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Shape Matching in Point-set Registration

� Registration of point sets is an important data analytic task

� Shapes contain semantic meanings of topology and geometry

� Deformation Nonrigid, nonlinear mapping

[Thompson, 1992]
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Applications

I 3-D scanners: data points from multiple views are fused together
via registration to overcome acquisition
limitations [Lempitsky and Boykov, 2007].

I Radiation therapy guided by medical imaging: accurate
registration is critical to precise target localization and accurate
dose estimation [Simon et al., 2015].

I Label propagation: semi-automatic
segmentation [Heckemann et al., 2006].
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Generic Registration Model

Domain point set A Codomain point set B.

inf
f∈F

D(f ,A,B)

I F : model family, feasibility/regularization conditions

I D: measure of model-data fitting

We will specify our conditions for F and choice of D

[Chui and Rangarajan, 2003]
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Uncertainty in Point Correspondance

A single point in A may have multiple matching canidates in B

[Chui and Rangarajan, 2003] 6/39



Global View in Matrix form

∆(f ) =


δ1,1 δ1,2 · · · δ1,n

δ2,1 δ2,2 · · · δ2,3
...

...
. . .

...
δn,1 δn,1 · · · δn,n

 ,
δi ,j = δ( bi = f (aj) )

δij ∈ [0, 1]

I ∆ is a permutation matrix with ideal, combinatorial setting

I ∆ is doublely stochastic in the present work in order to account
for uncertainty
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Ideal Case

Ideal point-set registration:
corresponding points in same color

∆ =


1 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1


Ideal mapping among O(n!)
permutations
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Spectral Noise in Cryo-Electron Microscopy

[Terwilliger et al., 2018]
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Stochastic Mappings

In the presence of Gaussian noise in point sets, ∆ becomes doubly
stochastic

∆ =


.7 .2 .1 · · · 0
.2 .8 0 · · · 0

.1 .0 .8
. . .

...
...

...
. . . .8 .1

0 0 · · · .1 .8


− nnz(∆) is up to n2, instead of n

− the space of doubly stochastic mappings is BIG

+ the feasible mappings are limited by shapes & deformation types
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Deformation

Point set B over a deformed lattice from a rectangular grid.
Deformation: non-rigid, non-linear transformation

[Chui and Rangarajan, 2003]
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Deformation Family

Domain point set A Codomain point set B.

Desirable properties (regularization conditions)

I symmetric registration: B = f (A) A = f −1(B)
I neighborhood preserving

I not sensitive to noise in data
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Data Fitting Measure: GH Distance

Among the Gromov-Wasserstein distance family, 1 we focus on
L2-Gromov-Hausdorff (GH2) distance

dGH2(A,B) = inf
f
‖dA(a, a′)− dB(f (a), f (a′))‖2

where f is isometric

I ‖dA(a, a′)− dB(f (a), f (a′))‖2 is a functional in f

I “dGH(A,B) = 0” =⇒ “(A, dA) and (B, dB) are isometric”

I dGH(A,B) is invariant to isometric mappings between A and B;
a critical extension, distinction from Hausdorff set distance

1[Mémoli, 2011]
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GH Distance: Applications & Advances

I Used for shape matching 2

I Connections to Heat Kernel Signature, intrinsic, foundation to
mulitiscale methods. 3 2

I Lower bounds present appoximations by constrained linear
programs 2

I Choices of point distances dA, dB and their related intrinsic
similarity are well understood 2

2[Mémoli, 2011]
3[Sun et al., 2009]
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Limitations/Gaps in Related Existing Work

◦ Computational complexity is prohibitively high for solving large
linear programs in |A| · |B| = O(n2) variables with
|A|+ |B| = O(n) constraints, with black-box solvers. 4

◦ Effect of noise in data on shape matching and registration is
unknown, unreported or not analyzed

4[Mémoli, 2009], [Mémoli, 2011]

15/39



Contributions

B Establish a theoretical foundation for the use of
Gromov-Hausdorff (GH) distance for point set registration with
bi-Lipschitz deformation maps perturbed by Gaussian noise.

B Introduce a highly efficient iterative algorithm for point set
matching with guaranteed convergence to a local minimum.

B Present a compressive stochastic registration framework, equipped
with an efficient initialization scheme using multi-scale shape
descriptors

The framework is adaptive to application and readily accepts prior
information.
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Chosen Deformation Family

By the desirable properties of (1) symmetric registration, (2)
neighbor preservance and (3) insensitivity to noise, we model
deformation f as surjective, Bi-Lipschitz

The Bi-Lipschitz condition:

∀x ∃r , r ′ > 0 y ∈ N
(
x , r ′

)
⇐⇒ f (y) ∈ N (f (x) , r) (1)

This condition imples homeomorphism of f , f −1.
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Likelihood of Bi-Lipschitz Functions

Given observed data A, B, the likelihood distribution of Bi-Lipschitz
functions is

P (f |A,B) , P (f is bi-Lipschitz |A,B)

To estimate the feasibility likelihood of f , we must consider

◦ the complexity for integrating over feasible locations

◦ the effect of noise on the feasibility criteria
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Bi-Lipschitz condition

∀x ∃r , r ′ > 0 y ∈ N
(
x , r ′

)
⇐⇒ f (y) ∈ N (f (x) , r)

N(x , r ′): Neighborhood of x with
radius r ′

N(f (x), r) :Neighborhood of
y = f (x) with radius r and
deformation upper and lower
bounds rK and r/K , respectively. 19/39



Under Gaussian Noise

Determine when points are likely from some neighborhood.

(a) The neighborhood of x perturbed by
noise.

(b) A 2-point probabilitistically
equivalent noise model.

20/39



Log Likelihood by Aggregated Two-Point Feasibilities

P (f |A,B) , P (f is homeomorphic |A,B) ∝
∫

(U,V )∈δnf
µ(U)µ(V )

≈
∏

aj ,al ,f (aj ),f (al )

∫
(u1,u2,v1,v2)∈δ2

f (aj ,al ,f (aj ),f (al ))
µ(u1, u2)µ(v1, v2)

logP (f |A,B) ≈
∑

aj ,al ,f (aj ),f (al )

D (d (aj , al) , d (f (aj), f (al)))

where

D (d (aj , al) , d (f (aj), f (al))) , log

∫
δ2
f

µ(u1, u2)µ(v1, v2)
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Properties of Elementary 2-Point Likelihood

D (d (aj , al) , d (f (aj), f (al))) a function of point distance

by the radial neighborhood symmetry and the Bi-Lipschitz condition on f

0

r'

r0
0

1

Two-point likelihood (exponentiated) as a function of d(a, a′) and d(b, b′)
(Lipschitz K not bounded)
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L2 GH Auxiliary Function

By the properties of 2-point likelihood D(d(a, a′), d(b, b′))
I It is largest when d(a, a′) and d(b, b′) are nearly equal.
I It is bounded by the bi-Lipschitz condition,

d
(
f (a), f (a′)) ∈ Θ(d(a, a′)

)
We substitute

arg max
f

∑
j ,l

D (d (aj , al) , d (bi = f (aj), bk = f (al)))

by the L2 − GH

arg min
f

∑
j ,l

‖d (aj , al)− d (bi = f (aj), bk = f (al))‖2
2
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Quadratic Program with Linear Constraints

arg min
∆

∥∥∥∆ d(A) ∆T − d(B)
∥∥∥2

F
−
∑
i ,j

logP(f (aj) = bi )∆i ,j

∆ doubly stochastic.

for ∆i ,j = δ(f (aj) = bi ) and priors P(f (aj) = bi ).

I Integer program relaxation

I Non-convex

I Linearly constrained

I Quadratic in matching function (of size n2)
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Stochastic Matching Algorithm

Alternating optimization of Lagrangian following variable splitting

arg min
y ,x

yTGy +
∑
i ,j

log(P(f (aj) = bi )) · y(i ,j) + ι(x)

y is doubly stochastic.

y = x ties constraint and objective variables

ι(·) is infinite where P(f (aj) = bi ) = 0 and x(i ,j) > 1, x(i ,j) < 0 .
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The Quadratic function

d(A) = d(B) =

G = d(A)2 ⊗ In − 2 · d(A)⊗ d(B) +In ⊗ d(B)2

sparse dense sparse
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Convergence & Complexity

Guarantee convergence to local minimum. 5

Efficient use of problem structure:

1. Quadratic form of size n2 × n2 admits special structure.

2. Solution to large system via block LU decomposition.

3. Supported by eigen-decomposition of distance matrices and LU of
Schur complement.

Yields efficient computation:

1. Initialization requires O(n3).

2. Each iteration requires O(n3).

5[Wang et al., 2019]
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Compressive Stochastic Registration Framework

Initialization: A0 = A, initial map f0

1. Locate an auxilary map fk in compressive form,
fk : Ak ⊂ Ω1 → B ⊂ Ω2

2. Remove outlier point pairings

3. Transform points, Ak+1 ← fk(Ak)

Obtain decompressed registration f from fk .

28/39



Configuration Initialization: f0

The configuration is initialized using Log-Cartesian feature, a
multi-scale variant of Shape Context. 6

(a) A 3-level grid used in creating
the Log-Cartesian feature.

(b) Concatenated output grids which
define histogram bins the
Log-Cartesian feature.

6[Belongie et al., 2002]
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Data Description & Experiment Setup

I Respiratory motion data set of five patients at 14 amplitude
binned respiratory phases 7 .

I Ground truth deformation is obtained by manual alignment of
XCAT models to MRI data.

I For the experiments synthetic additive Gaussian displacements
were added with variance set to a percentage of the true
displacement magnitude.

7[Konik et al., 2014]
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Comparisons
I Our Compressive Stochastic Registration
I Iterative Closest Point 8

I Coherent Point Drift 9

(a) Registration results, source in
registered red and target in blue for
Patient M012.
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(b) Plots of error percentiles for Patient
M012.

8[Besl and McKay, 1992]
9[Myronenko and Song, 2010]
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More Comparison Results
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(a) Plots of error percentiles for Patient
M001.
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(b) Plots of error percentiles for Patient
M014.
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More Comparison Results
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(a) Plots of error percentiles for Patient
M022.
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Recap

1. Analysis of noise in registration of functions under bi-Lipschitz
transformations

2. Exploitive iterative algorithm with garaunteed convergence

3. Compressive Registration Framework

4. Efficient Log-Cartesian Shape feature

Questions?
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