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Program Goal, Challenges, and Proposed Approach
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Goal is to map neuron connectivity
Challenges: Difficult to process 

large-scale, densely populated data 
automatically with high accuracy

Propose Approach: 
Develop HPC-based 

ML algorithms

ML: Machine Learning
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Concept Overview

Notional ML
Performance

Amount of Annotated Data

Supervised Learning

Transfer Learning / Active Learning

Automatic Non-ML Methods
(e.g. Watershed)

Available Approaches

• Traditional Approach
– Collect and annotate more data

– Challenge: time+resource intensive

• Lincoln Approach
– Leverage automatic and/or semi-

automatic algorithms to obtain 
comparable accuracy with less 
annotation

ML: Machine Learning



HPEC 2019 - 4
PRK  09/26/19

• Neurons (nuclei)
– Receive stimuli
– Conduct action potentials

• Glial cells
– Supporting functions
– Hold neurons close together

Targets of Interest

Source: NIH Institute of Neurological Disorders and Stroke
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Difference of Gaussian (DoG), Thresholding, and Watershed Segmentation

Automatic Approach
Conventional Image Processing on LLSC

Gaussian 
Blur DoG

Distance 
Transform Binarization

Remove local 
minima 

(<threshold)
Watershed

Centroid Detections Binary Mask

Strength 
• No need for annotation
• Results can be fed to ML algorithm as weakly annotated data

Weakness
• Bulk blob detection method does not distinguish between different cell

types (i.e. neurons and glia)

LLSC: Lincoln Laboratory Supercomputing Center
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Transfer 
Learning

Proposed Technical Approach
Reduce costly human annotation

Existing model 
U-Net Model on nuclei 

segmentation

• Large amount of 
unlabeled nuclei data

• Small amount of 
labeled nuclei data • Quantitative results

• Qualitative results

Our datasets Results
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U-Net [1] is a popular type of 
“fully-convolutional” neural 
network

It is comprised of a contracting 
path (left) and an expanding 
path (right)

– Expanding path uses 
information from contracting 
path (via “copy and crop” 
operations)

Contains 23 convolutional layers 
in total

Transfer Learning Approach
U-Net

[1] - O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks for biomedical image segmentation,” in 
International Conference on Medical image computing and computer-assisted intervention. Springer, 2015, pp. 234–241.
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Proxy Dataset

Used nuclei segmentation dataset prepared by 
the Broad Institute (BBBC039) [1, 2]

200 images collected – fluorescence microscopy

Around 23,000 nuclei annotated

Image dimensions: 520 x 626 pixels

[1] - V. Ljosa, K. L. Sokolnicki, and A. E. Carpenter, “Annotated high-throughput 
microscopy image sets for validation.” Nature methods, vol. 9, no. 7, pp. 637–637, 2012.
[2] - https://data.broadinstitute.org/bbbc/BBBC039/
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Transfer 
Learning

Proposed Technical Approach
Reduce costly human annotation

Existing model 
U-Net Model on nuclei 

segmentation

• Large amount of 
unlabeled nuclei data

• Small amount of 
labeled nuclei data • Quantitative results

• Qualitative results

Our datasets Results
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Unlabeled Data (DAPI)

• Rat brain tissue sample of the nucleus 
tractus solitarus region

• Prepared using CLARITY tissue 
clearance [1]

• Applied a fluorescent DNA stain, 
diamidino-2-phenylindole (DAPI)

• Image acquired using a light-sheet 
microscope (ZEISS Lightsheet Z.1)

• Resolution: 
– 1920 x 1920 x 650 voxels
– 0.2μm x 0.2μm x 1μm

[1] - K. Chung and K. Deisseroth, “Clarity for mapping the nervous system,” Nature methods, vol. 10, no. 6, p. 508, 2013.

Examples of DAPI slices
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Trained U-Net on BBBC039 dataset using 
code/library associated with [1]

– Model outputs predictions as being one of three 
classes:
1. Background
2. Nuclei Interior
3. Nuclei Boundary 

Model was trained using Keras with Tensorflow
backend on Nvidia Tesla K40

Used MapReduce on LLSC to apply trained 
model to DAPI slices

– Processed 20 blocks with ~650 slices each
– Watershed Segmentation Approach was also run 

on LLSC

U-Net Training Details

[1] - J. C. Caicedo et al., “Evaluation of deep learning strategies for nucleus segmentation in fluorescence images,” BioRxiv, p. 335216, 2019.

U-Net
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Qualitative Results

DAPI Images

Prediction Output
Red: Background

Green: Cell/Nuclei Interior
Blue: Cell/Nuclei Boundary

Binary Map
(Interior + Boundary Classes)

U-Net model generates very reasonable segmentation 
masks using transfer learning
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Transfer 
Learning

Proposed Technical Approach
Reduce costly human annotation

Existing model 
U-Net Model on nuclei 

segmentation

• Large amount of 
unlabeled nuclei data

• Small amount of 
labeled nuclei data • Quantitative results

• Qualitative results

Our datasets Results
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15 hand-annotated images (LL15)

Annotated with 3 classes:
1. Background
2. Glial cell
3. Nuclei

Directly apply U-Net trained on BBB039 
dataset on the hand-annotated images

– Combined pixels classified as cell interior
and cell boundary to make binary mask

Compute DICE score
– Average over 15 images

Small Labelled Dataset

U-Net
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Pretraining Results

Original DAPI Image Manually Annotated
Ground Truth (Nuclei)

U-Net Predictions
Background/Interior/Boundary

Binarized U-Net Predictions
Interior+Boundary Classes

𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫 𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺 =
𝟐𝟐 � 𝑻𝑻𝑻𝑻

𝟐𝟐 � 𝑻𝑻𝑻𝑻 + 𝑭𝑭𝑻𝑻 + 𝑭𝑭𝑭𝑭

Approach DICE Score

Automatic (Watershed 
Segmentation)

0.561

Transfer Learning 0.655
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Finetuning Experiment Setup

Can we leverage the labels given in the 15 
annotated images to improve 
performance?

Procedure:
– We perform leave one image out cross 

validation (train: 14 images, test: 1 image)
– Initialize Model with parameters learned on 

BBBC039 dataset
– Train for 5 epochs
– Data Augmentation is used

• Crops, flips, rotations, illumination changes
– Compute DICE score

• Average across all 15 images
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Improved Results

Original DAPI Image U-Net Predictions
Background/Glial/Nuclei

Binarized U-Net Predictions
Nuclei Class

Manually Annotated
Ground Truth (Nuclei)

Approach DICE Score

Supervised Learning
(Baseline)

0.710

Transfer Learning + 
Supervised Learning

0.733

𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫 𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺 =
𝟐𝟐 � 𝑻𝑻𝑻𝑻

𝟐𝟐 � 𝑻𝑻𝑻𝑻 + 𝑭𝑭𝑻𝑻 + 𝑭𝑭𝑭𝑭
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Comparison of Our Approaches

Approach Algorithm Train Dataset DICE Score
Automatic Watershed N/A 0.561

Transfer Learning U-Net Broad Institute Dataset 
(BBBC039) 0.655

Supervised Learning U-Net LL15 0.710
Transfer Learning + 
Supervised Learning U-Net Broad Institute Dataset 

(BBBC039) -> LL15 0.733

Transfer Learning Mask R-CNN Kaggle 2018 Science Bowl 
(BBBC038v1) 0.722

Approach Algorithm Train Dataset DICE Score
Automatic Watershed N/A 0.561

Transfer Learning U-Net Broad Institute Dataset 
(BBBC039) 0.655

Supervised Learning U-Net LL15 0.710
Transfer Learning + 
Supervised Learning U-Net Broad Institute Dataset 

(BBBC039) -> LL15 0.733
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• Automated, high-performance computing approaches are needed to map the brain 
connectivity
– Deep learning on brain microscopy data has shown promise

• Human annotation is costly and requires domain expertise
• Develop scalable, learning-based methods

– Transfer learning on nuclei segmentation shows promising results
– Future work will make use of conventional image processing results as weakly annotated 

data
– Extend to detecting additional classes (e.g., different cell types)

Summary and Future Work
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