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Aim to accelerate 

data-intensive 

workflows to 

achieve near-ASIC 

performance with 

high-level 

programming 

language
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The knowledge base, a center component in the DDARING Project
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• Challenge:
• To store program metadata and status on previous executions
• To analyze the gathered information
• To answer queries from other component rapidly

Our approach: the knowledge base
Dynamic and expendable
Continuously gather knowledge during execution of workflow
Identify optimal implementations of workflows on optimal 

hardware configurations
Answer to compile- and run-time queries in real time
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• Rich tripartite graph 
representation 𝐺𝐺(𝑉𝑉1,𝑉𝑉2,𝑉𝑉3,𝐸𝐸)

• 𝑉𝑉1: Domain Specific Language 
Level steps

• 𝑉𝑉2: Bare bone tasks or kernels
• 𝑉𝑉3: Hardware configurations
• 𝐸𝐸(𝑉𝑉1,𝑉𝑉2): Mapping of steps to 

kernels, captures the algorithmic 
realizations of steps

• 𝐸𝐸 𝑉𝑉2,𝑉𝑉3 : Mapping of kernels to 
hardware configurations, 
captures the performance 
models co-occurring kernels could be merged

one step (or kernels) could have multiple mappings



The Knowledge Base: Tripartite Representation
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Example of the knowledge base capturing the node classification workflow
(demonstrated on heterogeneous architecture)

edges in black 
show optimal 
mapping

dashed line 
means less 
precision 
needed, hence 
mapped to FPGA
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12

• The knowledge base is created by offline discovery and 
dynamic updates.
Offline discovery:

• Choose some typical workflows
• Manually profile the selected workflows
• Decompose the workflows into steps and kernels
• Construct the performance model

Dynamic Updates:
• Get updates from the profiling and reconfiguration component 
• Modify the tripartite graph accordingly
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• The knowledge base implementation:
• Object oriented, with each node or edge as a class
• Adjacency list graph in the C++ Boost Library
• Single thread

• Query types:
• Type 1 query: For a given step in the knowledge base, return all kernels 

linked with that step.
• Type 2 query:  For a given kernel and a given hardware configuration in 

the knowledge base, return the performance model for executing the 
kernel on the hardware configuration.

• Type 3 query:  For a given kernel in the knowledge base, return the 
performance models for executing the kernels on all hardware 
configurations.
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Number of kernels = 1.5 times than number of steps
Number of hardware configurations = 10

The feature of the nodes and edges are filled with random content
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17

• Query time ∝ size of the knowledge 
base

• However, we do not need a large 
knowledge base!

• Kernel coverage: percentage of 
stored kernels included a collection 
of workflows

We model the coverage by setting 
the possibility that a kernel is 
included in one workflow follows 
preferential attachment rule with a 
fixed parameter 𝜆𝜆

𝜆𝜆 = 2.5 with real kernel coverage

Only 8 kernels needed to cover  60+ workflows!
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We proposed a expendable and dynamic rich labeled tripartite 
network representation of the knowledge base.

The knowledge base gathers the knowledge of optimized 
implementations of key algorithmic steps and kernels on various 
parameterized hardware.

The knowledge base is implemented using the C++ Boost Library and 
is capable of answering different types of queries rapidly.

• On going work: Portable lightweight deep learning models for kernel 
performance [submitted]
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