Survey and Benchmarking of Machine Learning Accelerators

Albert Reuther, Peter Michaleas, Michael Jones, Vijay Gadepally, Siddharth Samsi, and Jeremy Kepner

IEEE High Performance Extreme Computing Conference

25-Sept-2019

DISTRIBUTION STATEMENT A. Approved for public release. Distribution is unlimited. This material is based upon work supported by the Under Secretary of Defense for Research and Engineering under Air Force Contract No. FA8702-15-D-0001. Any opinions, findings, conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the Under Secretary of Defense for Research and Engineering. © 2019 Massachusetts Institute of Technology. Delivered to the U.S. Government with Unlimited Rights, as defined in DFARS Part 252.227-7013 or 7014 (Feb 2014). Notwithstanding any copyright notice, U.S. Government rights in this work are defined by DFARS 252.227-7013 or DFARS 252.227-7014 as detailed above. Use of this work other than as specifically authorized by the U.S. Government may violate any copyrights that exist in this work.

Outline

Introduction

- Neural Networks and AI Landscape
- Training and Inference
- Numerical Precision
- Why create custom AI chips?
- Al Processor/Accelerator Landscape
 - Dimensions of Taxonomy
 - Technology Examples
- Embedded Accelerator Benchmarking
 - Intel Movidius and Google TPU Edge
 - Results
- Summary

Big Data and Building Future AI Systems

- Computing systems inspired by biological networks
- Systems learn by repetitive training to do tasks based on examples
 - Generally a supervised learning technique (though unsupervised examples exist)
- Components: Inputs, Layers, Outputs, Weights
- Deep Neural Network: Lots of "hidden layers"
- Popular variants:
 - Convolutional Neural Nets
 - Recursive Neural Nets
 - Deep Belief Networks
- Very popular these days with many toolboxes and hardware support

Supervised Learning with Deep Neural Networks

Training vs. Inference

Presentation Name - 6 of

Author Initials MM/DD/YY

Supervised Learning with Deep Neural Networks

Training Epochs and Training/Inference Batches

Neural Network Landscape

Primary Types of Deep Neural Networks

Feed-Forward Neural Networks

Deep Feed Forward (DFF)

Convolutional Neural Networks

Recursive Neural Networks

- Best for classification
- Input layer (yellow)
- Output layer (red)
- One or more hidden layers (green)
- Feed-forward weights associated with each line
- Bias weights associated with each neuron

- Best for image processing classification
- Trainable convolution filters
- Include pooling layers after convolution layers
- Feed forward (fully-connected) layers complete classification of data

- Best for signal processing classification
- Input can be in time-domain, frequency domain (FFT), other
- Recursive weights capture timedependent features of inputs

Common NN Layers and Activation Functions

Presentation Name - 9 of Author Initials MM/DD/YY

Floating Point and Integers

In past 40 years, exhaustion of avenues

- Transistors
- Single thread performance
- Frequency
- Power
- Cores

Higher Performance will depend on

- Application specificity
- Kernel core blocks (circuit IP)

42 Years of Microprocessor Trend Data

Year Original data up to the year 2010 collected and plotted by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond, and C. Batten New plot and data collected for 2010-2017 by K. Rupp

Source : https://www.karlrupp.net/2015/06/40-years-of-microprocessor-trend-data/

Outline

- Introduction
 - Neural Networks and AI Landscape
 - Training and Inference
 - Numerical Precision
 - Why create custom AI chips?
- Al Processor/Accelerator Landscape
 - Dimensions of Taxonomy
 - Technology Examples
- Embedded Accelerator Benchmarking
 - Intel Movidius and Google TPU Edge
 - Results
- Summary

Neural Network Processing Performance

Slide courtesy of Albert Reuther, MIT Lincoln Laboratory Supercomputing Center

Neural Network Processing Performance

Presentation Name - 14 of Author Initials MM/DD/YY

Slide courtesy of Albert Reuther, MIT Lincoln Laboratory Supercomputing Center

Neural Network Processing Performance

Presentation Name - 15 of Author Initials MM/DD/YY

Slide courtesy of Albert Reuther, MIT Lincoln Laboratory Supercomputing Center

Outline

- Introduction
 - Neural Networks and AI Landscape
 - Training and Inference
 - Numerical Precision
 - Why create custom AI chips?
- Al Processor/Accelerator Landscape
 - Dimensions of Taxonomy
 - Technology Examples
- Embedded Accelerator Benchmarking
 - Intel Movidius and Google TPU Edge
 - Results
- Summary

Intel Movidius Myriad X and Google TPU Edge

	Movidius Myriad X	TPU Edge
Use	Inference Only	Inference Only
Released	Nov 2018	Dec 2018
Inference Engine	Neural Compute Engine	256x256 Matrix Multiply Units (MXU) systolic array matrix-matrix multiplier
Memory	4 GB	1 GB
Precision	Int8	Int8, Int16
Peak DNN Throughput	160 GOPS	58.5 GOPS

Embedded Inference Accelerator Performance

	TPU Edge	NCS2	i9-SSE4	i9-AVX2
NN Environment	TensorFlow	OpenVINO Lite	TensorFlow	TensorFlow
Mobilenet Model	v1	v2	v2	v2
Reported GOPS	58.5	160		
Measured GOPS	47.4	8.29	38.4	40.9
Reported Power (W)	2.0	2.0	205	205
Measured Power (W)	0.85	1.35		
Reported GOPS/W	29.3	80.0		
Measured GOPS/W	55.8	6.14		
Avg. Model Load Time (s)	3.66 s	5.32 s	0.36 s	0.36 s
Avg. Single Image Inference Time (ms)	27.4 ms	96.4 ms	19.6 ms	20.8 ms

- Much lower power on TPU Edge and NCS2
- Similar performance from TPU Edge and i9
- Slower model load time on TPU Edge and NCS2

Single Image Inference Times

- Similar single image inference time from Edge TPU and i9
- NCS2 slower which affects GOPS/W

- Application customization necessary for further performance gains
- Numerical precision, NN models, and layers all influence the intensity of training and inference performance
- Many products and research projects exploring application customization for AI / ML accelerators
 - CPU / CPU mesh acceleration
 - GPU Thread-parallel acceleration
 - Dataflow accelerators
- Embedded inference accelerators approaching CPU vector performance with much lower power use