Fast and Scalable Distributed Tensor Decompositions

Muthu Baskaran, Tom Henretty, James Ezick

Reservoir Labs

Presentation Outline

Context

- Tensor Decompositions
- ENSIGN

Problem Overview

- Challenges in Scalable Decompositions
- Data and Computation Distribution

Approach for Distributed Decompositions

- Distributed Sparse Tensor Data Structures
- Data Distribution Strategies
- Communication Minimization

Results

Conclusion

Tensor Analysis

Tensors

- Provide a natural representation for multi-dimensional data
- Suitable for a variety of data sources (cyber, genomics, GEOINT, ...)

Tensor Analysis Generalizes Matrix Analysis

- "Graph Analysis in the Language of Linear Algebra"
- Becomes ... "Multi-link Graph Analysis in the Language of Multi-linear (Tensor) Algebra"
- Semantics are higher dimensions and "first class" with links
- Gives more complete and "contextual" insights into data

This talk

 Show how do this <u>faster</u> and <u>more efficiently</u> on advanced HPC systems to meet modern application demands

Tensor Decompositions

CP Tensor Decomposition

Tensor is decomposed into a non-unique weighted sum of a pre-defined number of rank-1 components

- Break multidimensional data into distinct components
- Components reveal patterns and latent structure in the dataset

Exascale NonStationary Graph Notation (ENSIGN)

Driving Towards a Practical High-performance Data Analytics Tool

Class	Differentiating Specifics	Benefit to Analyst
Modeling (Capability)	First-order decomposition methods Second-order decomposition methods Joint tensor decompositions Multiple data distribution models Normalized decompositions Streaming decompositions more coming	Breadth of models enabled Framework for graph fusion Platform for anomaly detection Sparsity-maximizing approaches Efficient update with arrival of new data Discovery of new behaviors through new components
Performance	Optimized sparse tensor data structures Mixed static/dynamic optimization Memory-efficiency optimizations Algorithmic improvements Shared memory parallelism Distributed memory parallelism Cloud-based optimizations	Extend the range, scale, and scope of analysis Analyze tensors of billion-scale and beyond Enable large rank decompositions Enable large number of mode decompositions Leverage HPC Systems Quick time-to-solution
Usability	GUI & CLI Python bindings C bindings QGIS support Virtual machine distributions Documented, Tested, Supported	Interactive large scale exploration In standard environments (e.g., Jupyter notebooks) Integration with existing corporate data lakes/pipelines Visualization Reliable install and operation Training, Someone to Call

Scalable Decompositions for HPC Systems

Challenge	Approach
Load-balanced parallel execution	 Light-weight load distribution (at the beginning of the decomposition)
Communication minimization	 Selective tensor and factor matrix distribution to minimize communication volume and frequency
Reduced memory footprint	 Selective re-computation of intermediate data (vs. storing large footprint intermediate data)
Minimal computations	 Efficient sparse tensor data structures to facilitate memory- and operation-efficient computations
Data locality	 Fusion of computations to increase thread-local operations with improved locality

HPEC 2017: Memory-efficient Parallel Tensor Decompositions [Best Paper Award]

Scalable Decompositions for HPC Systems

	Challenge	Αp	proach
	Load-balanced parallel execution	•	Light-weight load distribution (at the beginning of the decomposition)
	Communication minimization	•	Selective tensor and factor matrix distribution to minimize communication volume and frequency
	Reduced memory footprint	•	Selective re-computation of intermediate data (vs. storing large footprint intermediate data)
	Minimal computations	•	Efficient sparse tensor data structures to facilitate memory– and operation–efficient computations
	Data locality	•	Fusion of computations to increase thread-local operations with improved locality

HPEC 2019: Fast and Scalable Distributed Tensor Decompositions

Tensor Decomposition Method for Cyber Analysis

CP-APR Algorithm

```
1: Input: \mathfrak{X}, \mathbf{A}^{(1)} \dots \mathbf{A}^{(N)}
 2: repeat
         for n = 1 \dots N do
 4:
             repeat
 5:
                 Compute:
                 \Phi = (\mathbf{X}_{(n)} \oslash (\mathbf{A}^{(n)}(\odot_{m \neq n} \mathbf{A}^{(m)})^T))(\odot_{m \neq n} \mathbf{A}^{(m)})
                 Compute inner convergence
 6:
                 Compute: \mathbf{A}^{(n)} = \mathbf{A}^{(n)} * \mathbf{\Phi}
             until convergence
         end for
         Compute outer convergence
10:
11: until convergence
12: Output: \mathbf{A}^{(1)} \dots \mathbf{A}^{(N)}
```

Chi, E., Kolda, T., On Tensors, Sparsity, and Nonnegative Factorizations, SIAM Journal on Matrix Analysis and Applications 33.4 (2012): 1272–1299.

"CP-APR" Method

- Models sparse count data
 - Poisson distribution
- Uses alternating
 Poisson regression
 (APR) for non negative CP model
- Proven to be extremely suited for cyber data (which is sparse count data)

Tensor Decomposition Method for Cyber Analysis

CP-APR Algorithm	
1: Input: $\mathfrak{X}, \mathbf{A}^{(1)} \dots \mathbf{A}^{(N)}$	
2: repeat	Outer Optimization loop
3: for $n = 1 \dots N$ do	Loop over all modes
4: repeat	Inner Optimization loop
5: Compute:	
$\Phi = (\mathbf{X}_{(n)} \oslash (\mathbf{A}^{(n)} (\odot_{m \neq n} \mathbf{A}^{(m)})^T))$	$(\odot_{m\neq n}\mathbf{A}^{(m)})$ MTTKRP+
6: Compute inner convergence	
7: Compute: $\mathbf{A}^{(n)} = \mathbf{A}^{(n)} * \mathbf{\Phi}$	Explicitly storing the result of this
8: until convergence	computation (sparse Khatri-Rao
9: end for	Product) leaves a huge memory
10: Compute outer convergence	footprint O (PR)
11: until convergence	P: Number of non-zeros in tensor
12: Output: $\mathbf{A}^{(1)} \dots \mathbf{A}^{(N)}$	R: Rank of decomposition

HPEC 2017: "Memory-efficient Parallel Tensor Decompositions"

Muthu Baskaran, Tom Henretty, Benoit Pradelle, M. Harper Langston, David Bruns-Smith, James Ezick, Richard Lethin (Reservoir Labs)

Data Distribution

Computation Pattern

At each process Input data for computations Computed data Mode 1 CP-APR Algorithm 1: Input: $\mathfrak{X}, \mathbf{A}^{(1)} \dots \mathbf{A}^{(N)}$ 2: repeat for $n = 1 \dots N$ do Mode 2 repeat Compute: $\Phi = (\mathbf{X}_{(n)} \oslash (\mathbf{A}^{(n)}(\odot_{m \neq n} \mathbf{A}^{(m)})^T))(\odot_{m \neq n} \mathbf{A}^{(m)})$ Compute inner convergence Compute: $A^{(n)} = A^{(n)} * \Phi$ until convergence Mode 3 end for Compute outer convergence

- Rows of computed factor matrix
 - May be LOCAL ("owned" by the process has updated values)
 - May be REMOTE (partial computed values to be sent to "owner")
- Rows of input factor matrix
 - May be LOCAL ("owned" by the process has updated values)
 - May be REMOTE (updated values gathered from "owner")

11: **until** convergence 12: Output: $\mathbf{A}^{(1)} \dots \mathbf{A}^{(N)}$

ENSIGN Sparse Tensor Data Structures

Highlights

- Hierarchical compressed sparse tensor storage
- Mode-generic and mode-specific formats

P non-zero values

Key differentiators

- Applies to all tensor decomposition methods
- Supports a spectrum of tensors within the formats
 - From extremely sparse to partially dense to fully dense tensors
- Enables computation and memory reduction (from compression)
- Enables improved parallelism (from data structure arrangement)

Sparse Tensor Data Structure Selection

Selection of distributed sparse tensor format

- Some modes are chosen as candidates for mode-specific format
 - Choice made based on size of mode (usually "larger" modes are biased towards mode-specific format)
- If m (where m ≤ n) modes chosen as mode-specific format candidates
 - We have m+1 distributed copies of the input tensor: m
 mode-specific tensors and 1 mode-generic tensor

Data Distribution Strategies

Three strategies for distributing factor matrices

Distributed

- Factor matrices distributed across processes
- Each factor matrix row has a unique "owner" process

Replicated

- Factor matrices replicated across processes
- Usually applied for "smaller" modes

Partitioned

- Factor matrices distributed across processes
- Each factor matrix row has a unique "owner" process
- Sparse sub-tensor contributing to the output of "owned" rows is entirely local to the process
- Usually applied for "very large" modes for reducing communications

Replicated mode

repeat
for n= 1...N
repeat
Compute Ø using X, A's
[Ø gather: Allreduce]
Compute inner convergence
Update A(n) with Ø
until convergence

Compute outer convergence

until convergence

Distributed mode

until convergence

repeat
for n= 1...N
repeat
Compute Ø using X, A's
[Ø gather: rank-wise Reduce]
Compute inner convergence
Update A(n) with Ø
[A(n) gather: rank-wise Gather]
until convergence

Compute outer convergence

Partitioned mode

repeat

```
for n= 1...N
repeat
Compute Ø using X, A's

Compute inner convergence
Update A(n) with Ø

until convergence
[A(n) gather: rank-wise Gather]*
Compute outer convergence
until convergence
```

* if no. of partitioned modes > 1

At each process [Distributed mode]

 Portions of tensor and/or factor matrices contributing to the output of "owned" or local rows present in remote processes results in communication

At each process [Partitioned mode]

- Sparse sub-tensor contributing to the output of "owned" rows is entirely local to the process => Implication: no remote partial results for "mode-level" iteration
- If only one partitioned mode => no communication due to that mode

At each process [Replicated mode]

 Portions of tensor contributing to the output of "owned" or local rows present in remote processes results in communication

Scaled-up Results with HPE Superdome Flex

Scaled-up Results with Cluster of Nodes

Overall scaling of performance

Computation and communication scale

Summary & Forward Work

What we did

- Developed techniques for enabling tensor analysis to meet modern application needs
- Implemented efficient distributed tensor decomposition methods in ENSIGN Tensor Toolbox
- Showed scalable results on HPE Superdome Flex server and a distributed cluster of Intel nodes

What is in progress and what we plan to do

- Adapting these techniques to GPU-based implementations of tensor decompositions
- Extending these techniques to more tensor decomposition methods and more application areas

How to get ENSIGN

Contact Reservoir Labs

- Use the URL: https://www.reservoir.com/company/contact/
- or email <u>support@reservoir.com</u>