Fast and Scalable Distributed Tensor Decompositions
Muthu Baskaran, Tom Henretty, James Ezick

Reservoir Labs

Reservoir Labs Sep 25,2019 IEEE High Performance Extreme Computing Conference 2019

Presentation Outline

Context
® Tensor Decompositions
® ENSIGN

Problem Overview
® (Challenges in Scalable Decompositions
® Data and Computation Distribution

Approach for Distributed Decompositions
® Distributed Sparse Tensor Data Structures
® Data Distribution Strategies
® Communication Minimization

Results

Conclusion

Reservoir Labs Sep 25,2019 IEEE High Performance Extreme Computing Conference 2019

Tensor Analysis

Tensors
® Provide a natural representation for multi-dimensional data

® Suitable for a variety of data sources (cyber, genomics,
GEOINT, ...)

Tensor Analysis Generalizes Matrix Analysis
® "“Graph Analysis in the Language of Linear Algebra”

® Becomes ... "Multi-link Graph Analysis in the Language of
Multi-linear (Tensor) Algebra”

® Semantics are higher dimensions and "“first class” with links
® Gives more complete and “contextual” insights into data

This talk

® Show how do this faster and more efficiently on advanced
HPC systems to meet modern application demands

Reservoir Labs Sep 25,2019 IEEE High Performance Extreme Computing Conference 2019

Tensor Decompositions

U

4

x

CP Tensor Decomposition
Tensor is decomposed into a non-unique weighted
sum of a pre-defined number of rank-1 components

* Break multidimensional data into distinct components
* Components reveal patterns and latent structure in the dataset

Reservoir Labs Sep 25,2019 IEEE High Performance Extreme Computing Conference 2019

Exascale NonStationary Graph Notation (ENSIGN)
Driving Towards a Practical High-performance Data Analytics Tool

Class Differentiating Specifics Benefit to Analyst
First-order decomposition methods Breadth of models enabled
Second-order decomposition methods Framework for graph fusion
Modeling Joint.tensor dec.om.posi.tions PIatfqrm for a}nqrr)aly detection
e Multiple data distribution models Sparsity-maximizing approaches
(Ca pabl|lty) Normalized decompositions Efficient update with arrival of new data
Streaming decompositions Discovery of new behaviors through new components
... more coming
Optimized sparse tensor data structures Extend the range, scale, and scope of analysis
Mixed static/dynamic optimization Analyze tensors of billion-scale and beyond
Memory-efficiency optimizations Enable large rank decompositions
Performance Algorithmic improvements Enable large number of mode decompositions
Shared memory parallelism Leverage HPC Systems
Distributed memory parallelism Quick time-to-solution
Cloud-based optimizations
GUI & CLI Interactive large scale exploration
Python bindings In standard environments (e.g., Jupyter notebooks)
C bindings Integration with existing corporate data lakes/pipelines
Usability QGIS support Visualization
Virtual machine distributions Reliable install and operation
Documented, Tested, Supported Training, Someone to Call

Reservoir Labs

Sep 25, 2019

IEEE High Performance Extreme Computing Conference 2019

Scalable Decompositions for HPC Systems

Challenge Approach

Load-balanced parallel * Light-weight load distribution (at the beginning of
execution the decomposition)

Communication » Selective tensor and factor matrix distribution to
minimization minimize communication volume and frequency

Selective re-computation of intermediate data (vs.
storing large footprint intermediate data)

Reduced memory footprint

Minimal computations Efficient sparse tensor data structures to facilitate

memory- and operation-efficient computations

Data locality * Fusion of computations to increase thread-local
operations with improved locality

HPEC 2017: Memory-efficient Parallel Tensor Decompositions [Best Paper Award]

Reservoir Labs Sep 25,2019 IEEE High Performance Extreme Computing Conference 2019

Scalable Decompositions for HPC Systems

Challenge Approach

Load-balanced parallel * Light-weight load distribution (at the beginning of
execution the decomposition)

Communication « Selective tensor and factor matrix distribution to
minimization minimize communication volume and frequency

Selective re-computation of intermediate data (vs.
storing large footprint intermediate data)

Reduced memory footprint

Minimal computations Efficient sparse tensor data structures to facilitate

memory- and operation-efficient computations

Data locality * Fusion of computations to increase thread-local
operations with improved locality

HPEC 2019: Fast and Scalable Distributed Tensor Decompositions

Reservoir Labs Sep 25,2019 IEEE High Performance Extreme Computing Conference 2019

Tensor Decomposition Method for Cyber Analysis

CP-APR Algorithm
1: Input: X, AL AWV

“"CP-APR" Method

2. repeat
32 forn=1...N do ® Models sparse count
4: repeat data
5: Compute: . - - — Poisson
P = (X(n) 2 (A" (OmznA™)) OmznA™) distribution
6 Compute inner convergence o Uses alternatin
7 Compute: A™ =A™ + & . J
¢ until convergence Poisson regression
' (APR) for non-
9: end for

negative CP model
10: Compute outer convergence J

i1: until convergence ® Proven to be
12: Output: AY .. AW extremely suited for

cyber data (which is
sparse count data)

Chi, E., Kolda, T., On Tensors, Sparsity, and Nonnegative Factorizations,
SIAM Journal on Matrix Analysis and Applications 33.4 (2012): 1272-1299.

Reservoir Labs Sep 25,2019 IEEE High Performance Extreme Computing Conference 2019 8

Tensor Decomposition Method for Cyber Analysis

CP-APR Algorithm

1: Input: X, A AW
2. repeat » QOuter Optimization loop
3 forn=1...N do > Loop over all modes
* repeat » Inner Optimization loop
5: Compute:
D = (Xin) 9" (@A™) D) (©mpnA™) |75 MTTKRP#
6 Compute inner convergenee—
7 Compute: e N CO A, Explicitly.storing the resuI’F of this
‘ . computation (sparse Khatri-Rao
8: until convergence
Product) leaves a huge memory
9: end for

footprint O (PR)
10 Compute outer convergence _
11- until convergence P: Number of non-zeros in tensor

12: Output: A1) AN R : Rank of decomposition

HPEC 2017: "Memory-efficient Parallel Tensor Decompositions”
Muthu Baskaran, Tom Henretty, Benoit Pradelle, M. Harper Langston, David
Bruns-Smith, James Ezick, Richard Lethin (Reservoir Labs)

Reservoir Labs Sep 25,2019 IEEE High Performance Extreme Computing Conference 2019

Data Distribution

Tensor

Process p,

Process p,

Process p,,

4
i

Factor Matrices

@ Distributed

Reservoir Labs

Sep 25, 2019

IEEE High Performance Extreme Computing Conference 2019

Computation Pattern

At each process _
Computed data Input data for computations

Mode 1
1]

CP-APR Algorithm

I: Input: X, AL AN
2. repeat

3% forn=1...Ndo MOde 2
4; repeat

5 Compute:

P = (X)) O (A (OmtnA ™)) (OnpnA™)

6: Compute nner convergence

T: Compute: A™ =A™ « @

8 until convergence

9. end for Mode 3
10: Compute outer convergence :
11: until convergence

J Ul
[

12 Output: A A

® Rows of computed factor matrix

— May be LOCAL ("owned" by the process - has updated values)

- May be REMOTE (partial computed values to be sent to “owner”)
® Rows of input factor matrix

— May be LOCAL ("owned" by the process - has updated values)

- May be REMOTE (updated values gathered from "owner")

Reservoir Labs Sep 25,2019 IEEE High Performance Extreme Computing Conference 2019

ENSIGN Sparse Tensor Data Structures

H |g h I Ig htS Indices not stored in a compressed format

® Hierarchical -
compressed sparse

N mode 1 1 1 1 2 |2 |2 3|3
tensor storage indices s BT T4 Fls s
® Mode-generic and 2 9 2 4 4 9 8 4 9
mode-specific formats 50 40 20 50 20 50 50 20 50

P non-zero values

Key differentiators
® Applies to all tensor decomposition methods
® Supports a spectrum of tensors within the formats

— From extremely sparse to partially dense to fully dense tensors
® Enables computation and memory reduction (from compression)
® Enables improved parallelism (from data structure arrangement)

Reservoir Labs sep2s, 2019 IEEE High Performance Extreme Computing Conference 2019 12

Sparse Tensor Data Structure Selection

Selection of distributed sparse tensor format

® Some modes are chosen as candidates for mode-specific
format

— Choice made based on size of mode (usually “larger” modes
are biased towards mode-specific format)

® |f m (where m < n) modes chosen as mode-specific format
candidates

- We have m+1 distributed copies of the input tensor: m
mode-specific tensors and 1 mode-generic tensor

Reservoir Labs Sep 25,2019 IEEE High Performance Extreme Computing Conference 2019

Data Distribution Strategies

Three strategies for distributing factor matrices
® Distributed
— Factor matrices distributed across processes
— Each factor matrix row has a unique “owner” process
® Replicated
— Factor matrices replicated across processes
— Usually applied for "smaller” modes
® Partitioned
— Factor matrices distributed across processes
— Each factor matrix row has a unique “owner" process

— Sparse sub-tensor contributing to the output of "owned" rows is
entirely local to the process

— Usually applied for “very large” modes for reducing communications

Reservoir Labs Sep 25,2019 IEEE High Performance Extreme Computing Conference 2019

Computations and Communications in
Distributed Decompositions

Replicated mode

repeat
forn=1..N
repeat
Compute @ using X, A's
[@ gather: Allreduce]
Compute inner convergence
Update A(n) with @

until convergence

Compute outer convergence
until convergence

Distributed mode

repeat
forn=1..N

repeat
Compute @ using X, A's
[@ gather: rank-wise Reduce]
Compute inner convergence
Update A(n) with @
[A(n) gather: rank-wise Gather]

until convergence

Compute outer convergence
until convergence

Partitioned mode

repeat
forn=1..N
repeat
Compute @ using X, A's

Compute inner convergence
Update A(n) with @

until convergence
[A(n) gather: rank-wise Gather]*
Compute outer convergence
until convergence

* if no. of partitioned modes > 1

Reservoir Labs sep2s,2019

IEEE High Performance Extreme Computing Conference 2019

Computations and Communications in
Distributed Decompositions

At each process [Distributed mode]

Compute output Rank-wise Reduce More Rank-wise Gather:
(local rows updated computations Send updated local
results) local uses (= Receive

i updated remote rows)
for next computation

Output matrix
~ s L ——
— Local rows == —, —_p
A A /y \

Input matrices

— 1

4

Remote rows

® Portions of tensor and/or factor matrices contributing to the output of "owned" or

local rows present in remote processes results in communication

Reservoir Labs Sep 25,2019 IEEE High Performance Extreme Computing Conference 2019

16

Computations and Communications in
Distributed Decompositions

At each process [Partitioned mode]

Compute output ank-wise Reduc More Rank-wise Gather:
(local rows updated computations Send updated local

Sub-tensor with remote partial (updates) on rows to all remote
results) local uses (= Receive

i updated remote rows)
for next computation

Output matrix

= oy

— Local rows o= \ -]
A A /V L \

—]

Input matrices

— 1

4

Remote rows

® Sparse sub-tensor contributing to the output of "owned" rows is entirely local to the
process => Implication: no remote partial results for “mode-level” iteration

® |f only one partitioned mode => no communication due to that mode

Reservoir Labs Sep 25,2019 IEEE High Performance Extreme Computing Conference 2019

17

Computations and Communications in
Distributed Decompositions

At each process [Replicated mode]

Compute output AllReduce (all rows More ank-wise Gather;
updated with computations Send updated local
Sub-tensor remote partial (updates) on all rows to all remgte

results) FOWS uses (= Receiv
i updated remgte rows)

for nexty copnputation
Output matrix

=\ [e

—_— —

[= |

Input matrices

L1

® Portions of tensor contributing to the output of "owned" or local rows present in
remote processes results in communication

Reservoir Labs Sep 25,2019 IEEE High Performance Extreme Computing Conference 2019

Scaled-up Results with HPE Superdome Flex

Overall scaling
of performance

Near-ideal scaling
of computations

U

Performance on a 1-billion-entry tensor on HPE Superdome Flex
Misc Computation time [l Communication time [l Core Computation time

4000
3000

2000

Time (s)

1000

36 72 144 288

Mumber of cores

Low
communication
bottleneck

Dip in communication
performance initially

before scaling

1000

500

100

50

Core Computation time

20

Core Computation time vs. Number of cores

Communication time vs. Number of cores

1000

500

165.55

Communication time

40 60 80 100 200 50 100 150

Mumber of cores Mumber of cores

200

250

Reservoir Labs

Sep 25,2019 IEEE High Performance Extreme Computing Conference 2019

Scaled-up Results with Cluster of Nodes

Overall scaling
of performance

U

Computation and
communication scale

4

Time (s)

Performance on a 350M-entry tensor using a cluster of nodes

Misc Computation time

1250

1000

750

500

250

APR-2 {40)

B Communication time [Core Computation time

APR-4 (30) APR-8(160) APR-16(320) APR-32(5840)

Mumber of nodes (cores)

Reservoir Labs

Sep 25, 2019

IEEE High Performance Extreme Computing Conference 2019

Summary & Forward Work

What we did

® Developed techniques for enabling tensor analysis to meet
modern application needs

® |mplemented efficient distributed tensor decomposition
methods in ENSIGN Tensor Toolbox

® Showed scalable results on HPE Superdome Flex server and
a distributed cluster of Intel nodes

What is in progress and what we plan to do

® Adapting these techniques to GPU-based implementations
of tensor decompositions

® [Extending these techniques to more tensor decomposition
methods and more application areas

Reservoir Labs Sep 25,2019 IEEE High Performance Extreme Computing Conference 2019 21

How to get ENSIGN

Contact Reservoir Labs

® Use the URL:
https://www.reservoir.com/company/contact/

® or email support@reservoir.com

Reservoir Labs Sep 25,2019 IEEE High Performance Extreme Computing Conference 2019

https://www.reservoir.com/company/contact/

