Deep Learning-Based Nuclei Segmentation of Cleared Brain Tissue

Pooya Khorrami¹, Kevin Brady¹, Mark Hernandez¹, Lars Gjesteby¹, Sara Nicole Burke², Damon Lamb², Matthew A. Melton², Kevin Otto², Laura J. Brattain¹

¹MIT Lincoln Laboratory

²University of Florida

IEEE HPEC 2019

26 September 2019

DISTRIBUTION STATEMENT A. Approved for public release. Distribution is unlimited. This material is based upon work supported by the Defense Advanced Research Projects Agency under Air Force Contract No. FA8702-15-D-0001. Any opinions, findings, conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the Defense Advanced Research Projects Agency. © 2019 Massachusetts Institute of Technology. Delivered to the U.S. Government with Unlimited Rights, as defined in DFARS Part 252.227-7013 or 7014 (Feb 2014). Notwithstanding any copyright notice, U.S. Government rights in this work are defined by DFARS 252.227-7013 or DFARS 252.227-7014 as detailed above. Use of this work other than as specifically authorized by the U.S. Government may violate any copyrights that exist in this work.

This work was also sponsored by the Defense Advanced Research Projects Agency (DARPA) BTO under the auspices of Dr. Douglas Weber and Dr. Tristan McClure-Begley through the DARPA Contracts Management Office Grant No. HR0011-17-2-0019.

Program Goal, Challenges, and Proposed Approach

Concept Overview

Amount of Annotated Data

Targets of Interest

- Neurons (nuclei)
 - Receive stimuli
 - Conduct action potentials
- Glial cells
 - Supporting functions
 - Hold neurons close together

Automatic Approach Conventional Image Processing on LLSC

Difference of Gaussian (DoG), Thresholding, and Watershed Segmentation

Centroid Detections Binary Mask Strength

- No need for annotation
- Results can be fed to ML algorithm as weakly annotated data
 Weakness

 Bulk blob detection method does not distinguish between different cell types (i.e. neurons and glia)

Transfer Learning Approach U-Net

U-Net [1] is a popular type of "fully-convolutional" neural network

It is comprised of a contracting path (left) and an expanding path (right)

 Expanding path uses information from contracting path (via "copy and crop" operations)

Contains 23 convolutional layers in total

Used nuclei segmentation dataset prepared by the Broad Institute (BBBC039) [1, 2]

200 images collected – fluorescence microscopy

Around 23,000 nuclei annotated

Image dimensions: 520 x 626 pixels

- Rat brain tissue sample of the nucleus tractus solitarus region
- Prepared using CLARITY tissue clearance [1]
- Applied a fluorescent DNA stain, diamidino-2-phenylindole (DAPI)
- Image acquired using a light-sheet microscope (ZEISS Lightsheet Z.1)
- Resolution:
 - 1920 x 1920 x 650 voxels
 - 0.2µm x 0.2µm x 1µm

Examples of DAPI slices

U-Net Training Details

Trained U-Net on BBBC039 dataset using code/library associated with [1]

- Model outputs predictions as being one of three classes:
 - 1. Background
 - 2. Nuclei Interior
 - 3. Nuclei Boundary

Model was trained using Keras with Tensorflow backend on Nvidia Tesla K40

Used MapReduce on LLSC to apply trained model to DAPI slices

- Processed 20 blocks with ~650 slices each
- Watershed Segmentation Approach was also run on LLSC

LINCOLN LABORATORY

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Qualitative Results

Small Labelled Dataset

15 hand-annotated images (LL15)

Annotated with 3 classes:

- 1. Background
- 2. Glial cell
- 3. Nuclei

Directly apply U-Net trained on BBB039 dataset on the hand-annotated images

 Combined pixels classified as cell interior and cell boundary to make binary mask

Compute DICE score

- Average over 15 images

Pretraining Results

Can we leverage the labels given in the 15 annotated images to improve performance?

Procedure:

- We perform leave one image out cross validation (train: 14 images, test: 1 image)
- Initialize Model with parameters learned on BBBC039 dataset
- Train for 5 epochs
- Data Augmentation is used
 - Crops, flips, rotations, illumination changes
- Compute DICE score
 - Average across all 15 images

Improved Results

Comparison of Our Approaches

Approach	Algorithm	Train Dataset	DICE Score
Automatic	Watershed	N/A	0.561
Transfer Learning	U-Net	Broad Institute Dataset (BBBC039)	0.655
Supervised Learning	U-Net	LL15	0.710
Transfer Learning + Supervised Learning	U-Net	Broad Institute Dataset (BBBC039) -> LL15	0.733
Transfer Learning	Mask R-CNN	Kaggle 2018 Science Bowl (BBBC038v1)	0.722

- Automated, high-performance computing approaches are needed to map the brain connectivity
 - Deep learning on brain microscopy data has shown promise
- Human annotation is costly and requires domain expertise
- Develop scalable, learning-based methods
 - Transfer learning on nuclei segmentation shows promising results
 - Future work will make use of conventional image processing results as weakly annotated data
 - Extend to detecting additional classes (e.g., different cell types)