3
prefizB[0] <0
fori=1:1:B do
| prefizBli] < prefizB[i — 1] + Bins[i — 1]
/I Loop 4
fori=0:1: N —1do
L bi = ([logz(w(T']))])
posi = atomicAdd(prefixBb;], 1)
Treordered [POSi] - T[ﬁ]
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Logarithm Radix Binning

/
* First loop - Initialize bin counters
- 0(B)
- B E {32,64‘,128} Algorithm 1: LRB Pseudo Code

fori=0:1: B do

e Simple 0(B) el
- Inexpensive
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Logarithm Radix Binning

e Second loop - count number of instances

- Compute expected
work per task

Algorithm 1: LRB Pseudo Code

- Get log of the work o s8] 0
/I L(')Oi)z. o .
- Increment counter f"[ b (Tlogn(o (TN

atomicAdd(Bins|[bi],1)

e This is value between
0..B

e Scalable O(N) work
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Logarithm Radix Binning

* Third loop - create bins based on counters

- Compute expected
work per task

Algorithm 1: LRB Pseudo Code

- Get log of the work Bl 0

/I Loop 2
fori=0:1:N—1do

- Increment counter [ b (T

atomicAdd(Bins|[bi],1)

e This is value between  /Loop3

prefizB[0] <0

for:=1:1:Bdo
O- . B | prefizBli] < prefizB[i — 1] + Bins[i — 1]

e Simple O(B)
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Logarithm Radix Binning

* Fourth loop - reorganize tasks in bins

- Place the tasks into
blns Wlth a Slmllar Algorithm 1: LRB Pseudo Code
amount of work for i 03131 do

| Bins[B] + 0
I qup 2
e Scalable O(N) work L b o)

atomicAdd(Bins|[bi],1)

/I Loop 3
prefizB[0] <0
fori=1:1:Bdo
| prefizBli] < prefizB[i — 1] + Bins[i — 1]
/I Loop 4
fori=0:1:N—1do
L bi + ([log2(w(T'[i]))])
posi = atomicAdd(prefixBb;], 1)
Treordered [pOSi] - T[ﬁ]
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Logarithm Radix Binning - Features

* Given two tasks, u and v, in bin i we know
the following:
-2t < w(w), w(v) < 2t
- This means that w(v) is never more than twice

as big or small as w(u)
* Or vice-versa
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Complexity Analysis

 Work: O(N + B) = O(N)
 Time: 0 (5 + B log(P)) = 0 (5 + log P)
e Storage: O(N + B) = O(N)

e Parallel Prefix Summation:
e Work: O(N)
. N
e Time: O (P + log(P))
- Requires P synchronizations!
e Storage: O(N + B) = O(N)
Georgia GCaollege of
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Systems

1) NVIDIA GV-100 GPU

e 80 SMs, 5120 SPs (CUDA cores)
e 6MB LLC

e 16GB MCDRAM

 PCI-E

2) Intel KNL processor

64 threads, 256 threads, 4-way SMT

e 45MB LLC

e 16GB of MCDRAM - roughly 400 GB/s BW
e 96GB of DDR4 - roughly 100 GB/s BW
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Experiments

1. Time comparison with parallel prefix
summation

- Even though PPS doesn’t solve load-balancing...
2. Accelerating Segmented Sort on the GPU

3. Accelerating PageRank
- Will not cover because of time limitations

- Cool results as we ran one thread per vector-
lane... over 4k threads...
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Experiment 1

* Load balance an array of length N

* Prefix summation use a binary search to find
N/P partition points - we do not time this
- Partitions are near equal in size
— Does not ensure good SIMD\SIMD placement

 We only focus on the execution times

* Inputs are real world graph and task lengths
are the size of the edge lists
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CPU Comparison - Speedup

e Small thread counts - prefix sum is faster
e Large thread counts - LRB is faster
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Speedup LRB vs. PPS
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— This is the more interesting problem
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GPU Comparison — Execution Times

e [n comparison with CUB’s prefix
Implementation

- Very optimized
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Speedup LRB vs. PPS

o I

GPU Comparison - Speedup

 For smaller inputs, can be up-to 3X faster
e For larger inputs, roughly 5% slower
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Experiment 2: Accelerating
Segmented Sort

e Rather than sorting a single array of length
M, we need to sort N arrays of length M

— One example is sorting N rows in a CSR

- |ts expected that Segmented Sort for CSR will be
faster the sorting COO

* Locals sorts vs. a global sort
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Sorting Comparisons

e CUB - optimized framework for basic primitive
- Radix based
- Two different test cases: COO and segmented sorts
* ModernGPU - optimized framework for sorting and DB
operations
- Merge-Sort based
e BB-Sort
- Hou et al., "Fast Segmented Sort on the GPU”, ICS’17
- Highly optimized kernels
- Several hundred to thousands of lines of code
- Has some load-balancing but not as fine grain as LRB
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Segmented Sort - soc-LivelJournall

e Rows - 4,847,571
* NNZ - 68,993,773
* Average adjacency size 14

| Time(ms)

ModernGPU-SegSort 13.128
CUB-SortPair 31.47
CUB-SegSort 1923
BB-Sort 11
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Segmented Sort - soc-LiveJournall

 CUB’s segmented sort works really well if the
segments are fairly large

I T

ModernGPU-SegSort 13.128 1.04X
CUB-SortPair 31.47 2.40X
CUB-SegSort 1923 177.3X
BB-Sort 11 0.84X
LRB-SegSort 13.06
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Our Segmented Sort

 We did not implement any merge or sort kernels!

* |nstead we used the existing sorting kernels in CUB:
— Large adjacency arrays sorted using a device wide SegmentSort

- Small adjacency arrays sorted in the small L1 caches use thread-
block sort.
* One for each bin size

\ )\ A

| | |
Thread block granularity.
One kernel for each bing
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Our Segmented Sort

* This would not be possible without LRB

 Thread-block sorts are templated functions that require
shared-memory size, number of threads, number of
elements.

e |RB accounts for less than 3% of execution time

 We would probably benefit from the highly optimized kernels
in BB.
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Additional Experiments

 For ModernGPU:
- Reordered the segments using LRB
- Used MGPU’s SegmentSort

- Twice as fast

* Unfortunately, the segments are not in the original
order. Artifact of the API.
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LRB Summary

 Showed a new load-balancing mechanism for irregular
problems.

 LRB has a time complexity and execution similar to PPS
- LRB has better task partitioning

 Works well for a wide range of applications: segmented
sorting, page-rank, triangle counting, BFS and more.

 |LRB makes irregular execution one step closer to regular
execution!
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Thank you
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PPS Speedup

CPU Scalability - Parallel Prefix Sum

* Does not scale very well
* OpenMP sync is very costly
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CPU Scalability - LRB

e Scales with the number of threads
e Could still do better
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