Auxiliary Maximum Likelihood Estimation for Noisy Point

Cloud Registration

ﬁj:

DUKE UNIVERSITY/COMPUTER SCIENCE

Cole Campton
Xiaobai Sun

September 26 2019



Outline

Problem Introduction
Related Works
Contributions

Experimental Results

ok =

Conclusion

2/39



Shape Matching in Point-set Registration

Human skull Chimpanzee skull Baboon skull

¢ Registration of point sets is an important data analytic task
o Shapes contain semantic meanings of topology and geometry

o Deformation Nonrigid, nonlinear mapping

[Thompson, 1992]

3/39



Applications

» 3-D scanners: data points from multiple views are fused together
via registration to overcome acquisition
limitations [Lempitsky and Boykov, 2007].

» Radiation therapy guided by medical imaging: accurate
registration is critical to precise target localization and accurate
dose estimation [Simon et al., 2015].

» Label propagation: semi-automatic
segmentation [Heckemann et al., 2006].
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Generic Registration Model

Domain point set A Codomain point set B.

inf D(f, A, B)

feF
» F: model family, feasibility/regularization conditions
» D: measure of model-data fitting

We will specify our conditions for F and choice of D

[Chui and Rangarajan, 2003]
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Uncertainty in Point Correspondance
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A single point in A may have multiple matching canidates in B

[Chui and Rangarajan, 2003] 6/39



Global View in Matrix form
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» A is a permutation matrix with ideal, combinatorial setting

» A is doublely stochastic in the present work in order to account

for uncertainty
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Ideal Case

Ideal point-set registration:
corresponding points in same color
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Ideal mapping among O(n!)
permutations
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Spectral Noise in Cryo-Electron Microscopy

[Terwilliger et al., 2018]
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Stochastic Mappings

In the presence of Gaussian noise in point sets, A becomes doubly

stochastic
7 2 1 0
2 8 0 0
A=1].1 0 .8
: : . .8 .1
o o --- 1 .8

— nnz(A) is up to n?, instead of n
— the space of doubly stochastic mappings is BIG
+ the feasible mappings are limited by shapes & deformation types
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e
Deformation
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Point set B over a-deformed lattice from a.rectangular grid.
Deformation: non-rigid, non-linear transformation -
[Chui and Rangarajan, 2003]
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Deformation Family

Tt.. .
e

Domah1pomtéetA Codomain point set B.

Desirable properties (regularization conditions)
» symmetric registration: B = f(A) A= f_l(B)
» neighborhood preserving

» not sensitive to noise in data
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Data Fitting Measure: GH Distance

Among the Gromov-Wasserstein distance family, 1 we focus on
Lp-Gromov-Hausdorff (GH3) distance

den, (A, B) = inf [da(a, a') — dp(f(a), (a))ll2
where f is isometric

» ||da(a,a’) — dg(f(a), f(d'))|l2 is a functional in f

» “dgu(A,B) =0" = “(A,da) and (B, dg) are isometric”

» dcu(A, B) is invariant to isometric mappings between A and B;
a critical extension, distinction from Hausdorff set distance

[Mémoli, 2011]
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GH Distance: Applications & Advances

» Used for shape matching 2

» Connections to Heat Kernel Signature, intrinsic, foundation to
mulitiscale methods. 3 2

» Lower bounds present appoximations by constrained linear
programs 2

» Choices of point distances ds, dg and their related intrinsic
similarity are well understood 2

2[Mémoli, 2011]
3[Sun et al., 2009]
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Limitations/Gaps in Related Existing Work

o Computational complexity is prohibitively high for solving large
linear programs in |A| - |B| = O(n?) variables with
|A| + |B| = O(n) constraints, with black-box solvers. 4

o Effect of noise in data on shape matching and registration is
unknown, unreported or not analyzed

#[Mémoli, 2009], [Mémoli, 2011]
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Contributions

>> Establish a theoretical foundation for the use of
Gromov-Hausdorff (GH) distance for point set registration with
bi-Lipschitz deformation maps perturbed by Gaussian noise.

> Introduce a highly efficient iterative algorithm for point set
matching with guaranteed convergence to a local minimum.

> Present a compressive stochastic registration framework, equipped
with an efficient initialization scheme using multi-scale shape
descriptors

The framework is adaptive to application and readily accepts prior
information.
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Chosen Deformation Family

By the desirable properties of (1) symmetric registration, (2)
neighbor preservance and (3) insensitivity to noise, we model
deformation f as surjective, Bi-Lipschitz

The Bi-Lipschitz condition:
Vx 3r, >0 yeN(x,r) < f(y)e N(f(x),r) (1)

This condition imples homeomorphism of f, f~1.
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Likelihood of Bi-Lipschitz Functions
Given observed data A, B, the likelihood distribution of Bi-Lipschitz

functions is
P(f|A,B) = P (fis bi-Lipschitz | A, B)

To estimate the feasibility likelihood of f, we must consider

o the complexity for integrating over feasible locations

o the effect of noise on the feasibility criteria
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Bi-Lipschitz condition

Vx 3, >0 yeN(x,r) < f(y)e N(f(x),r)

N(f(x), r) :Neighborhood of
y = f(x) with radius r and
N(x, r'"): Neighborhood of x with deformation upper and lower
radius r’ bounds rK and r/K, respectively.  19/39



Under Gaussian Noise

Determine when points are likely from some neighborhood.

(a) The neighborhood of x perturbed by (b) A 2-point probabilitistically
noise. equivalent noise model.
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Log Likelihood by Aggregated Two-Point Feasibilities

P(f|A,B) = P(f is homeomorphic| A, B) o / w(U) u(V)
(U,V)esn

~ ] /u p(ur, u2) plva, vo)

aj,a;,f(a;),f(a) 7 WD H2VL v2)€6%(aj,a1,f (a),f (ar))

log P(f| A, B) ~ D (d(aj,ar),d(f(a),f(ar)))
ajvalvf(aj)rf(a/)
where

D (d (3. ar) . (F(a3). F(20) & o | ) . v2)

f
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Properties of Elementary 2-Point Likelihood
D (d (aj, a/) ,d (f(aj), f(a/))) a function of point distance

by the radial neighborhood symmetry and the Bi-Lipschitz condition on f

Two-point likelihood (exponentiated) as a function of d(a, a’) and d(b, b')
(Lipschitz K not bounded)
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L, GH Auxiliary Function

By the properties of 2-point likelihood D(d(a, a'),d(b, b'))
» It is largest when d(a, a’) and d(b, b’) are nearly equal.
» It is bounded by the bi-Lipschitz condition,

d (f(a), f(a)) € ©(d(a, a’))

We substitute
arg maxz D aj, a, (b,’ = f(aj), bk = f(a/)))

by the L, — GH
arg min Z/: Id (aj, ar) — d (bi = £(a7), b = f(a1))II5
./7
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Quadratic Program with Linear Constraints

arg min

min | A.d(A) AT~ d(B)]| - 3 log P(F(a) = )

A doubly stochastic.
for A;j = 0(f(a;) = b;) and priors P(f(a;) = b;).
» Integer program relaxation
» Non-convex
» Linearly constrained

» Quadratic in matching function (of size n?)
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Stochastic Matching Algorithm

Alternating optimization of Lagrangian following variable splitting

arg min y! Gy + Z log(P(f(a;) = bi)) - ¥ijy + ¢(x)
y’X i,j
y is doubly stochastic.
y = xties constraint and objective variables

i(+) is infinite where P(f(aj) = b;) = 0 and x(; ) > 1, x(jj) <0 .
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The Quadratic function

a(a) = P a(s) = ¥

~2-d(A)®d(B) +I,®d(B)?

sparse dense sparse
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Convergence & Complexity

Guarantee convergence to local minimum. °

Efficient use of problem structure:

2 % n? admits special structure.

1. Quadratic form of size n
2. Solution to large system via block LU decomposition.

3. Supported by eigen-decomposition of distance matrices and LU of
Schur complement.

Yields efficient computation:
1. Initialization requires O(n®).
2. Each iteration requires O(n).

5[Wang et al., 2019]
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Compressive Stochastic Registration Framework

Initialization: Ag = A, initial map f

1. Locate an auxilary map fx in compressive form,
fk : Ak CQy — BC Qo

2. Remove outlier point pairings
3. Transform points, Ax11 < fx(Axk)
Obtain decompressed registration f from fy.
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Configuration Initialization: fy

The configuration is initialized using Log-Cartesian feature, a
multi-scale variant of Shape Context. °

(b) Concatenated output grids which
define histogram bins the
Log-Cartesian feature.

(a) A 3-level grid used in creating
the Log-Cartesian feature.

%[Belongie et al., 2002]
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Data Description & Experiment Setup

» Respiratory motion data set of five patients at 14 amplitude
binned respiratory phases ’ .

» Ground truth deformation is obtained by manual alignment of
XCAT models to MRI data.

» For the experiments synthetic additive Gaussian displacements
were added with variance set to a percentage of the true
displacement magnitude.

" [Konik et al., 2014]
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Comparisons

» Our Compressive Stochastic Registration
» Iterative Closest Point 8

» Coherent Point Drift °

GH-Math Interpolaed-Rogitration iop
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(a) Registration results, source in
registered red and target in blue for
Patient M012.

(b) Plots of error percentiles for Patient
MO12.

8[Besl and McKay, 1992]
9[Myronenko and Song, 2010]
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More Comparison Results
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(a) Plots of error percentiles for Patient (b) Plots of error percentiles for Patient
MO001. M014
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More Comparison Results
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(a) Plots of error percentiles for Patient (b) Plots of error percentiles for Patient
MO022. MO023.
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Recap

1.

Analysis of noise in registration of functions under bi-Lipschitz
transformations

2. Exploitive iterative algorithm with garaunteed convergence

3. Compressive Registration Framework

4. Efficient Log-Cartesian Shape feature

Questions?
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