
Design and Implementation of Knowledge Base for
Runtime Management of Software Defined

Hardware

Hongkuan Zhou, Ajitesh Srivastava, Rajgopal Kannan and
Viktor Prasanna

University of Southern California

September 26, 2019
HPEC’ 19, Waltham, MA USA

Outline

2

• Motivation and Background

• The Knowledge Base

• Tripartite Representation

• Creation

• Interaction with Other Components

• Performance of the Knowledge Base

• Conclusion

Outline

3

• Motivation and Background

• The Knowledge Base

• Tripartite Representation

• Creation

• Interaction with Other Components

• Performance of the Knowledge Base

• Conclusion

Motivation

4

Reconfigurable Device

?

Background: SDH Program

5

Background: DDARING Project

6

Aim to accelerate

data-intensive

workflows to

achieve near-ASIC

performance with

high-level

programming

language

Background: DDARING Project

7

High-level
Programming

Model

Static
Data-aware
Optimizer

Dynamic
Data-aware
Optimizer

Knowledge Base: Kernels,
Data Access Patterns,

Configurations

Auto-tuning &
Reconfiguration

The knowledge base, a center component in the DDARING Project

Outline

8

• Motivation and Background

• The Knowledge Base

• Tripartite Representation

• Creation

• Interaction with Other Components

• Performance of the Knowledge Base

• Conclusion

The Knowledge Base

9

• Challenge:
• To store program metadata and status on previous executions
• To analyze the gathered information
• To answer queries from other component rapidly

Our approach: the knowledge base
Dynamic and expendable
Continuously gather knowledge during execution of workflow
Identify optimal implementations of workflows on optimal

hardware configurations
Answer to compile- and run-time queries in real time

The Knowledge Base: Tripartite Representation

10

• Rich tripartite graph
representation 𝐺𝐺(𝑉𝑉1,𝑉𝑉2,𝑉𝑉3,𝐸𝐸)

• 𝑉𝑉1: Domain Specific Language
Level steps

• 𝑉𝑉2: Bare bone tasks or kernels
• 𝑉𝑉3: Hardware configurations
• 𝐸𝐸(𝑉𝑉1,𝑉𝑉2): Mapping of steps to

kernels, captures the algorithmic
realizations of steps

• 𝐸𝐸 𝑉𝑉2,𝑉𝑉3 : Mapping of kernels to
hardware configurations,
captures the performance
models co-occurring kernels could be merged

one step (or kernels) could have multiple mappings

The Knowledge Base: Tripartite Representation

11

Example of the knowledge base capturing the node classification workflow
(demonstrated on heterogeneous architecture)

edges in black
show optimal
mapping

dashed line
means less
precision
needed, hence
mapped to FPGA

The Knowledge Base: Creation

12

• The knowledge base is created by offline discovery and
dynamic updates.
Offline discovery:

• Choose some typical workflows
• Manually profile the selected workflows
• Decompose the workflows into steps and kernels
• Construct the performance model

Dynamic Updates:
• Get updates from the profiling and reconfiguration component
• Modify the tripartite graph accordingly

The Knowledge Base: Interaction with Other
Components

13

KB

Programming
Model (Task 1)

Static High-Level
Optimizer (Task 3)

Identify
“operators” Identify

Kernel to HW
mappings

Dynamic High-
Level Optimizer

(Task 4)

Identify optimized
mapping costs

Auto Tuning
(Task 5)

Obtain feature
space for

optimization

Profiling,
Reconfiguration

(Task 5)

Update models

Outline

14

• Motivation and Background

• The Knowledge Base

• Tripartite Representation

• Creation

• Interaction with Other Components

• Performance of the Knowledge Base

• Conclusion

Performance of the Knowledge Base

15

• The knowledge base implementation:
• Object oriented, with each node or edge as a class
• Adjacency list graph in the C++ Boost Library
• Single thread

• Query types:
• Type 1 query: For a given step in the knowledge base, return all kernels

linked with that step.
• Type 2 query: For a given kernel and a given hardware configuration in

the knowledge base, return the performance model for executing the
kernel on the hardware configuration.

• Type 3 query: For a given kernel in the knowledge base, return the
performance models for executing the kernels on all hardware
configurations.

Performance of the Knowledge Base

16

Number of kernels = 1.5 times than number of steps
Number of hardware configurations = 10

The feature of the nodes and edges are filled with random content

Kernel Coverage

17

• Query time ∝ size of the knowledge
base

• However, we do not need a large
knowledge base!

• Kernel coverage: percentage of
stored kernels included a collection
of workflows

We model the coverage by setting
the possibility that a kernel is
included in one workflow follows
preferential attachment rule with a
fixed parameter 𝜆𝜆

𝜆𝜆 = 2.5 with real kernel coverage

Only 8 kernels needed to cover 60+ workflows!

Outline

18

• Motivation and Background

• The Knowledge Base

• Tripartite Representation

• Creation

• Interaction with Other Components

• Performance of the Knowledge Base

• Conclusion

Conclusion

19

We proposed a expendable and dynamic rich labeled tripartite
network representation of the knowledge base.

The knowledge base gathers the knowledge of optimized
implementations of key algorithmic steps and kernels on various
parameterized hardware.

The knowledge base is implemented using the C++ Boost Library and
is capable of answering different types of queries rapidly.

• On going work: Portable lightweight deep learning models for kernel
performance [submitted]

Thank You!

20

	Design and Implementation of Knowledge Base for�Runtime Management of Software Defined�Hardware
	Outline
	Outline
	Motivation
	Background: SDH Program
	Background: DDARING Project
	Background: DDARING Project
	Outline
	The Knowledge Base
	The Knowledge Base: Tripartite Representation
	The Knowledge Base: Tripartite Representation
	The Knowledge Base: Creation
	The Knowledge Base: Interaction with Other Components
	Outline
	Performance of the Knowledge Base
	Performance of the Knowledge Base
	Kernel Coverage
	Outline
	Conclusion
	Slide Number 20

