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Big Data and Building Future AI Systems
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Artificial Neural Networks

• Computing systems inspired by biological networks
• Systems learn by repetitive training to do tasks based on 

examples
– Generally a supervised learning technique (though 

unsupervised examples exist)

• Components: Inputs, Layers, Outputs, Weights
• Deep Neural Network: Lots of “hidden layers”
• Popular variants:

– Convolutional Neural Nets
– Recursive Neural Nets
– Deep Belief Networks

• Very popular these days with many toolboxes and hardware 
support
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Supervised Learning with Deep Neural Networks
Training vs. Inference
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Supervised Learning with Deep Neural Networks
Training Epochs and Training/Inference Batches
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Image Source: http://www.asimovinstitute.org/neural-network-zoo/

Neural Network Landscape
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Convolutional Neural 
Networks Recursive Neural NetworksFeed-Forward Neural 

Networks

Primary Types of Deep Neural Networks

• Best for signal processing 
classification

• Input can be in time-domain, 
frequency domain (FFT), other

• Recursive weights capture time-
dependent features of inputs

• Best for image processing 
classification

• Trainable convolution filters
• Include pooling layers after 

convolution layers
• Feed forward (fully-connected) layers 

complete classification of data 

• Best for classification
• Input layer (yellow)
• Output layer (red)
• One or more hidden layers (green)
• Feed-forward weights associated with 

each line
• Bias weights associated with each 

neuron
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Common NN Layers and Activation Functions

Step Function: 

𝒇 𝒙 = $𝟎, 𝒙 < 𝟎
𝟏, 𝒙 ≥ 𝟎

Sigmoid Function: 

𝒇 𝒙 =
𝟏

𝟏 + 𝒆,𝒙

Tanh Function: 
𝒇 𝒙 = 𝒕𝒂𝒏𝒉(𝒙)

Rectified Linear Unit (ReLU): 
𝒇 𝒙 = 𝒎𝒂𝒙(𝟎, 𝒙)

Common Layers

Srivastava, Hinton, Krizhevsky, Sutskever and Salakhutdinov

(a) Standard Neural Net (b) After applying dropout.

Figure 1: Dropout Neural Net Model. Left: A standard neural net with 2 hidden layers. Right:
An example of a thinned net produced by applying dropout to the network on the left.
Crossed units have been dropped.

its posterior probability given the training data. This can sometimes be approximated quite
well for simple or small models (Xiong et al., 2011; Salakhutdinov and Mnih, 2008), but we
would like to approach the performance of the Bayesian gold standard using considerably
less computation. We propose to do this by approximating an equally weighted geometric
mean of the predictions of an exponential number of learned models that share parameters.

Model combination nearly always improves the performance of machine learning meth-
ods. With large neural networks, however, the obvious idea of averaging the outputs of
many separately trained nets is prohibitively expensive. Combining several models is most
helpful when the individual models are di↵erent from each other and in order to make
neural net models di↵erent, they should either have di↵erent architectures or be trained
on di↵erent data. Training many di↵erent architectures is hard because finding optimal
hyperparameters for each architecture is a daunting task and training each large network
requires a lot of computation. Moreover, large networks normally require large amounts of
training data and there may not be enough data available to train di↵erent networks on
di↵erent subsets of the data. Even if one was able to train many di↵erent large networks,
using them all at test time is infeasible in applications where it is important to respond
quickly.

Dropout is a technique that addresses both these issues. It prevents overfitting and
provides a way of approximately combining exponentially many di↵erent neural network
architectures e�ciently. The term “dropout” refers to dropping out units (hidden and
visible) in a neural network. By dropping a unit out, we mean temporarily removing it from
the network, along with all its incoming and outgoing connections, as shown in Figure 1.
The choice of which units to drop is random. In the simplest case, each unit is retained with
a fixed probability p independent of other units, where p can be chosen using a validation
set or can simply be set at 0.5, which seems to be close to optimal for a wide range of
networks and tasks. For the input units, however, the optimal probability of retention is
usually closer to 1 than to 0.5.

1930

Fully Connected

Convolutional 
(Deconvolutional)

MaxPool

Dropout

Others: Softmax, Skip Layer, etc.

Activation Functions

Before After
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Common Floating Point Representations

Number Representations
Floating Point and Integers

S E E E E E E E E M M M M M M M M M M M M M M M M M M M M M M M

fp32: Single-precision IEEE Floating Point Format

Exponent: 8 bits Mantissa (Significand): 23 bits
Range: ~1e-38 to ~3e38 Number of Decimal Digits: ~7.2

Example: 123.45 = 1.2345 x 102 = 0.12345 x 103 = 0100 0010 1111 0110 1110 0110 0110 0110 (fp32)

S E E E E E E E E M M M M M M M M M M M M M M M M M M M M M M ME E E M M M M M M M M M M M M M M M M M M M M M M M M M M M M M

fp64: Double-precision IEEE Floating Point Format

Exponent: 11  bits Mantissa (Significand): 52 bits
Range: ~1e-38 to ~3e38 Number of Decimal Digits: ~15.9

S E E E E E M M M M M M M M M M
Exponent: 5 bits Mantissa (Significand): 10 bits

fp16: Half-precision IEEE Floating Point Format
Range: ~5.96e-8 to 65504 Number of Decimal Digits: ~3.3

Number of Decimal Digits: ~2.3
Exponent: 8 bits Mantissa (Significand): 7 bits

bfloat16: Brain Floating Point Format
Range: ~1e-38 to ~3e38

S E E E E E M M M M M M ME E E

Common Integer Representations 

S b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b

int, int32_t:
Range: -2,147,483,648 (-231) to 2,147,483,647 (231 – 1)

b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b

unsigned int, uint32_t:
Range: 0 to 4,294,967,295 (232 – 1)

S b b b b b b b b b b b b b b b

short, int16_t:
Range: -32,768 (-215) to 32,767 (215 – 1)

b b b b b b b b b b b b b b b b

unsigned short, uint16_t:
Range: 0 to 65,535 (216 – 1)

S b b b b b b b

int8_t:
Range: -128 (-27) to 127 (27 – 1)

b b b b b b b b

char, uint8_t:
Range: 0 to 255 (28 – 1)
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Why Custom Processing Chips?

In past 40 years, exhaustion of avenues
• Transistors
• Single thread performance
• Frequency
• Power
• Cores
Higher Performance will depend on
• Application specificity
• Kernel core blocks (circuit IP)

Source : https://www.karlrupp.net/2015/06/40-years-of-microprocessor-trend-data/

Mark Horowitz Computing’s Energy Problem: https://ieeexplore.ieee.org/document/6757323

https://ieeexplore.ieee.org/document/6757323/
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Intel Movidius Myriad X and Google TPU Edge

Movidius Myriad X TPU Edge
Use Inference Only Inference Only
Released Nov 2018 Dec 2018
Inference Engine Neural Compute Engine 256x256 Matrix Multiply Units (MXU) 

systolic array matrix-matrix multiplier
Memory 4 GB 1 GB
Precision Int8 Int8, Int16
Peak DNN Throughput 160 GOPS 58.5 GOPS

MXU = Matrix multiply unit
HBM = High bandwidth memory
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Embedded Inference Accelerator Performance

• Much lower power on TPU Edge and NCS2
• Similar performance from TPU Edge and i9
• Slower model load time on TPU Edge and NCS2

TPU Edge NCS2 i9-SSE4 i9-AVX2 
NN Environment TensorFlow OpenVINO Lite TensorFlow TensorFlow

Mobilenet Model v1 v2 v2 v2 

Reported GOPS 58.5 160 

Measured GOPS 47.4 8.29 38.4 40.9 
Reported Power (W) 2.0 2.0 205 205 

Measured Power (W) 0.85 1.35 

Reported GOPS/W 29.3 80.0 

Measured GOPS/W 55.8 6.14 
Avg. Model Load Time (s) 3.66 s 5.32 s 0.36 s 0.36 s

Avg. Single Image Inference 
Time (ms) 27.4 ms 96.4 ms 19.6 ms 20.8 ms
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Single Image Inference Times

• Similar single image inference time from Edge TPU and i9
• NCS2 slower which affects GOPS/W
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Summary

• Application customization necessary for further performance gains

• Numerical precision, NN models, and layers all influence the intensity of training and 
inference performance

• Many products and research projects exploring application customization for AI / ML 
accelerators
– CPU / CPU mesh acceleration
– GPU Thread-parallel acceleration
– Dataflow accelerators

• Embedded inference accelerators approaching CPU vector performance with much 
lower power use


