
A GPU Implementation of 
the Sparse Deep Neural 

Network Graph Challenge
Mauro Bisson and Massimiliano Fatica

NVIDIA Corporation



Code overview

● CUDA+OpenMP to distribute computations on multi-GPU servers (NVIDIA 
DGX-2)
○ one OMP thread per GPU
○ one GPU per slab of input matrix Y

■ inferenceReLUVec(W0...NL-1, b, Yslab_rowsxNN)

● NL sparse matrix-matrix products
● During inference each GPU executes two kernels iteratively

○ one for YL+1 = ReLU(YLWL+b)
○ one to compute non-empty row indices of YL+1

■ to limit access to meaningful rows in the next iteration
● Can run in both single and double precision



Multi-GPU setup and buffering scheme
● Input matrix Y partitioned into horizontal slabs

○ each slab can be multiplied by the same W independently
● Partitioning implemented using Unified Memory

○ single allocation of shared buffer via cudaMallocManaged()
○ initial calls to cudaMemAdvice()
○ no explicit exchange of data among GPUs
○ rows migrated automatically via NVLink during inference

(based on the changes in the distribution of non-empty rows)

● Requires GPUs connected via NVLink (DGX-2)

● Double buffering scheme for matrices Y and Ws
○ all Ws allocated in pinned host memory (up to 1920)

■ memory for only two of them is allocated on each GPU
■ H2D copy of WL+1 overlapped with YL+1= ReLU(WLYL+b)

○ two device buffers for Y on each GPU
■ Input YL and output YL+1



Matrix data structures
Sparse layer matrices W are read only:

● no need for update => stored as CSR 
○ O(nnz(W)) memory required
○ efficient access to rows

● each W split into vertical slabs and stored as multiple CSRs

Sparse input matrix Y stored as… :
● ...CSR? Pattern can change at each inference step

○ high maintenance cost
● ...ELLPACK? Requires storage space NIx(max nnz/row)x2 

(col. indices + values)
○ low maintenance cost
○ rows can (and do!) become full during inference thus 

memory requirement would grow to exactly NIxNNx2
■ 50% memory waste (col index buffer unneeded)

...dense NIxNN matrix (up to 16GB of mem for largest case)

Row y can be multiplied by 
each slab independently, 
using less temporary storage
than that required for the 
whole W
 

● size of slabs can be 
tweaked to control 
kernel occupancy



● Since matrices Y and Ws are sparse, computing yW 
as scalar products between row y and each column 
of W results in a large number of unnecessary 
accesses to W
○ the whole matrix W would be read for each y

● Memory traffic can be reduced drastically by 
performing the product as:

○ for each y, only the non-zeroes in W that are 
necessary to the product are read

Sparse yW product implementation



Inference results on DGX-2 (V100)

● Obtained on up to 16 V100 GPUs of an 

NVIDIA DGX-2 server, single prec

● GigaEdges processed per second and 

runtime of inference for all the 12 DNNs 

in the Challenge

● Entries in bold are the fastest results in 

each category.

● A single Tesla V100 can perform inference 

at 3.7 TeraEdges/sec

● 16 Tesla V100 reach ~18 TeraEdges/sec 



Thanks!


