

Hardware IP Classification through Weighted Characteristics

Brendan McGeehan, Flora Smith, Thao Le, <u>Hunter Nauman</u>, Jia Di Department of Computer Science and Computer Engineering, University of Arkansas, Fayetteville, Arkansas, USA

- > Today's integrated circuit (IC) industry
 - Economically oriented
 - Heavily reliant on incorporation of third-party intellectual property (IP)
 - Todays ICs are becoming more and more susceptible to attacks
 - Increased security threat
 - Increased threat of Trojan insertion

- > What is a Hardware Trojan?
 - Malicious addition or modification of the circuitry of an integrated circuit
 - Inserted Trojans can be very small
 - Created by human intelligence
 - Consequences that can come from Trojan not being detected:
 - Damaging payloads
 - Leaking secret keys
 - Shutting down sections of hardware
 - Can end up in locations where security is vital

- > Side-Channel Analysis
 - Look at naturally occurring emissions
 - Power/timing delays
 - Detect modifications in a circuit by analyzing differences in power/delay
- Path Delay
 - Measure differences in how long a signal takes to travel through a specific path
 - Detect modifications in circuits by analyzing differences in delays

- While both Side-Channel Analysis and Path Delay are viable detection methods, they have their own limitations
 - Trojans can be very small
 - Do not produce significant emissions
 - Mainly focused on detecting Trojans on hard IPs and fabricated chips

- Structural Checking (SC)
 - Analyze Register-Transfer Level (RTL) soft IPs
 - Assign assets to design and create asset patterns
 - Static analysis no simulation required
 - Designed to be fast and thorough
 - Improved statistical analysis to enhance Trojan detection

ARKANSAS

Q

×

Logs

Structural Checking - Home Scre	en		- [
Requ	ired Steps		
1. Design Parsing		System Log	
File name of the top I	evel design:		
<u> </u>			
Browse	Parse Design		
2. External Asset Assi	gnments		
) Assign External Assets Manually		
	Assign External Assets from File:		
—			
	Browse		
	Assign External Assets		
3. Internal Asset Assig	inments		
-	Assign Internal Assets		
4. Filtering, Matching	and Functionality Analysis		
-	Analyze Design		
5. Trojan Trigger Trac	ing		
Detect Trojan Tr	igger Assign Trojan Asset		
6. Trojan Detection			
-	Detect Trojan		

- Provide labels to a signal about its purpose/function to the overall IP
 - Ex. clock signal would be assigned 'SYSTEM_TIMING' asset
 - A signal may have multiple assets
 - Help refine how the signal fits within overall design
 - There are two main categories of assets within SC tool
 - External assets
 - Internal assets

- > Used to describe the function/purpose of primary ports of a soft IP
 - Must be manually assigned upon first use (only user knows how the IP will be connected to the system)
 - Five main categories:
 - Data
 - Timing
 - System Control
 - Specific System Control
 - Miscellaneous
 - The SC tool currently has 58 external assets
 available

External Asset Examples

- > Data
 - DATA_MEMORY: signal that transfers data to or from any type of memory
- > Timing
 - COUNT: signal that keeps track of a count value
- System Control

UNIVERSITY OF

ARKANSAS

- HANDSHAKING: handles any type of handshaking operations
- Specific System Control
 - COMMUNICATION_CONTROL: transmission with another component
- > Miscellaneous
 - ADDRESS_SENSITIVE: connect to memory address of an IP

- Intended to describe function of internal signals within a soft IP
 - Can also be used for primary port signals
 - Most internal assets assigned automatically after SC tool parses the RTL code
 - A few assets that deal with scan chains need to be manually assigned
 - Examples of internal assets:
 - PROCESS_SENSITIVE: signal included in sensitivity list of a process block
 - CONDTIONAL_DRIVEN: signal within an "if/case" block

- > Allow assets assigned on any primary port signal to propagate through connected signals
 - A set of rules determines whether an asset is copied to its neighbor
 - Create traces for every signal path
- Asset Pattern compilation of all asset traces of a soft IP
 - Broken down into six characteristics
 - Ex. Characteristic: external assets for primary input port signals

Golden Reference Library (GRL)

- Collection of soft IPs acquired from Trust-Hub,
 OpenCores, etc., categorized into various functionality
 groups
- GRL entries are labeled as:
 - Known Trojan-Free (whitelist)
 - Known Trojan-Infested (blacklist)

Entity simple_pic: 33 port signals 30-10 60 IntraSignals 30-35 **4 Port Signal Vectors** 29.20 7 Intra-Signal Vectors 30.30 Ø SubInstances 30-30-9 Processes 30-30-Functionality: INTERRUPT_UNIT Secondary Func: NON_SEQUENTIAL Number of Input bits: 23 Number of Output bits: > 10 >[SYSTEM_TIMING] >*[PROCESS_SENSITIVE, CONDITIONAL_DRIVING] >[RESET] >[INTERRUPT_CONTROL, HANDSHAKING] >[ADDRESS_SENSITIVE] >*[CONDITIONAL_DRIVING] >[INTERRUPT_CONTROL] >[DATA_SENSITIVE] >[DATA_SENSITIVE, INTERRUPT] <[DATA_SENSITIVE, INTERRUPT] <*[CONDITIONAL_DRIVEN]</pre> <[HANDSHAKING, INTERRUPT_CONTROL] <*[CONCURRENT_DRIVEN]</pre> <[INTERRUPT, DATA_SENSITIVE] <*[CONDITIONAL_DRIVEN, PROCESS_OPERATION_SENSITIVE]</pre> >[INTERRUPT, DATA_SENSITIVE] /[DATA_SENSITIVE] /*[CONDITIONAL_DRIVEN, PROCESS_OPERATION_SENSITIVE] /[DATA_SENSITIVE, INTERRUPT] /*[CONDITIONAL_DRIVEN] /[HANDSHAKING, INTERRUPT_CONTROL] /*[CONCURRENT_DRIVEN, CC_OPERATION_AND] /[INTERRUPT_CONTROL] /*[CONDITIONAL_DRIVING, CONCURRENT_DRIVEN, CC_OPERATION_AND]

- Compare unknown soft IP asset pattern against an asset pattern within the GRL
 - Algorithm calculates percent match for each GRL entry
 - Determine overall functionality of design
 - Algorithm chooses best match for soft IP
- > Basic matching example

Trace	Unknown IP Assets	GRL Entry Assets	Percent Match
1	DATA_COMMUNICATION	DATA_COMMUNICATION	100%
2	DATA_SENSITIVE, COUNT, STATUS	DATA_SENSITIVE, HANDSHAKING, MEMORY_OP	33%
3	DATA_SENSITIVE	DATA_MEMORY	0%

> Overall match calculated by averaging the six percent matches from the six characteristics that make up asset patterns

Overall % Match =
$$\frac{\sum_{i=A}^{F} \% Match_{i}}{6}$$

- Drawback characteristics do not contribute equal weight
- > To improve the algorithm we focus on:
 - Assessing Asset Quantity
 - Assessing Asset Quality

Formulas to Improve Algorithm

Calculating weight of a given characteristic:

 $P(Asset) = \frac{\sum_{i=1}^{n} GRLEntry_{i}.contains(Asset)}{Total \ \# \ of \ GRL \ Entires}$

 $Weight_{Asset} = 1 - P(Asset)$

Average Asset Weight = $\frac{\sum_{i=1}^{n} MatchedAsset_{i}.weight}{Total \# Matched Assets}$

Finally we can calculate the new characteristic weight by combining the formulas from above

 $Weight_{char} = \frac{Characteristic_{char}AverageAssetWeight}{\sum_{i=A}^{F}Characteristic_{i}AverageAssetWeight} * 100$

- Fested IPs include RS232, RSA, AES, and a few microcontrollers
 - Statistical algorithm help extract important asset matches
- > Examples of smaller designs:
 - RS232
 - Contain denial-of-service attack.
 - Both original and improved algorithm correctly match
 - AES
 - Contain secret key after certain plaintext is read
 - Both original and improved algorithm correctly match

- PIC16F84 microcontroller obtained from Trust-Hub
 - Demonstrated improvement in statistical matching
 - Made up of:
 - Two types of memory EEPROM and RAM
 - Watchdog timer,
 - Interrupt ports,
 - I/O ports

Results (cont.)

Asset Assignment

After parsing PIC16F84, assets are assigned to input and output ports

Signal	Assets
clk i	SYSTEM TIMING
clk_o	SYSTEM_TIMING
eep_adr_o	ADDRESS_SENSITIVE
eep_dat_i	DATA_MEMORY
eep_dat_o	DATA_MEMORY
existeprom_i	MEMORY_OP
int0_i	INTERRUPT
int4_i	INTERRUPT
int5_i	INTERRUPT
int6_i	INTERRUPT
int7_i	INTERRUPT
mclr_n_i	RESET
pon_rst_n_i	RESET
porta_dir_o	PERIPHERAL_CONTROL
porta_i	DATA_PERIPHERAL
porta_o	DATA_PERIPHERAL
portb_dir_o	PERIPHERAL_CONTROL
portb_i	DATA_PERIPHERAL
portb_o	DATA_PERIPHERAL
powerdown_o	CLOCK_CONTROL
prog_adr_o	ADDRESS_SENSITIVE
prog_dat_i	DATA_MEMORY
ram_adr_o	ADDRESS_SENSITIVE

Results (cont.)

Basic Matching

GRL Entry	Overall Percent Match
Simple_pic	52.553%
Lcd16x2_ctrl	48.233%
Lcd_controller	44.148%
RSACypher_T100	43.414%
Spi_master_1	40.750%

Improved Matching

GRL Entry	Overall Percent Match		
Simple_pic	47.149%		
Lcd16x2_ctrl	36.591%		
Lcd_controller	36.514%		
RSACypher_T100	31.785%		
Spi_master_1	30.211%		

Basic Matching vs. Improved Matching

- After asset assignment, SC tool filters assets to connected signals
- Better matching due to disparity between overall percent match of GRL entries

- MC8051-T500 Core tested microcontroller known to be Trojan-free
 - Also demonstrated improvement in statistical matching
 - Made up of:
 - Control units for Finite State Machine (FSM) and memory
 - ALU
 - Serial Interface Unit (SIU)
 - Timing Unit
 - Also handle interrupt signals

UNIVERSITY OF MC8051-T500 CORE MATCHING ARKANSAS

Results

	Equal Weight Matching		Statistical Based Matching	
Target IP	Functionality	% Match	Functionality	% Match
MC8051_core	COMMUNICATION	35.321%	INTERRUPT_UNIT	50.899%
MC8051_control	COMPUTATIONAL	44.871%	REGISTER_FILE	54.689%
Control_fsm	COMPUTATIONAL	47.767%	REGISTER_FILE	38.913%
Control_mem	INTERRUPT_UNIT	61.576%	INTERRUPT_UNIT	62.274%
MC8051_alu	COMPUTATIONAL	22.244%	COMPUTATIONAL	29.564%
Alumux	COMPUTATIONAL	55.565%	COMPUTATIONAL	46.519%
Alucore	COMPUTATIONAL	50.297%	COMPUTATIONAL	42.133%
Addsub_core	COMPUTATIONAL	44.250%	COMPUTATIONAL	41.169%
Addsub_cy	COMPUTATIONAL	46.875%	COMPUTATIONAL	44.748%
Addsub_ovcy	COMPUTATIONAL	46.875%	COMPUTATIONAL	44.748%
Comb_mltplr	COMPUTATIONAL	45.833%	COMPUTATIONAL	38.863%
Comb_divider	COMPUTATIONAL	37.500%	COMPUTATIONAL	35.399%
Dcml_adjust	COMPUTATIONAL	31.718%	COMPUTATIONAL	34.492%
MC8051_siu	COMMUNICATION	77.152%	COMMUNICATION	70.793%
MC8051_tmrctr	REGISTER_FILE	52.257%	INTERRUPT_UNIT	48.587%

- > The statistical matching algorithm
 - Enhanced matching algorithm for SC tool
 - Calculate weights for individual assets
 - Tool determines how well an asset matches to a soft IP
 - Using weights helps facilitate numerical representation of the six characteristic
 - Helps provide a more unique identification for targeted IPs

- > In order to improve the SC tool we intend to:
 - Continually grow the GRL to improve matching
 - Add more assets in order to better refine the purpose of each signal within an IP
 - Add more functionalities within GRL to provide more options to classify an unknown IP